JPH08186995A - Frequency convertor - Google Patents

Frequency convertor

Info

Publication number
JPH08186995A
JPH08186995A JP6340933A JP34093394A JPH08186995A JP H08186995 A JPH08186995 A JP H08186995A JP 6340933 A JP6340933 A JP 6340933A JP 34093394 A JP34093394 A JP 34093394A JP H08186995 A JPH08186995 A JP H08186995A
Authority
JP
Japan
Prior art keywords
voltage
frequency
synchronous motor
output
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6340933A
Other languages
Japanese (ja)
Inventor
Norizou Yoshino
法象 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYST HOOMUZU KK
Original Assignee
SYST HOOMUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYST HOOMUZU KK filed Critical SYST HOOMUZU KK
Priority to JP6340933A priority Critical patent/JPH08186995A/en
Publication of JPH08186995A publication Critical patent/JPH08186995A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE: To improve the energy efficiently of a synchronous motor by adjusting th magnitude of specified voltage of a frequency convertor according to the measured value of a.c. current input to the synchronous motor. CONSTITUTION: Alternating curreent voltage 11 input to a frequency convertor is converted into d.c. voltage 13, which is then fed as output voltage 15 from an inverter 14 to a synchronous motor 17. Torque consequently generated is used to drive a connected load. A voltage controlling means 23 establishes directed voltage 27 as a function of directed frequency 21 and output current 16, or the value of current obtained by measuring the motor current using a current sensor 18. A PWM signal decoder 32 is fed with pulse code width modulation signals (PCMW) 30 according to timing signals 31, and decodes them. The decoder then outputs pulse width modulation signals (PWM) 33 to drive the inverter 14. The PCWM 30 is created as a function of directed frequency 21 and directed voltage 23 by a PWM encoder 28 in real time. As a result, the optimum efficiency is maintained regardless of the value of the load.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は周波数変換装置に関
し、特にその出力電圧のレベルを、出力電流のレベルに
応じて実時間的に調節して、永久磁石式同期電動機をつ
ねに効率最適点で動作させるようにしたことを特徴とす
る周波数変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency converter, and more particularly to adjusting the output voltage level thereof in real time according to the output current level so that the permanent magnet type synchronous motor always operates at the optimum efficiency point. The present invention relates to a frequency conversion device characterized by the above.

【0002】[0002]

【従来の技術】従来の周波数変換装置は指示周波数を与
えると、これとセットとなった一定の指示電圧(v/f
パターン)が選択されるものが大部分であった。すなわ
ち、第1図に示すように、指示周波数と指示電圧の組合
せは、01の直線で示される定トルク特性、02の折れ
線で示される低減トルク特性、03の直線で示される定
出力特性等、いくつかの折れ線的関係のものの中から、
一つまたは二つを組み合わせた所望の特性を手動スイッ
チにより選択するようになっている。従来の周波数変換
装置にあっては、あらかじめ負荷の特性が知られたもの
については、その負荷特性に一番適したv/fパターン
を選択すれば、同期電動機の効率を最適値に近づけるこ
とができる。しかし、同期電動機をアクチュエータとし
て使用するときのように、所望回転数や所望トルクが時
間の関数として変化する場合、また、同期電動機を準定
常的な動力の発生装置として使用する場合でも、負荷の
特性が分からなかったり、変動したりする場合には、折
れ線近似で指示周波数と指示電圧の組合せを与えてしま
うと、同期電動機をしばしば最高効率の点からずれた点
で運転することになり、入力の電気エネルギーを有効に
動力のエネルギーとして取り出すことができない。
2. Description of the Related Art A conventional frequency conversion device, when given an instructed frequency, has a set constant voltage (v / f) as a set.
Most of them were selected. That is, as shown in FIG. 1, the combination of the instructed frequency and the instructed voltage has a constant torque characteristic indicated by a straight line 01, a reduced torque characteristic indicated by a broken line 02, a constant output characteristic indicated by a straight line 03, and the like. From some of the line-related things,
A desired characteristic of one or a combination of two is selected by a manual switch. In the conventional frequency converter, if the load characteristics are known in advance, the efficiency of the synchronous motor can be brought close to the optimum value by selecting the v / f pattern most suitable for the load characteristics. it can. However, even when the desired rotation speed or the desired torque changes as a function of time, such as when the synchronous motor is used as an actuator, or when the synchronous motor is used as a quasi-steady power generator, If the characteristics are unknown or fluctuate, if the combination of the indicated frequency and the indicated voltage is given by the line approximation, the synchronous motor will often be operated at a point deviating from the point of maximum efficiency. It is not possible to effectively extract the electric energy of the above as the energy of power.

【0003】回転子に永久磁石を持った同期電動機の固
定子に巻かれた巻線に、一定電圧の交流周波数を印加し
たとする。このとき固定子巻線に流れる電機子電流によ
って生じる回転磁界と、永久磁石が作る界磁との相互作
用により、回転子にはトルクが働く。その結果、回転子
は交流周波数に同期した速度で回転し、回転子に直結し
た負荷を駆動する。この同期電動機に与える電圧および
電流の大きさの組合せが適正でないと、電動機の効率が
悪化してしまう。すなわち、負荷の大きさに対して与え
る電圧が高すぎると、電動機の入力電流の位相が入力電
圧に比べて進み、動力の発生にとっては無駄な鉄損(磁
気回路のヒステリシス損)や銅損(巻線の抵抗損)が増
える。これらの鉄損や銅損は電機子電流の大きさの平方
にほぼ比例して増加する。次に、負荷の大きさに対して
印加電圧が低すぎると、電動機の入力電流の位相が入力
電圧に比べて遅れ、電流の絶対値が増加する。電機子電
流の銅損によって、電動機に加える電力は相乗的に増加
する。
It is assumed that an AC frequency of a constant voltage is applied to a winding wound around the stator of a synchronous motor having a permanent magnet on the rotor. At this time, torque acts on the rotor due to the interaction between the rotating magnetic field generated by the armature current flowing through the stator winding and the field created by the permanent magnet. As a result, the rotor rotates at a speed synchronized with the AC frequency and drives a load directly connected to the rotor. If the combination of the magnitudes of the voltage and the current applied to the synchronous motor is not proper, the efficiency of the motor will deteriorate. That is, if the voltage applied to the magnitude of the load is too high, the phase of the input current of the electric motor leads the phase of the input voltage, which is a waste of iron loss (hysteresis loss of the magnetic circuit) and copper loss in generating power. Winding resistance loss) increases. These iron loss and copper loss increase almost in proportion to the square of the magnitude of the armature current. Next, if the applied voltage is too low with respect to the magnitude of the load, the phase of the input current of the electric motor lags behind the input voltage, and the absolute value of the current increases. Due to the copper loss of the armature current, the power applied to the motor increases synergistically.

【0004】[0004]

【発明が解決しようとする課題】図2は実験に基づく結
果で、その負荷条件が変化するとき、同期電動機から最
高効率を引き出すための、周波数変換装置のv/fパタ
ーンを示したものである。ここで、04の破線、05の
一点鎖線、および06の実線はそれぞれ、重負荷、中負
荷、軽負荷条件に対する最適な指示周波数に対する出力
電圧の特性を表す。先に述べたことから明らかなよう
に、同期電動機には、その速度と負荷の大きさが与えら
れると、周波数変換装置の最適な出力電圧と出力電流の
組合せが存在するが、従来、一般に使用されている周波
数変換装置においては、これらの二つの量を独立に、か
つ同時に制御することができなかったため、効率の点で
改善の余地があった。
FIG. 2 is a result based on an experiment and shows a v / f pattern of a frequency conversion device for extracting the maximum efficiency from the synchronous motor when the load condition changes. . Here, the broken line of 04, the alternate long and short dash line of 05, and the solid line of 06 respectively represent the characteristics of the output voltage with respect to the optimum instruction frequency for heavy load, medium load, and light load conditions. As is clear from the above description, the synchronous motor has an optimum output voltage and output current combination of the frequency conversion device when given the speed and the size of the load. In the frequency converters used, it was not possible to control these two quantities independently and simultaneously, so there was room for improvement in terms of efficiency.

【0005】[0005]

【課題を解決するための手段】この発明は上記のような
従来の周波数変換装置の欠点を除去し、同期電動機のエ
ネルギー効率を向上するためになされたものである。本
実施例では、この試みを実現するため、同期電動機にか
かる負荷の大きさを連続的に測定する内臓センサを用い
ている。すなわち、周波数変換装置の指示電圧の大きさ
を、同期電動機に入力される交流電流の大きさの測定に
基づいて調節して、同期電動機のエネルギー効率の向上
を図っている。
The present invention has been made to eliminate the above-mentioned drawbacks of the conventional frequency converter and improve the energy efficiency of the synchronous motor. In this embodiment, in order to realize this attempt, a built-in sensor that continuously measures the magnitude of the load applied to the synchronous motor is used. That is, the magnitude of the instruction voltage of the frequency conversion device is adjusted based on the measurement of the magnitude of the alternating current input to the synchronous motor to improve the energy efficiency of the synchronous motor.

【0006】[0006]

【実施例】以下、この発明の一実施例を図について説明
する。図3で、11はこの周波数変換装置の入力交流電
圧、12は入力交流電圧11を13の直流電圧に変換す
るためのコンバータ、13はコンバータ12から出力さ
れる直流電圧で、直流電圧13は14のインバータによ
り、15の出力電圧に変換される。このインバータ14
は33のPWM信号により駆動される。出力電圧15を
17の同期電動機に入力するとトルクを発生し、これに
結合した負荷を駆動する。21の指示周波数と、22の
測定電流の関数として、23の電圧制御手段は27の指
示電圧を設定する。測定電流22は16の出力電流、す
なわち電動機電流を18の電流センサによって測定した
ものである。PWM信号33は、30のPCWM(Pu
lseCode Width Modulation)
信号を、31のタイミング信号によって入力して復号す
ることにより、32のPWM信号デコーダから出力され
る。PCWM信号30は、指示周波数21と指示電圧2
3の関数として、28のPWM信号エンコーダによって
実時間的に作られる。タイミング信号31は、29のク
ロックをPWMデコーダ32に与えて作る。クロック2
9はPWM信号エンコーダ28にも入力する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 3, 11 is an input AC voltage of this frequency conversion device, 12 is a converter for converting the input AC voltage 11 into a DC voltage of 13, 13 is a DC voltage output from the converter 12, and DC voltage 13 is 14 Is converted into an output voltage of 15. This inverter 14
Are driven by 33 PWM signals. When the output voltage 15 is input to the synchronous motor of 17, torque is generated and a load coupled to the torque is driven. As a function of the indicated frequency of 21 and the measured current of 22, a voltage control means of 23 sets an indicated voltage of 27. The measured current 22 is 16 output currents, that is, motor currents measured by 18 current sensors. The PWM signal 33 includes 30 PCWM (Pu
lseCode Width Modulation)
The signal is output by the PWM signal decoder 32 by inputting and decoding the signal with the timing signal 31. The PCWM signal 30 has an instruction frequency 21 and an instruction voltage 2
Created in real time by 28 PWM signal encoders as a function of 3. The timing signal 31 is generated by giving 29 clocks to the PWM decoder 32. Clock 2
9 is also input to the PWM signal encoder 28.

【0007】[0007]

【作用】いま図3で、指示周波数21の大小にかかわら
ず、同期電動機17に基準となる一定なトルク負荷が加
えられているものと仮定する。従来の周波数変換装置で
は、この基準一定トルクが与えられるとき、指示電圧2
7は指示周波数21の関数として、図1の直線01が最
適効率の軌跡として選択される。しかし、この特性はト
ルクが変動するときには向かない。この場合、本発明で
は図2に示した特性が得られるように、指示電圧27を
測定電流22が増加するにつれて増加するように設定す
る。最適な指示電圧の値は、あらかじめ同期電動機の性
能試験により、その速度と負荷を与えて、指示周波数と
測定電流の関数として求めておくことができる。
In FIG. 3, it is assumed that a constant torque load serving as a reference is applied to the synchronous motor 17 regardless of the magnitude of the instruction frequency 21. In the conventional frequency converter, when the reference constant torque is applied, the instruction voltage 2
7 is a function of the indicated frequency 21, and the straight line 01 in FIG. 1 is selected as the locus of optimum efficiency. However, this characteristic is not suitable when the torque changes. In this case, in the present invention, the instruction voltage 27 is set to increase as the measurement current 22 increases so that the characteristics shown in FIG. 2 are obtained. The optimum value of the instruction voltage can be obtained as a function of the instruction frequency and the measured current by applying the speed and load to the synchronous motor in advance by performance test of the synchronous motor.

【0008】次に、図4に、指示周波数が45Hzの場
合を例にとり、出力電流16に対する出力電圧15の関
係を示す。41の点線は、従来の周波数変換装置に用い
られている、指示電圧27の設定が、与えられた負荷の
大小に関係なく一定の場合の特性である。このとき、負
荷が大きくなるにつれ、出力電流16が増加し、コンバ
ータ12およびインバータ14の内部抵抗のために、出
力電圧15のレベルが低下する。一方、負荷が小さくな
るにつれ、出力電流16が減少し、出力電圧15のレベ
ルは増加する。図4において、出力電流16がXの点に
対応する値より小さい場合には、負荷のトルクに対して
出力電圧15が大きすぎるため、必要以上の励磁電流が
流れて、無駄な鉄損や銅損が増える。この傾向は負荷の
トルクが小さくなるほど増大する。反対に、出力電流1
6がXの点に対応する値より大きい場合には、負荷のト
ルクに対して出力電圧15が小さすぎるため、励磁電流
が不足して、過大な負荷電流が流れて二次銅損が相乗的
に増加する。この傾向は負荷のトルクが大きくなるほど
増大する。
Next, FIG. 4 shows the relationship between the output voltage 15 and the output current 16 by taking the case where the instruction frequency is 45 Hz as an example. The dotted line 41 is a characteristic used in the conventional frequency conversion device when the setting of the instruction voltage 27 is constant regardless of the magnitude of the applied load. At this time, as the load increases, the output current 16 increases, and the level of the output voltage 15 decreases due to the internal resistance of the converter 12 and the inverter 14. On the other hand, as the load decreases, the output current 16 decreases and the level of the output voltage 15 increases. In FIG. 4, when the output current 16 is smaller than the value corresponding to the point X, the output voltage 15 is too large with respect to the torque of the load, so that an excessive excitation current flows, resulting in unnecessary iron loss and copper loss. The loss increases. This tendency increases as the load torque decreases. On the contrary, output current 1
When 6 is larger than the value corresponding to the point X, the output voltage 15 is too small with respect to the torque of the load, so that the exciting current is insufficient, an excessive load current flows, and the secondary copper loss is synergistic. Increase to. This tendency increases as the load torque increases.

【0009】負荷のトルクの値の如何にかかわらず、同
期電動機17がつねに最適な効率を維持するためには、
出力電流16と出力電圧15の関係が図4の42の実線
が示すような比例関係にあることが望ましい。すなわ
ち、従来の周波数変換装置では、出力電流16が増える
に従って出力電圧15のレベルが41の点線に沿って減
少し、例えば、A点で示す動作点に至る。ここで、本発
明に係わる周波数変換装置の能力を活用して、指示電圧
27のレベルを上げていくと、動作点は43の一点鎖線
の軌跡に沿って、最適なB点で示す動作点へ移動する。
このとき、出力電流16のレベルはA点に比べ減少し、
周波数変換装置への入力電力も減少する。一方、従来の
周波数変換装置では、出力電流16が減ると出力電圧1
5のレベルが41の点線に沿って増加し、例えば、C点
で示す動作点に至る。ここで、本発明に係わる周波数変
換装置の能力を活用して、指示電圧27のレベルを下げ
ていくと、動作点は44の一点鎖線の軌跡に沿って、最
適なD点で示す動作点へ移動する。このとき、出力電流
16のレベルはC点に比べ減少し、周波数変換装置への
入力電力も減少する。このように、出力電流16が増減
すると、これに呼応して出力電圧15も増減するため、
両者の間の位相関係が適正に保たれ、負荷側の力率が最
適化され、同期電動機の効率が上がる。
In order to maintain the optimum efficiency of the synchronous motor 17 regardless of the value of the torque of the load,
It is desirable that the relationship between the output current 16 and the output voltage 15 be in a proportional relationship as shown by the solid line 42 in FIG. That is, in the conventional frequency converter, the level of the output voltage 15 decreases along the dotted line 41 as the output current 16 increases, and reaches the operating point indicated by point A, for example. Here, when the level of the instruction voltage 27 is increased by utilizing the capability of the frequency conversion device according to the present invention, the operating point is along the locus of the alternate long and short dash line 43, and reaches the optimal operating point indicated by point B. Moving.
At this time, the level of the output current 16 decreases as compared to the point A,
The input power to the frequency converter is also reduced. On the other hand, in the conventional frequency converter, when the output current 16 decreases, the output voltage 1
The level of 5 increases along the dotted line of 41 to reach the operating point indicated by point C, for example. Here, when the level of the instruction voltage 27 is lowered by utilizing the capability of the frequency conversion device according to the present invention, the operating point moves to the optimum operating point indicated by the point D along the locus of the alternate long and short dash line of 44. Moving. At this time, the level of the output current 16 decreases as compared with the point C, and the input power to the frequency conversion device also decreases. Thus, when the output current 16 increases or decreases, the output voltage 15 also increases or decreases in response to this,
The phase relationship between the two is properly maintained, the power factor on the load side is optimized, and the efficiency of the synchronous motor is increased.

【0010】[0010]

【他の実施例】図3の実施例においては、出力電圧15
を希望値に近づけることができる。しかし、コンバータ
12の入力電圧が変動する場合は出力電圧15を正確に
制御することが難しい。このような場合に対応するた
め、図5に他の実施例を掲げた。ここで図3と同じ番号
は同じ部分を示す。図2のテーブルにより24の目標電
圧が与えられる。目標電圧24は出力電流16が与えら
れたときの理想的な出力電圧15の値である。19の電
圧センサは出力電圧15、すなわち電動機電圧を測定
し、25の測定電圧を出力する。35の減算器手段は目
標電圧24から測定電圧25を減算して、36の電圧偏
差を計算する。26の積分器手段はゲインKと37の初
期値入力を持ち、電圧偏差36を積分して指示電圧27
を出力することにより、測定電圧25を目標電圧24に
一致させる。電圧制御手段23、減算器手段35、およ
び積分器手段26はマイクロコンピュータのソフトウェ
アによって構成する。
Other Embodiments In the embodiment of FIG. 3, the output voltage 15
Can be brought close to the desired value. However, it is difficult to control the output voltage 15 accurately when the input voltage of the converter 12 fluctuates. In order to deal with such a case, another embodiment is shown in FIG. Here, the same numbers as those in FIG. 3 indicate the same parts. The table of FIG. 2 provides 24 target voltages. The target voltage 24 is an ideal value of the output voltage 15 when the output current 16 is given. The voltage sensor 19 measures the output voltage 15, that is, the motor voltage, and outputs the measured voltage 25. The subtractor means of 35 subtracts the measured voltage 25 from the target voltage 24 and calculates the voltage deviation of 36. The integrator means 26 has an input of gain K and an initial value of 37 and integrates the voltage deviation 36 to give an instruction voltage 27.
Is output, the measured voltage 25 is made to match the target voltage 24. The voltage control means 23, the subtractor means 35, and the integrator means 26 are constituted by software of a microcomputer.

【0011】図5の指示電圧27を演算するサブプログ
ラムを、図6の流れ図を参照しながら、一定周波数の定
常状態の場合について以下に説明する。図6の手順S1
は出力電圧16を測定し、アナログーディジタル変換し
て、測定電流22を得る。手順S2は測定電流22が前
回測定し記憶している値と異なるかどうか判断する。等
しいときは、手順S4に行く。異なるときには、手順S
3に進む。手順S3では電圧制御手段23により、指示
周波数21と新しく更新した測定電流22の関数とし
て、目標電圧24を演算して手順S4に進む。手順S4
では出力電圧15を測定し、結果をアナログ−ディジタ
ル変換して、測定電圧25を得て手順S5に進む。手順
S5で、測定電圧25と目標電圧24の大きさが等しい
ときは、このサブプログラムを終了する。異なるとき
は、手順S6に進み両者の大きさを比べる。測定電圧2
5が目標電圧24より小さい場合は、手順S7に進み指
示電圧27を定数Cだけ加算してサブプログラムを終え
る。また測定電圧25が目標電圧24より大きい場合
は、手順S8に進み指示電圧27を定数Cだけ減算して
サブプログラムを終える。
A subprogram for calculating the instruction voltage 27 shown in FIG. 5 will be described below with reference to the flow chart shown in FIG. Step S1 of FIG.
Measures the output voltage 16 and performs analog-to-digital conversion to obtain a measured current 22. In step S2, it is determined whether the measured current 22 is different from the value measured and stored last time. If they are equal, go to step S4. If different, step S
Go to 3. In step S3, the target voltage 24 is calculated by the voltage control means 23 as a function of the instruction frequency 21 and the newly updated measured current 22, and the process proceeds to step S4. Step S4
Then, the output voltage 15 is measured, the result is converted from analog to digital, the measured voltage 25 is obtained, and the process proceeds to step S5. In step S5, when the measured voltage 25 and the target voltage 24 have the same magnitude, this subprogram is ended. If they are different, the procedure goes to step S6 to compare the sizes of the two. Measurement voltage 2
If 5 is smaller than the target voltage 24, the process proceeds to step S7, the instruction voltage 27 is incremented by a constant C, and the subprogram ends. If the measured voltage 25 is higher than the target voltage 24, the process proceeds to step S8, the instruction voltage 27 is subtracted by the constant C, and the subprogram ends.

【0012】[0012]

【発明の効果】このような構成と方法、すなわちマイク
ロコンピュータのソフトウェアと、周波数と電圧の任意
の組合せを持ったPWM信号を発生することができるL
SIとを併用することにより、図4の実線42で示され
るような出力電圧と出力電流の関係が実現できる。した
がって、装置のコストをかけずに、負荷側の力率をつね
に最適化して同期電動機を最適な効率で運転でき、省エ
ネルギーに寄与する。また、電圧制御により、過負荷の
度合いが減少するため、マージンを減らして装置を小型
化できる。図4の実線42で示される特性のために、こ
の出願の発明の周波数変換装置は、負の内部抵抗をもっ
た一種の電源装置と考えることもできる。
The above configuration and method, that is, the software of the microcomputer, and the PWM signal having an arbitrary combination of frequency and voltage can be generated.
By using SI together, the relationship between the output voltage and the output current as shown by the solid line 42 in FIG. 4 can be realized. Therefore, the power factor on the load side can always be optimized and the synchronous motor can be operated at optimum efficiency without increasing the cost of the device, which contributes to energy saving. Further, since the degree of overload is reduced by the voltage control, the margin can be reduced and the device can be downsized. Due to the characteristic shown by the solid line 42 in FIG. 4, the frequency conversion device of the invention of this application can also be considered as a kind of power supply device having a negative internal resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の周波数変換装置の指示電圧と指示周波数
の関係を示した図。
FIG. 1 is a diagram showing a relationship between an instruction voltage and an instruction frequency of a conventional frequency conversion device.

【図2】いろいろな負荷状態に対して、同期電動機に最
高効率を与える、周波数変換装置の出力電圧と指示周波
数の関係を出力電流をパラメータにとって示した図。
FIG. 2 is a diagram showing a relationship between an output voltage of a frequency conversion device and an instruction frequency, which gives maximum efficiency to a synchronous motor under various load states, with an output current as a parameter.

【図3】本発明に係わる周波数変換装置の一つの構成を
示したブロック図。
FIG. 3 is a block diagram showing one configuration of a frequency conversion device according to the present invention.

【図4】従来の周波数変換装置と本発明に係わる周波数
変換装置について、一定指示周波数のもとでの出力電圧
と出力電流の関係を比較して示した図。
FIG. 4 is a diagram showing a comparison between the relationship between the output voltage and the output current under a constant instruction frequency in the conventional frequency converter and the frequency converter according to the present invention.

【図5】本発明に係わる周波数変換装置の他の構成を示
したブロック図。
FIG. 5 is a block diagram showing another configuration of the frequency conversion device according to the present invention.

【図6】図5の目標電圧を求めるためのサブプログラム
の流れ図である。
6 is a flowchart of a subprogram for obtaining the target voltage of FIG.

【符号の説明】[Explanation of symbols]

01 定トルク特性のための指示電圧と指示周波数の関
係、 02 低減トルク特性のための指示電圧と指示周波数の
関係、 03 定出力特性のための指示電圧と指示周波数の関
係、 04 負荷が重いときの周波数変換装置の最適な出力電
圧と指示周波数の関係、 05 負荷が中位のときの周波数変換装置の最適な出力
電圧と指示周波数の関係、 06 負荷が軽いときの周波数変換装置の最適な出力電
圧と指示周波数の関係、 11 入力交流電圧、 12 コンバータ、 13 直流電圧、 14 インバータ、 15 出力電圧、 16 出力電流、 17 同期電動機、 18 電流センサ、 19 電圧センサ、 21 指示周波数、 23 電圧制御手段、 22 測定電流、 24 目標電圧、 25 測定電圧、 26 積分器手段、 27 指示電圧、 28 PWM信号エンコーダ、 29 クロック、 30 PCWM信号、 31 タイミング信号、 32 PWM信号デコーダ、 33 PWM信号、 35 減算器手段、 36 電圧偏差、 37 初期値入力、 41 従来の周波数変換装置の出力電圧に対する出力電
流の関係、 42 本発明に係わる周波数変換装置の出力電圧に対す
る出力電流の関係、 43 指示電圧を増加したときの出力電圧対出力電流の
軌跡、 44 指示電圧を減少したときの出力電圧対出力電流の
軌跡。
01 Relationship between indicated voltage and indicated frequency for constant torque characteristics, 02 Relationship between indicated voltage and indicated frequency for reduced torque characteristics, 03 Relationship between indicated voltage and indicated frequency for constant output characteristics, 04 When load is heavy Between the optimum output voltage of the frequency converter and the instruction frequency, 05 The optimum output voltage of the frequency converter when the load is medium and the instruction frequency, 06 The optimum output of the frequency converter when the load is light Relationship between voltage and indicated frequency, 11 input AC voltage, 12 converter, 13 DC voltage, 14 inverter, 15 output voltage, 16 output current, 17 synchronous motor, 18 current sensor, 19 voltage sensor, 21 indicated frequency, 23 voltage control means , 22 measuring current, 24 target voltage, 25 measuring voltage, 26 integrator means, 27 indicating voltage, 28 PWM signal encoding , 29 clock, 30 PCWM signal, 31 timing signal, 32 PWM signal decoder, 33 PWM signal, 35 subtractor means, 36 voltage deviation, 37 initial value input, 41 relationship of output current to output voltage of conventional frequency converter, 42 Relationship between output voltage and output current of frequency converter according to the present invention, 43 Track of output voltage vs. output current when instruction voltage is increased, 44 Track of output voltage vs. output current when instruction voltage is decreased.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 独立にその出力周波数と出力電圧とが制
御でき、指示周波数と出力電流が与えられたとき、該出
力電圧をあらかじめ決められた値を追随するように制御
し、同期電動機をその効率がほぼ最適な動作点で作動さ
せることができる周波数変換装置において、(1)商用
電源の入力交流電圧を直流電圧に変換するコンバータ
と、(2)前記同期電動機の負荷量を決めるため、前記
出力電流を測定する電流センサと、(3)前記同期電動
機の効率測定試験に基づいて、前記指示周波数と、前記
電流センサにより求めた測定電流との関数として、最適
な効率の指示電圧を演算する電圧制御手段と、(4)前
記指示周波数と前記指示電圧とを受け、これらを情報と
して保有しているパルス符号幅変調(PCWM)信号
を、タイミング信号に基づき、実時間で作成して出力す
るPWMエンコーダと、(5)前記タイミング信号を前
記PWMエンコーダに与えることにより、前記PCWM
信号を入力して復号し、パルス幅変調(PWM)信号を
取り出すPWMデコーダと、(6)前記PWMエンコー
ダおよび前記PWMデコーダに供給するクロックと、
(7)前記直流電圧を前記PCWM信号を復号したPW
M信号によって変調して前記出力電圧を作り、これを前
記同期電動機に印加するインバータとを有することを特
徴とする周波数変換装置。
1. An output frequency and an output voltage can be controlled independently, and when a command frequency and an output current are given, the output voltage is controlled so as to follow a predetermined value, and a synchronous motor is controlled. In a frequency conversion device that can be operated at an operating point where efficiency is almost optimum, (1) a converter that converts an input AC voltage of a commercial power source into a DC voltage, and (2) the load amount of the synchronous motor is determined. Based on a current sensor that measures the output current, and (3) an efficiency measurement test of the synchronous motor, an instruction voltage of optimum efficiency is calculated as a function of the instruction frequency and the measured current obtained by the current sensor. A voltage control means, and (4) a pulse code width modulation (PCWM) signal which receives the instructed frequency and the instructed voltage and holds them as information based on the timing signal. Then, a PWM encoder that creates and outputs in real time, and (5) by applying the timing signal to the PWM encoder,
A PWM decoder for inputting and decoding a signal and extracting a pulse width modulation (PWM) signal; and (6) a clock supplied to the PWM encoder and the PWM decoder,
(7) PW obtained by decoding the PCWM signal from the DC voltage
A frequency conversion device, comprising: an inverter that modulates the output voltage by applying an M signal and applies the output voltage to the synchronous motor.
【請求項2】 特許請求の範囲第1項に記載の周波数変
換装置において、前記電圧制御手段は、マイクロコンピ
ュータに内蔵したソフトウェアにより構成し、前記電流
センサが読み出す前記測定電流が増加するのに応じて、
前記指示電圧を増加するようにプログラムし、前記同期
電動機の効率を最適化するようにしたことを特徴とする
周波数変換装置。
2. The frequency conversion device according to claim 1, wherein the voltage control means is configured by software built in a microcomputer, and responds to an increase in the measured current read by the current sensor. hand,
A frequency conversion device, characterized in that the instruction voltage is programmed to increase so as to optimize the efficiency of the synchronous motor.
【請求項3】 独立にその出力周波数と出力電圧とが制
御でき、指示周波数と出力電流が与えられたとき、該出
力電圧をあらかじめ決められた値を追随するように制御
し、同期電動機をその効率がほぼ最適な動作点で作動さ
せることができる周波数変換装置において、(1)商用
電源の入力交流電圧を直流電圧に変換するコンバータ
と、(2)前記同期電動機の負荷量を決めるため、前記
出力電流を測定する電流センサと、(3)前記出力電圧
を測定する電圧センサと、(4)前記同期電動機の効率
測定試験に基づいて、前記指示周波数と、前記電流セン
サにより求めた測定電流との関数として、最適な効率の
目標電圧を演算する電圧制御手段と、(5)前記目標電
圧から、前記電圧センサにより求めた測定電圧を減算し
て電圧偏差を求めるための減算手段と、(6)前記電圧
偏差を積分して指示電圧を設定し、前記測定電圧を前記
目標電圧に一致させるための積分器手段と、(7)前記
指示周波数と前記指示電圧とを受け、これらを情報とし
て保有しているパルス符号幅変調(PCWM)信号を、
タイミング信号に基づき、実時間で作成して出力するP
WMエンコーダと、(8)前記タイミング信号を前記P
WMエンコーダに与えることにより、前記PCWM信号
を入力して復号し、パルス幅変調(PWM)信号を取り
出すPWMデコーダと、(9)前記PWMエンコーダお
よび前記PWMデコーダに、供給するクロックと、(1
0)前記直流電圧を前記PCWM信号を復号したPWM
信号によって変調して前記出力電圧を作り、これを該同
期電動機に印加するインバータとを有することを特徴と
する周波数変換装置。
3. The output frequency and the output voltage can be controlled independently, and when the command frequency and the output current are given, the output voltage is controlled so as to follow a predetermined value, and the synchronous motor is controlled by the control. In a frequency conversion device that can be operated at an operating point where efficiency is almost optimum, (1) a converter that converts an input AC voltage of a commercial power source into a DC voltage, and (2) the load amount of the synchronous motor is determined. A current sensor for measuring an output current, (3) a voltage sensor for measuring the output voltage, and (4) the indicated frequency and a measured current obtained by the current sensor based on an efficiency measurement test of the synchronous motor. A voltage control means for calculating a target voltage of optimum efficiency, and (5) a voltage deviation is obtained by subtracting the measured voltage obtained by the voltage sensor from the target voltage. And (6) integrator means for (6) integrating the voltage deviation to set an instruction voltage to match the measured voltage with the target voltage, and (7) the instructing frequency and the instructing voltage. The pulse code width modulation (PCWM) signal that holds these as information,
P that creates and outputs in real time based on the timing signal
A WM encoder, and (8) the timing signal to the P
A PWM decoder for inputting and decoding the PCWM signal to extract a pulse width modulation (PWM) signal by giving it to a WM encoder; (9) a clock supplied to the PWM encoder and the PWM decoder;
0) PWM for decoding the DC voltage and the PCWM signal
A frequency conversion device comprising: an inverter that modulates the output voltage by applying a signal and applies the output voltage to the synchronous motor.
【請求項4】 特許請求の範囲第3項に記載の周波数変
換装置において、前記電圧制御手段、前記減算手段、お
よび前記積分器手段は、マイクロコンピュータに内蔵し
たソフトウェアにより構成し、前記電流センサが読み出
す前記測定電流が増加するのに応じて、前記目標電圧を
増加するようにプログラムし、前記同期電動機の効率を
最適化するようにしたことを特徴とする周波数変換装
置。
4. The frequency conversion device according to claim 3, wherein the voltage control means, the subtraction means, and the integrator means are configured by software incorporated in a microcomputer, and the current sensor is A frequency conversion device, characterized in that the target voltage is programmed to increase in response to an increase in the measured current to be read so as to optimize the efficiency of the synchronous motor.
JP6340933A 1994-12-28 1994-12-28 Frequency convertor Pending JPH08186995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6340933A JPH08186995A (en) 1994-12-28 1994-12-28 Frequency convertor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6340933A JPH08186995A (en) 1994-12-28 1994-12-28 Frequency convertor

Publications (1)

Publication Number Publication Date
JPH08186995A true JPH08186995A (en) 1996-07-16

Family

ID=18341640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6340933A Pending JPH08186995A (en) 1994-12-28 1994-12-28 Frequency convertor

Country Status (1)

Country Link
JP (1) JPH08186995A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090340A1 (en) * 2002-04-22 2003-10-30 Sony Corporation Motor driving apparatus, motor driving method, and mobile terminal
CN100414828C (en) * 2001-08-15 2008-08-27 崇贸科技股份有限公司 Pulse-width regulating controller with frequency regulation function for power convertor
CN100434867C (en) * 2004-01-26 2008-11-19 三星电子株式会社 Incremental encoding and decoding apparatus and method
US7570276B2 (en) * 2004-04-21 2009-08-04 Magnachip Semiconductor, Ltd. Display driver circuit and drive method thereof
WO2010060671A3 (en) * 2008-11-28 2011-09-15 Robert Bosch Gmbh Method and control device for controlling an electric motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152394A (en) * 1985-12-25 1987-07-07 Toshiba Corp Control method for air conditioner
JP4131199B2 (en) * 2003-06-05 2008-08-13 セイコーエプソン株式会社 Liquid container

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152394A (en) * 1985-12-25 1987-07-07 Toshiba Corp Control method for air conditioner
JP4131199B2 (en) * 2003-06-05 2008-08-13 セイコーエプソン株式会社 Liquid container

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100414828C (en) * 2001-08-15 2008-08-27 崇贸科技股份有限公司 Pulse-width regulating controller with frequency regulation function for power convertor
WO2003090340A1 (en) * 2002-04-22 2003-10-30 Sony Corporation Motor driving apparatus, motor driving method, and mobile terminal
US7102312B2 (en) 2002-04-22 2006-09-05 Sony Corporation Motor driving apparatus, driving method thereof and mobile terminal
CN100434867C (en) * 2004-01-26 2008-11-19 三星电子株式会社 Incremental encoding and decoding apparatus and method
US7570276B2 (en) * 2004-04-21 2009-08-04 Magnachip Semiconductor, Ltd. Display driver circuit and drive method thereof
WO2010060671A3 (en) * 2008-11-28 2011-09-15 Robert Bosch Gmbh Method and control device for controlling an electric motor

Similar Documents

Publication Publication Date Title
US6979967B2 (en) Efficiency optimization control for permanent magnet motor drive
US4835448A (en) Brushless DC motor torque control
US6741050B2 (en) Method of controlling and switching for braking an electronically commutated electrical motor
KR880001837B1 (en) Induction motor
US8796978B2 (en) Predictive pulse width modulation for an open delta H-bridge driven high efficiency ironless permanent magnet machine
US8552677B2 (en) Fan rotary speed controlling device
Cleland et al. Design of an efficiency optimization controller for inverter-fed AC induction motors
GB2359427A (en) Method and apparatus for improving the efficiency of an induction motor
US5254926A (en) Current-mode hysteresis control for controlling a motor
JPH08186995A (en) Frequency convertor
US5420778A (en) Independent real time control of output frequency and voltage of PWM inverter
JPH0723593A (en) Frequency converter
Sovicka et al. Current controller with slope compensation for a Switched Reluctance Motor
JP3167131B2 (en) Driving method and driving device for brushless motor
US6408130B1 (en) Electric drive system with an electronically commuted DC motor in order to reduce torque irregularities
WO2020104765A1 (en) A method of controlling a brushless permanent magnet motor
JP2687062B2 (en) Motor control device
KR960012918B1 (en) Inverter
Szamel Ripple reduced control of switched reluctance motor drives
RU2088041C1 (en) Controlled gate electric motor
JPS5791684A (en) Method and apparatus for equivalent load test for commutatorless motor device
KR101635771B1 (en) current control of Switched Reluctance Motor
JPS6016185A (en) Controller of commutatorless motor
RU2002101676A (en) Electric drive control method and electric drive
SU1695476A1 (en) A c electric drive