JPH08185881A - Solid high molecular fuel cell and manufacture thereof - Google Patents

Solid high molecular fuel cell and manufacture thereof

Info

Publication number
JPH08185881A
JPH08185881A JP6339781A JP33978194A JPH08185881A JP H08185881 A JPH08185881 A JP H08185881A JP 6339781 A JP6339781 A JP 6339781A JP 33978194 A JP33978194 A JP 33978194A JP H08185881 A JPH08185881 A JP H08185881A
Authority
JP
Japan
Prior art keywords
film
polymer electrolyte
electrolyte membrane
fuel cell
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6339781A
Other languages
Japanese (ja)
Inventor
Tsutomu Seki
務 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP6339781A priority Critical patent/JPH08185881A/en
Publication of JPH08185881A publication Critical patent/JPH08185881A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE: To lessen a drop in cell voltage without any damage to a solid high molecular electrolytic film by forming the film to be thin at a center section and thick at a peripheral section. CONSTITUTION: A disc 18 made of Teflon (R) having a flat surface is fixed to the stage of a spin coating device, and a rotary shaft 19 is rotated at the prescribed speed. Also, the rotation speed is pertinently adjusted, depending on the viscosity, fluidity or the like of a film producing electrolytic solution. Then, when the solution is dropped on the disc 18 on the stage, a film is formed to be thick at a center section and thin at a peripheral section. After the end of a dropping process, the film is shelved and dried at room temperature under the rotation of the stage. Thereafter, the stage is made to stop rotating and placed in a vacuum drier, together with the disc 18 for drying the film at the prescribed temperature. A gas diffusion electrode is jointed to the film so prepared, thereby providing a fuel cell. According to this construction, a cell performance is improved and damages to the film can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子型燃料電池
及びその製造方法に関し、より具体的には固体高分子型
燃料電池における固体高分子電解質膜自体に工夫をする
ことにより、その膜抵抗による電池の電圧降下を低減さ
せ且つ強度の高い固体高分子型燃料電池及びその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell and a method for producing the same, more specifically, by devising a polymer electrolyte membrane itself in a polymer electrolyte fuel cell, The present invention relates to a polymer electrolyte fuel cell having a high strength and a reduced cell voltage drop due to resistance, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】固体高分子型燃料電池はイオン伝導体す
なわち電解質が固体で且つ高分子である点に特徴を有す
るものであるが、その固体高分子電解質としては具体的
にはイオン交換樹脂等の膜が使用され、この高分子電解
質膜を挟んで負極(アノ−ド)及び正極(カソ−ド)の
両電極を配置し、例えば負極側に燃料としての水素ガス
を、また正極側には酸素又は空気を供給して電気化学反
応を起こさせることにより電気を発生させるものであ
る。
2. Description of the Related Art A polymer electrolyte fuel cell is characterized in that an ionic conductor, that is, an electrolyte is a solid and a polymer. The solid polymer electrolyte is specifically an ion exchange resin or the like. Is used, and both electrodes of the negative electrode (anode) and the positive electrode (cathode) are arranged with the polymer electrolyte membrane sandwiched between them. For example, hydrogen gas as a fuel is placed on the negative electrode side, and on the positive electrode side. Electricity is generated by supplying oxygen or air to cause an electrochemical reaction.

【0003】この装置にはこれまで各種態様のものがあ
るが、図1は、この固体高分子型燃料電池の一態様を説
明するための概略図である。図1中、1は高分子電解質
膜、2はカソ−ド電極(正極)、3はアノ−ド電極(負
極)であり、高分子電解質膜1は相対するこの正負両電
極2、3間に当接して配置されている。また4はカソ−
ド電極側集電体、5はアノ−ド電極側集電体であり、そ
れぞれ正負の電極2及び3に当接されている。
Although there are various modes of this device, FIG. 1 is a schematic view for explaining one mode of this polymer electrolyte fuel cell. In FIG. 1, 1 is a polymer electrolyte membrane, 2 is a cathode electrode (positive electrode), 3 is an anode electrode (negative electrode), and the polymer electrolyte membrane 1 is between the opposite positive and negative electrodes 2 and 3. It is arranged so as to abut. In addition, 4 is
Current collectors 5 on the side of the anode electrode are current collectors on the side of the anode electrode, which are in contact with the positive and negative electrodes 2 and 3, respectively.

【0004】このうちカソ−ド電極側集電体4の電極2
側には酸素又は空気供給用の溝が設けられ、同じくアノ
−ド電極側集電体5の電極3側には水素供給用の溝が設
けられ、正極側集電体4の溝は酸素又は空気供給管6
に、負極側集電体5の溝は水素供給管7に連通してい
る。また、8は正極側集電体4に当接して設けられたカ
ソ−ド端子板、9は負極側集電体5に当接して設けられ
たアノ−ド端子板であり、電池の作動中にこれらを通し
て電力が取り出される。
Of these, the electrode 2 of the cathode electrode side current collector 4
A groove for supplying oxygen or air is provided on the side, a groove for supplying hydrogen is provided on the electrode 3 side of the anode electrode side current collector 5, and a groove for supplying the oxygen or air is provided on the positive electrode side current collector 4. Air supply pipe 6
In addition, the groove of the negative electrode side current collector 5 communicates with the hydrogen supply pipe 7. Further, 8 is a cathode terminal plate provided in contact with the positive electrode side current collector 4, and 9 is an anode terminal plate provided in contact with the negative electrode side current collector 5, during operation of the battery. Electric power is taken out through these.

【0005】10は上部枠体(上部フレ−ム)、11は
下部枠体(下部フレ−ム)であり、これら上下両枠体1
0、11により高分子電解質膜1からカソ−ド端子板8
及びアノ−ド端子板9までの電池本体を被って固定され
ている。これら上下両枠体10、11間には、高分子電
解質膜1からカソ−ド端子板8及びアノ−ド端子板9ま
での電池本体の周縁部を囲ってパッキン(ガスケット)
12が設けられ、これによってその電池本体の周縁部を
密に固定してシ−ルし、特に高分子電解質膜1及び正負
両電極2、3に対してガスシ−ルされている。なお図1
中、13及び14は冷却水供給管であり、これらはそれ
ぞれ上部枠体10及び下部枠体11の内面に設けられた
溝(閉じた通路)に連通し、その冷却水によりカソ−ド
端子板8の背面及びアノ−ド端子板9の背面から間接的
に冷却するようになっている。
Reference numeral 10 is an upper frame (upper frame), 11 is a lower frame (lower frame).
0 to 11, the polymer electrolyte membrane 1 to the cathode terminal plate 8
And the battery body up to the anode terminal plate 9 is covered and fixed. A packing (gasket) is provided between the upper and lower frames 10 and 11 so as to surround the periphery of the battery body from the polymer electrolyte membrane 1 to the cathode terminal plate 8 and the anode terminal plate 9.
12 is provided, whereby the periphery of the battery body is tightly fixed and sealed, and in particular, gas sealing is performed on the polymer electrolyte membrane 1 and the positive and negative electrodes 2 and 3. FIG. 1
Inside, 13 and 14 are cooling water supply pipes, which communicate with the grooves (closed passages) provided on the inner surfaces of the upper frame body 10 and the lower frame body 11, respectively, and the cooling water supplies the cathode terminal board. It is arranged that the cooling is indirectly performed from the back surface of 8 and the back surface of the anode terminal plate 9.

【0006】以上は、電池本体が単一の場合であるが、
この電池本体を二つ以上積み重ねて構成することも行わ
れる。この場合には、二つ以上の各電池本体間にセパレ
−タを介在させ、これにも適宜冷却水用の溝等を設ける
必要はあるが、電池本体の周縁部を囲ってパッキンを設
け、その電池本体の周縁部を密に固定してシ−ルし、高
分子電解質膜1及び正負両電極2、3に対してガスシ−
ルをすること等を含めて、基本的には上述単一の電池本
体の場合と同じである。この場合にはパッキン12等の
締め付けはセパレ−タをも介して行われる。
[0006] The above is the case of a single battery body,
It is also possible to stack two or more battery bodies. In this case, it is necessary to interpose a separator between each of the two or more battery bodies, and to provide a groove for cooling water, etc., as appropriate, but a packing is provided so as to surround the periphery of the battery body. The periphery of the battery body is tightly fixed and sealed, and gas seal is applied to the polymer electrolyte membrane 1 and the positive and negative electrodes 2 and 3.
This is basically the same as the case of the single battery main body described above, including the operation of the battery pack. In this case, the packing 12 and the like are tightened through the separator as well.

【0007】この場合、上記シ−ルの仕方としては、こ
れまで上述のとおり高分子電解質膜の周囲にパッキン
を介在させて密着させる、Oリングを介在させ、これ
により密着させる等の手法が用いられ、提案されている
が、図2は、このうちOリングによる態様を示すもの
である。図示のとおり電解質膜1の上下面に電極2、3
が配置され、その上下から上下両枠体10、11によ
り、また電池本体を二つ以上積み重ねて構成する場合に
は、上下両枠体10、11に加えて、セパレ−タ16、
17により、これらと電解質膜1の周縁部間に配置され
たOリング15を介在、密着させることでシ−ルされ
る。なお図2中、符号「16(10)」、「17(1
1)」と示しているのは、セパレ−タ16、17が最上
部又は最下部となる場合に、上部枠体10又は下部枠体
11に相当することになるという意味である。
In this case, as the sealing method, as described above, a method in which a packing is placed around the polymer electrolyte membrane so as to be adhered thereto, or an O-ring is interposed so as to be brought into close contact, is used. However, FIG. 2 shows a mode using an O-ring among them. As shown, electrodes 2, 3 are formed on the upper and lower surfaces of the electrolyte membrane 1.
Is arranged, and in the case where two or more battery main bodies are stacked from above and below by the upper and lower frame bodies 10 and 11, in addition to the upper and lower frame bodies 10 and 11, a separator 16,
17, the O-ring 15 disposed between these and the peripheral portion of the electrolyte membrane 1 is interposed and brought into close contact with the electrolyte membrane 1 for sealing. In FIG. 2, reference numerals “16 (10)” and “17 (1
1) ”means that the separators 16 and 17 correspond to the upper frame body 10 or the lower frame body 11 when the separators 16 and 17 are the uppermost part or the lowermost part.

【0008】しかし、これら及びの手法では、パッ
キン又はOリングが高分子電解質膜1に直かに当接さ
れ、その密着を確実にするためには、何れもそれらパッ
キン又はOリングを強く押圧する必要があり、このため
高分子電解質膜自体を損傷するばかりでなく、前述電池
本体全体に対しても必要以上の締め付けが行われてしま
うことにもなる。また電解質膜は、通常、温度や加湿の
有無により伸縮する性質があり、これによりシ−ル部に
負担がかかりやすいため、上述又はのうち何れのシ
−ル手法をとるにしても、この点にも配慮する必要があ
る。
However, in these and these methods, the packing or the O-ring is directly contacted with the polymer electrolyte membrane 1, and in order to ensure the close contact thereof, either of them is strongly pressed. Therefore, not only the polymer electrolyte membrane itself is damaged but also the entire battery body is tightened more than necessary. In addition, the electrolyte membrane usually has the property of expanding and contracting depending on the presence or absence of temperature and humidification, and this tends to put a burden on the seal portion. There is also a need to consider.

【0009】ところで、このような固体高分子型燃料電
池において用いるその高分子電解質膜としては、これま
で各種提案されてきているが、これらの電解質膜はいず
れも通常均一な材質で、しかも均一な厚さで構成され、
この固体高分子電解質膜の両側にガス拡散電極を接合し
て電池としている。この電解質膜中でイオン伝導性が良
好であるためには、その膜厚はできるだけ小であるのが
望ましいが、イオン伝導性を改善するために膜厚を小さ
くすると前述シ−ルに要する膜の周辺部において破損す
る危険が高まってしまう。これとは逆に、その破損の危
険性を考慮してそれを厚くするとイオン伝導性が悪くな
ってしまっていた。
By the way, various kinds of polymer electrolyte membranes used in such a solid polymer electrolyte fuel cell have been proposed so far. However, all of these electrolyte membranes are usually made of a uniform material and have a uniform structure. Composed of thickness,
Gas diffusion electrodes are joined to both sides of this solid polymer electrolyte membrane to form a battery. In order to have good ionic conductivity in this electrolyte membrane, it is desirable that the film thickness be as small as possible. However, if the film thickness is made small to improve the ionic conductivity, the film required for the above-mentioned seal is reduced. The risk of damage at the periphery increases. Contrary to this, if the thickness is increased considering the risk of breakage, the ionic conductivity has deteriorated.

【0010】[0010]

【発明が解決しようとする課題】そこで、本発明は、固
体高分子型燃料電池及びその製造方法において、これを
構成する高分子電解質膜自体に着目し、この高分子電解
質膜をその周辺部分を厚く、中央部分を薄く構成するこ
とにより、その高分子電解質膜を損傷することなく、高
分子電解質膜の膜抵抗による電池の電圧降下を低減させ
且つ強度の高い固体高分子型燃料電池及びその製造方法
を提供することを目的とする。
Therefore, the present invention focuses on the polymer electrolyte membrane itself constituting the polymer electrolyte fuel cell and its manufacturing method, and attaches this polymer electrolyte membrane to the peripheral portion thereof. By making the polymer electrolyte membrane thick and the central portion thin, a polymer electrolyte fuel cell having high strength and reduced cell voltage drop due to the membrane resistance of the polymer electrolyte membrane without damaging the polymer electrolyte membrane and its production The purpose is to provide a method.

【0011】[0011]

【課題を解決するための手段】本発明は、固体高分子型
燃料電池において、これを構成する固体高分子電解質膜
を、その中央部を薄く、その周辺部を厚くしてなること
を特徴とする固体高分子型燃料電池を提供し、また固体
高分子型燃料電池の製造方法において、これを構成する
固体高分子電解質膜を、固体高分子電解質膜の溶液をス
ピンコ−ティングにより中央部を薄く、周辺部を厚く作
製することを特徴とする固体高分子型燃料電池の製造方
法を提供するものである。
The present invention is characterized in that, in a solid polymer electrolyte fuel cell, a solid polymer electrolyte membrane constituting the solid polymer electrolyte membrane has a thin central portion and a thick peripheral portion. In the method for manufacturing a solid polymer electrolyte fuel cell, the solid polymer electrolyte membrane constituting the solid polymer electrolyte fuel cell is formed by spin coating a solution of the solid polymer electrolyte membrane at the central portion to make it thin. The present invention provides a method for producing a polymer electrolyte fuel cell, characterized in that the peripheral portion is made thick.

【0012】固体高分子型燃料電池用の電解質膜として
は、当初のフェノ−ルスルフォン酸とホルムアルデヒ
ドとの縮合合成膜から逐次改善、改良され、これまで
部分的にスルフォン化したポリスチレン膜、スチレン
−ジビニルベンゼンをフルオロカ−ボンのマトリックス
にクロスリンクさせた後スルフォン化した膜、、の
膜でαC−H結合を含まない膜、トリフルオロスチレ
ンスルフォン酸の重合膜、フルオロカ−ボンマトリッ
クスにトリフルオロエチレンをグラフト化した膜、パ
−フルオロカ−ボンスルフォン酸樹脂膜等が提案されて
いる。
As an electrolyte membrane for polymer electrolyte fuel cells, a polystyrene membrane, styrene-divinyl, and a styrene-divinyl membrane, which have been gradually improved and improved from the initial condensation synthetic membrane of phenolsulfonic acid and formaldehyde, have been obtained. A membrane obtained by cross-linking benzene to a fluorocarbon matrix and then sulfonated, a membrane containing no αC-H bond, a polymer membrane of trifluorostyrene sulfonic acid, and a fluorocarbon matrix grafted with trifluoroethylene. A membrane, a perfluorocarbon sulfonic acid resin membrane, and the like have been proposed.

【0013】本発明は、これら例示の高分子電解質膜と
は限らず、高分子電解質膜の種類如何を問わず適用する
ことができる。これら高分子電解質膜のうち、特にパ
−フルオロカ−ボンスルフォン酸系の樹脂膜は、その優
れた電気的特性に加え、化学的にも物理的にもきわめて
安定であり、機械的も大きいこと等から、現在主として
この樹脂膜が使用されている。この膜は、厚さ50〜2
00μm程度の膜として使用され(なお、厚さ80μm
程度を下回ると、特にその周辺部について、強度上必ず
しも十分ではないが)、この膜厚でも単位面積当りの電
気抵抗は0.1〜0.5Ω程度で電池の内部抵抗の主な
原因とはなり得ないほど小さいが、本発明は、好ましく
はこのパ−フルオロカ−ボンスルフォン酸系の樹脂膜に
対して特に有効に適用することができる。
The present invention is not limited to these exemplified polymer electrolyte membranes, and can be applied regardless of the type of polymer electrolyte membrane. Among these polymer electrolyte membranes, in particular, perfluorocarbon-sulfonic acid-based resin membranes have excellent electrical characteristics, are extremely stable chemically and physically, and have great mechanical properties. Therefore, at present, this resin film is mainly used. This film has a thickness of 50 to 2
Used as a film with a thickness of about 00 μm (note that the thickness is 80 μm
If the thickness is below the above range, the strength is not always sufficient especially in the peripheral portion.) Even with this film thickness, the electric resistance per unit area is about 0.1 to 0.5Ω, which is the main cause of the internal resistance of the battery. However, the present invention can be applied particularly effectively to the perfluorocarbonsulfonic acid resin film.

【0014】図3は、本発明における上記スピンコ−テ
ィングに使用する装置の原理を説明するための模式図で
ある。図3中、18は回転円板であり、その表面は平ら
に構成されている。19は、その回転円板1の回転軸で
あり、操作に当たっては、回転軸19を介して回転板体
18を回転させながら、上方から電解質膜形成用の高分
子電解質溶液を滴下させる。このとき、その回転数を電
解質膜の溶液の粘度や流動性等を加味しながら滴下させ
て調整、制御することにより、中央部分を例えば30〜
50μm、周辺部分を例えば100〜200μmとし、
その中間部分の膜厚を両者間で緩やかな勾配の厚さとな
るように調整することができる。
FIG. 3 is a schematic diagram for explaining the principle of the apparatus used for the above spin coating in the present invention. In FIG. 3, reference numeral 18 is a rotating disk, the surface of which is flat. Reference numeral 19 denotes a rotary shaft of the rotary disk 1. In operation, while rotating the rotary plate 18 via the rotary shaft 19, a polymer electrolyte solution for forming an electrolyte membrane is dropped from above. At this time, the number of revolutions is adjusted by controlling the number of revolutions by dropping while taking into consideration the viscosity, fluidity, etc. of the solution of the electrolyte membrane.
50 μm, the peripheral portion is, for example, 100 to 200 μm,
The thickness of the intermediate portion can be adjusted so as to have a gentle gradient thickness between the two.

【0015】なお、図示してはいないが、回転円板18
の周縁部には堰が設けられ、これにより上記電解質膜の
溶液が堰止められ、円板外方へ飛散するのが防止し、上
記緩やかな勾配を形成することができる。また回転円板
18は、それ自体の上面を膜形成用の面とする場合のほ
か、これをステ−ジとし、この上に膜形成用の円板を載
置固定するようにしても差し支えない。何れにしてもそ
の膜形成用表面は、成膜後良好な離型性のよい材質であ
る必要があり、その好ましい材料の例としては例えばテ
フロンを挙げることができる。
Although not shown, the rotary disk 18
A weir is provided at the peripheral edge of the electrolyte membrane so that the solution of the electrolyte membrane is dammed and prevented from scattering outside the disc, and the gentle gradient can be formed. In addition to the case where the upper surface of the rotating disk 18 itself is used as a film forming surface, the rotating disk 18 may be used as a stage on which the film forming disk may be mounted and fixed. . In any case, the film-forming surface needs to be made of a material having good releasability after film formation, and Teflon can be given as an example of the preferable material.

【0016】上記のようなスピンコ−ティング操作で得
られた成膜は、その成膜終了時点では、その断面は図4
(a)に示すような状態であるが、その材質がゴム弾性
を有するものである場合(例えば、固体高分子電解質膜
がパ−フルオロカ−ボンスルフォン酸系樹脂の膜である
場合)には、やがて図4(b)のような状態となり、こ
の点、ゴム弾性を有するものでなくとも、中央部分が薄
いため上下裏返しても同様な形状となる。こうして得ら
れた固体高分子電解質膜には、その両側にガス拡散電極
を接合、配置して電池とするが、本発明で得られた膜
は、図4(a)又は(b)の何れの状態であっても、電
極の接合に支障を来すことはなく、またこれを組み込ん
だ電池の性能上マイナスとなることはない。
The film formed by the spin coating operation as described above has a cross section of FIG.
As shown in (a), when the material has rubber elasticity (for example, when the solid polymer electrolyte membrane is a perfluorocarbon sulfonic acid resin membrane), Eventually, the state becomes as shown in FIG. 4B. In this respect, even if it does not have rubber elasticity, the central portion is thin, so that the same shape can be obtained even when turned upside down. Gas diffusion electrodes are joined and arranged on both sides of the solid polymer electrolyte membrane thus obtained to form a battery. The membrane obtained by the present invention is either a membrane shown in FIG. 4 (a) or a membrane (b). Even in the state, it does not hinder the joining of the electrodes and does not have a negative effect on the performance of the battery incorporating the electrodes.

【0017】また、ガス拡散電極は、通常シ−ト状(膜
状)の形で適用されるが、そのシ−ト化としては、従来
触媒粒子を含む電極構成材料を電解質としての固体高
分子膜に直かに付着させる、触媒粒子を含む電極構成
材料を混練物として圧延等によりシ−ト化する、触媒
粒子を含む懸濁液を基材シ−ト(電極中でガス拡散層と
なる)としての例えば撥水化カ−ボンペ−パ−上に付着
させる等の手法で各種態様で行われているが、本発明で
得られた電解質膜は、これらの何れの態様でも適用する
ことができる。
Further, the gas diffusion electrode is usually applied in the form of a sheet (film), and as the sheet formation, a solid polymer using an electrode constituent material containing conventional catalyst particles as an electrolyte is used. Directly adhering to the membrane, sheeting by kneading the electrode constituent material containing catalyst particles as a kneaded product, suspension containing catalyst particles as a base sheet (becomes a gas diffusion layer in the electrode ), For example, a method of adhering it on a water repellent carbon paper or the like, and the electrolyte membrane obtained in the present invention can be applied in any of these modes. it can.

【0018】以上、本発明で作製した高分子電解質膜
は、イオン伝導の行われる中央部分では膜厚が小さいた
め電圧降下が低く、シ−ルに使用される周辺部では膜厚
が大きいため膜の破損が防止できるという、従来、相反
していた効果を同時に達成することができる。また本発
明によれば、イオン伝導部分の膜厚を小とすることがで
きることにより、高分子電解質膜の抵抗による電池の電
圧降下を低減させることができ、且つ周辺部を厚くする
ことができることにより、強度の高い電池を得ることが
できるものである。
As described above, the polymer electrolyte membrane produced according to the present invention has a small film thickness in the central portion where ionic conduction takes place, so that the voltage drop is low, and the film thickness is large in the peripheral portion used for the seal. It is possible to simultaneously achieve the previously contradictory effect that damage of the can be prevented. Further, according to the present invention, since the film thickness of the ion conducting portion can be reduced, the voltage drop of the battery due to the resistance of the polymer electrolyte membrane can be reduced, and the peripheral portion can be thickened. That is, a battery having high strength can be obtained.

【0019】次に、本発明における電解質膜の製造態様
について説明すると、(1)図3のようなスピンコ−テ
ィング装置の上面すなわちステ−ジに表面が平滑なテフ
ロン製の円板を固定し、例えば10000〜20000
rpmの速度でステ−ジを回転させる。この回転速度は
膜製造用電解質溶液の粘度、流動性等如何により適宜調
整、制御して行う。(2)ステ−ジに高分子電解質膜の
溶液(例えば、Nafion溶液、アルドリッチ社製、
商品名)を滴下し、その膜厚について、中央部分が例え
ば30〜50μm、周辺部が例えば100〜200μm
となるようにする。この点、例えば前述パ−フルオロカ
−ボンスルホン酸系の樹脂膜では、従来のように膜全体
を均一な材質で構成した場合、厚さ80μmを下回る
と、その強度上必ずしも十分ではないが、本発明によれ
ば、シ−ル部分となる周辺部を厚くできることで、その
強度を得ることができるものである。
Next, the manufacturing method of the electrolyte membrane in the present invention will be explained. (1) A disk made of Teflon having a smooth surface is fixed to the upper surface of the spin coating device as shown in FIG. For example, 10,000 to 20,000
Rotate the stage at a speed of rpm. This rotation speed is appropriately adjusted and controlled depending on the viscosity and fluidity of the electrolyte solution for membrane production. (2) Polymer electrolyte membrane solution (eg, Nafion solution, Aldrich,
Product name) is dropped, and the film thickness thereof is, for example, 30 to 50 μm in the central portion and 100 to 200 μm in the peripheral portion.
So that In this respect, for example, in the case of the above-mentioned perfluorocarbon sulfonic acid type resin film, when the entire film is made of a uniform material as in the conventional case, when the thickness is less than 80 μm, the strength is not always sufficient, According to the invention, the strength can be obtained by increasing the thickness of the peripheral portion which becomes the seal portion.

【0020】(3)、引続き上記(2)の滴下を終了し
た後、そのまま回転速度を維持して室温にて放置する。
(4)その後その回転を終了し、膜に溶媒が残っていな
いことを確認してから、テフロン円板とともに真空乾燥
機に入れ、温度80℃、真空中で乾燥して膜から溶媒を
完全に除去する。(5)こうして得られた膜にガス拡散
電極を接合して燃料電池を得る。
(3) Then, after the dropping of the above (2) is completed, the rotation speed is maintained as it is, and it is left at room temperature.
(4) After that, the rotation was completed, and after confirming that the solvent did not remain in the film, it was put into a vacuum dryer together with the Teflon disk and dried in vacuum at a temperature of 80 ° C to completely remove the solvent from the film. Remove. (5) A fuel cell is obtained by joining a gas diffusion electrode to the membrane thus obtained.

【0021】[0021]

【実施例】以下、本発明の実施例を説明するが、本発明
がこの実施例に限定されるものではないことは勿論であ
る。(1)まず、図3に示すようなスピンコ−ティング
装置のステ−ジに、その周縁部に高さ7mmの堰を設け
た直径12cmの表面が平滑なテフロン製の円板を固定
し、15500rpmの速度でステ−ジを回転させた。
なお、この回転数は、予め下記(3)のアルコ−ル溶液
について行った予備試験により定めたものである。
EXAMPLES Examples of the present invention will be described below, but it goes without saying that the present invention is not limited to these examples. (1) First, a Teflon disk having a diameter of 12 cm and a smooth surface provided with a weir having a height of 7 mm was fixed to the stage of a spin coating device as shown in FIG. The stage was rotated at the speed of.
The number of rotations is determined in advance by a preliminary test conducted on the alcohol solution of (3) below.

【0022】(2)この回転中のステ−ジにNafio
n溶液(パ−フルオロカ−ボンスルフォン酸樹脂のアル
コ−ル溶液、Aldrich Chemical社製、
登録商標)を滴下し、膜厚が中央部分が40μm、周辺
部が150μmとなるようにした。(3)滴下終了後、
そのままの回転速度を維持しながら室温にて1時間放置
した。(4)その回転を終了した後、膜に溶媒が残って
いないことを確認してからテフロンの板とともに温度8
0℃、真空中で乾燥して膜から溶媒を完全に除去した。
(5)、(4)で得られた膜にガス拡散電極を接合して
高分子電解質膜−ガス拡散電極接合体(燃料電池本体)
を構成した。ここで、このガス拡散電極は、概略、以下
〜のとおりにして作製したものである。
(2) Nafio is added to the rotating stage.
n solution (alcohol solution of perfluorocarbon sulfonic acid resin, manufactured by Aldrich Chemical Co.,
(Registered trademark) was added dropwise so that the film thickness was 40 μm in the central portion and 150 μm in the peripheral portion. (3) After the dropping is completed,
It was left at room temperature for 1 hour while maintaining the same rotation speed. (4) After finishing the rotation, confirm that no solvent remains in the membrane, and then set the temperature to 8 with the Teflon plate.
The solvent was completely removed from the membrane by drying in vacuum at 0 ° C.
(5) A polymer diffusion membrane-gas diffusion electrode assembly (fuel cell main body) obtained by joining a gas diffusion electrode to the membrane obtained in (4).
Was configured. Here, this gas diffusion electrode was produced as outlined below.

【0023】まず、表面積100cm2 、気孔率80
%、厚さ0.4mmのカ−ボンペ−パ−面に12.5重
量%に希釈したネオフロン(テトラフルオロエチレン−
ヘキサフルオロプロピレン共重合体、ダイキン工業社
製、登録商標)のディスパ−ジョンを、ネオフロンが全
体の20重量%となるように含浸させた後、温度380
℃で3時間熱処理を行い、撥水化カ−ボンペ−パ−を得
た。この撥水化カ−ボンペ−パ−の片面上に、カ−ボ
ン粒子に白金50重量%を担持させてなる触媒粒子にポ
リテトラフルオロエチレンのディスパ−ジョンを加えた
懸濁液を加圧濾過形式により均一に堆積させた(堆積
量:4mg/cm2 )。こうして得られた触媒粒子担
持の撥水化カ−ボンペ−パ−の触媒粒子面に、NFFI
ON−117(パ−フルオロカ−ボンスルホン酸樹脂、
Aldrich Chemical社製、商品名)のア
ルコ−ル溶液を噴霧、含浸させた後、温度80℃、真空
中で12時間加熱し、溶媒を除去した。
First, a surface area of 100 cm 2 and a porosity of 80
%, A neoflon (tetrafluoroethylene-diluted to 12.5% by weight) on a carbon paper surface having a thickness of 0.4 mm.
After impregnating a dispersion of hexafluoropropylene copolymer, manufactured by Daikin Industries, Ltd. in a proportion of 20% by weight of neofuron, the temperature was set to 380.
Heat treatment was carried out at ℃ for 3 hours to obtain a water repellent carbon paper. On one side of this water repellent carbon paper, a suspension obtained by adding a dispersion of polytetrafluoroethylene to catalyst particles formed by supporting 50% by weight of platinum on carbon particles was filtered under pressure. It was uniformly deposited according to the format (deposition amount: 4 mg / cm 2 ). On the catalyst particle surface of the water repellent carbon paper carrying the catalyst particles thus obtained, NFFI
ON-117 (perfluorocarbon sulfonic acid resin,
After the alcohol solution of Aldrich Chemical Co., trade name) was sprayed and impregnated, the solvent was removed by heating at 80 ° C. for 12 hours in vacuum.

【0024】以上のとおり作製した燃料電池本体を用
い、シ−ルにはパッキン形式(フッ素ゴム製のパッキン
を使用)を適用して、図1のように電池を組み立てセッ
トし、導線、ガス管等を接続して供試用固体高分子型燃
料電池を構成した。一方、比較例用供試電池として、厚
さ80μmのNAFION−117膜(パ−フルオロカ
−ボンスルホン酸樹脂膜、Aldrich Chemi
cal社製、商品名)を用いた以外は、上記実施例の場
合と同様にして、図1のように電池を組み立てセットし
導線、ガス管等を接続した。
Using the fuel cell main body produced as described above, the packing type (using packing made of fluororubber) is applied to the seal, and the cell is assembled and set as shown in FIG. Etc. were connected to form a test solid polymer fuel cell. On the other hand, as a test battery for a comparative example, a NAFION-117 film (perfluorocarbon sulfonic acid resin film, Aldrich Chemi) having a thickness of 80 μm was used.
A battery was assembled and set as shown in FIG. 1, and a lead wire, a gas pipe, etc. were connected in the same manner as in the above-mentioned example except that a product manufactured by Cal Co., Ltd.) was used.

【0025】図5は、上記両供試用電池について測定し
た電流密度とセル電圧との関係を示すものである。その
電池操作条件としては、水素流量0.1l/min、酸
素流量0.5l/min、水素及び酸素の圧力はともに
2.0atm、電池温度60℃で実施した。電流密度と
セル電圧とは相関関係にあり、電流密度を増加させるに
伴いセル電圧は徐々に降下するが、図5のとおり、実施
例供試電池では、セル電圧は電流密度の増加に伴い緩や
かに徐々に低下しているのに対して、比較例供試電池で
はこれを下回っている。
FIG. 5 shows the relationship between the current density and the cell voltage measured for the above-mentioned test batteries. As the battery operating conditions, the hydrogen flow rate was 0.1 l / min, the oxygen flow rate was 0.5 l / min, the hydrogen and oxygen pressures were both 2.0 atm, and the battery temperature was 60 ° C. There is a correlation between the current density and the cell voltage, and the cell voltage gradually drops as the current density increases. As shown in FIG. 5, in the sample battery of the embodiment, the cell voltage gradually decreases with the increase of the current density. However, the comparative test battery is below this.

【0026】このように、実施例及び比較例は、同じ材
質の高分子電解質膜を用い、実施例では前記のとおりそ
の中央部を薄く周辺部を厚くした点を除き、その余の点
は総べて同様に構成しているのに、その電池性能を異に
し、実施例供試電池ではより優れた効果が得られている
が、これは、本発明に係る高分子電解質膜では、その中
央部を薄く周辺部を厚くしたことにより、その電解質膜
の膜厚を小さくできたため、電圧降下を少なくできたこ
とによるものである。図4のとおり、比較例供試電池で
は、例えば電流密度0.7A/cm2 でセル電圧0.4
V弱という値を示しているが、実施例ではこれを上回り
(電流密度0.7A/cm2 で0.44V)、電流密度
0.8A/cm2 でもセル電圧0.4V程度の値を示し
ている。このように本発明による効果は明らかである。
As described above, in the examples and the comparative examples, the polymer electrolyte membranes made of the same material were used. In the examples, as described above, except for the point that the central portion is thin and the peripheral portion is thick, all the remaining points are the same. Although they are all configured in the same manner, the battery performances are different, and a more excellent effect is obtained in the example test battery, which is the center of the polymer electrolyte membrane according to the present invention. This is because the thickness of the electrolyte membrane can be reduced by thinning the portion and increasing the thickness of the peripheral portion, thereby reducing the voltage drop. As shown in FIG. 4, in the comparative test battery, for example, the current density was 0.7 A / cm 2 and the cell voltage was 0.4.
Although the value is slightly lower than V, it exceeds the value in the example (0.44 V at a current density of 0.7 A / cm 2 ), and shows a cell voltage of about 0.4 V even at a current density of 0.8 A / cm 2. ing. Thus, the effect of the present invention is clear.

【0027】[0027]

【発明の効果】以上のとおり、本発明によれば、固体高
分子電解質膜について、その中央部を薄くし、周辺部を
厚くしたことにより、電池性能を向上させながら、その
電解質膜の損傷を低減させ、その損傷を防止することが
できる。また電解質膜及び電極とパッキンの間のガスシ
−ルを容易且つ確実にすることができ、燃料電池の安全
性を向上させ、延いて電池特性を向上させることができ
る。
As described above, according to the present invention, the solid polymer electrolyte membrane has a thin central portion and a thick peripheral portion, thereby improving the battery performance and preventing damage to the electrolyte membrane. It can be reduced and its damage can be prevented. Further, the gas seal between the electrolyte membrane and the electrode and the packing can be easily and surely improved, so that the safety of the fuel cell can be improved and the cell characteristics can be improved.

【0028】また、本発明に係る固体高分子電解質膜
は、イオン伝導の行われる中央部分(シ−ル部分を除く
中央部分)で膜厚を小さくしているため、これにより電
圧降下を低減させることができるだけでなく、シ−ル部
分である周辺部(電解質膜のシ−ル部分)では膜厚を厚
くしていることにより、シ−ル部での破損が防止できる
という、従来、相反していた効果を同時に達成すること
ができる。
Further, in the solid polymer electrolyte membrane according to the present invention, the film thickness is reduced in the central portion where ion conduction takes place (the central portion excluding the seal portion), so that the voltage drop is reduced. Not only is it possible to prevent damage to the seal part by increasing the film thickness in the peripheral part (the seal part of the electrolyte membrane) which is the seal part, which is a conflict with the conventional method. The same effect can be achieved at the same time.

【図面の簡単な説明】[Brief description of drawings]

【図1】固体高分子型燃料電池の一態様を説明するため
の概略図。
FIG. 1 is a schematic diagram for explaining one embodiment of a polymer electrolyte fuel cell.

【図2】Oリングによるシ−ル態様の一例を示す図。FIG. 2 is a view showing an example of a seal mode using an O-ring.

【図3】本発明で使用するスピンコ−ティング装置の原
理を説明するための模式図。
FIG. 3 is a schematic diagram for explaining the principle of a spin coating device used in the present invention.

【図4】本発明における高分子電解質膜の断面図。FIG. 4 is a sectional view of a polymer electrolyte membrane according to the present invention.

【図5】実施例及び比較例で製作した各供試電極につい
て測定した電流密度とセル電圧との関係を示す図。
FIG. 5 is a graph showing the relationship between the current density and the cell voltage measured for each sample electrode manufactured in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 高分子電解質膜 2 カソ−ド電極(正極) 3 アノ−ド電極(負極) 4、5 集電体 6 空気供給管 7 水素供給管 8、9 端子板 10、11 枠体(フレ−ム) 12 パッキン 13、14 冷却水供給管 15 Oリング 16、17 セパレ−タ 18 回転円板 19 回転軸 1 Polymer Electrolyte Membrane 2 Cathode Electrode (Positive Electrode) 3 Anode Electrode (Negative Electrode) 4, 5 Current Collector 6 Air Supply Pipe 7 Hydrogen Supply Pipe 8, 9 Terminal Plate 10, 11 Frame (Frame) 12 packing 13 and 14 cooling water supply pipe 15 O-ring 16 and 17 separator 18 rotating disk 19 rotating shaft

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】固体高分子型燃料電池において、これを構
成する固体高分子電解質膜を、その中央部を薄くし、そ
の周辺部を厚くしてなることを特徴とする固体高分子型
燃料電池。
1. A solid polymer electrolyte fuel cell, characterized in that a solid polymer electrolyte membrane constituting the solid polymer electrolyte membrane is thinned at a central portion thereof and thickened at a peripheral portion thereof. .
【請求項2】上記固体高分子電解質膜がパ−フルオロカ
−ボンスルフォン酸系樹脂の膜である請求項1記載の固
体高分子型燃料電池。
2. The polymer electrolyte fuel cell according to claim 1, wherein the polymer electrolyte membrane is a perfluorocarbonsulfonic acid resin membrane.
【請求項3】固体高分子型燃料電池の製造方法におい
て、これを構成する固体高分子電解質膜を、固体高分子
電解質膜の溶液をスピンコ−ティングにより中央部を薄
く、周辺部を厚く作製することを特徴とする固体高分子
型燃料電池の製造方法。
3. A method for producing a solid polymer electrolyte fuel cell, wherein a solid polymer electrolyte membrane constituting the solid polymer electrolyte membrane is produced by spin coating a solution of the solid polymer electrolyte membrane so that the central portion is thin and the peripheral portion is thick. A method for producing a polymer electrolyte fuel cell, comprising:
【請求項4】上記固体高分子電解質膜がパ−フルオロカ
−ボンスルフォン酸系樹脂の膜である請求項3記載の固
体高分子型燃料電池の製造方法。
4. The method for producing a polymer electrolyte fuel cell according to claim 3, wherein the solid polymer electrolyte membrane is a perfluorocarbonsulfonic acid resin membrane.
JP6339781A 1994-12-28 1994-12-28 Solid high molecular fuel cell and manufacture thereof Pending JPH08185881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6339781A JPH08185881A (en) 1994-12-28 1994-12-28 Solid high molecular fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6339781A JPH08185881A (en) 1994-12-28 1994-12-28 Solid high molecular fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08185881A true JPH08185881A (en) 1996-07-16

Family

ID=18330755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6339781A Pending JPH08185881A (en) 1994-12-28 1994-12-28 Solid high molecular fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08185881A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025582A (en) * 2000-07-06 2002-01-25 Toyota Central Res & Dev Lab Inc Patterned electrolyte film
JP2009009916A (en) * 2007-06-29 2009-01-15 Dainippon Printing Co Ltd Electrolyte membrane with catalyst layer
US7687184B2 (en) 2004-10-19 2010-03-30 Panasonic Corporation Membrane electrode assembly with a fibrous substrate, method for producing the same and polymer electrolyte fuel cell
DE112008001415T5 (en) 2007-05-28 2010-04-15 Toyota Jidosha Kabushiki Kaisha, Toyota-shi fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025582A (en) * 2000-07-06 2002-01-25 Toyota Central Res & Dev Lab Inc Patterned electrolyte film
US7687184B2 (en) 2004-10-19 2010-03-30 Panasonic Corporation Membrane electrode assembly with a fibrous substrate, method for producing the same and polymer electrolyte fuel cell
DE112008001415T5 (en) 2007-05-28 2010-04-15 Toyota Jidosha Kabushiki Kaisha, Toyota-shi fuel cell
JP2009009916A (en) * 2007-06-29 2009-01-15 Dainippon Printing Co Ltd Electrolyte membrane with catalyst layer

Similar Documents

Publication Publication Date Title
JP3555999B2 (en) Method for producing polymer solid electrolyte / electrode assembly for polymer electrolyte fuel cell
JP3555196B2 (en) Fuel cell and method of manufacturing the same
US20070209758A1 (en) Method and process for unitized mea
US20030121603A1 (en) Method of preparing membrane-electrode-gasket assemblies for polymer electrolyte fuel cells
JP5157050B2 (en) Membrane electrode assembly and manufacturing method thereof
WO2003058743A2 (en) Gas diffusion backing for fuel cells
JPH08148169A (en) Sealing method for solid polymeric fuel cell
JP2000215903A (en) Solid high-molecular electrolyte type fuel cell
JP4528386B2 (en) Solid polymer fuel cell and manufacturing method thereof
WO2002073721A1 (en) Gas diffusion electrode and fuel cell using this
JP2001110432A (en) Polymer electrolyte type fuel cell
JP2007042348A (en) Membrane electrode assembly and production method therefor
JPH08148170A (en) Sealing method for solid polymeric fuel cell
JP2002100372A (en) Gas diffusion electrode for fuel cell and its manufacturing method
JP2000090944A (en) Manufacture of catalyst layer-electrolyte film joint body and solid polymer electrolyte fuel cell using the joint body
JPH06251780A (en) Solid high polymer electrolyte type fuel cell
CN1299373C (en) Electrode for fuel cell and method of manufacturing the electrode
JP2000100456A (en) Manufacture of joint of solid polymer electrolyte film and solid polymer electrolyte fuel cell
JP2002008680A (en) Composite cross-linking electrolyte
JPH08185881A (en) Solid high molecular fuel cell and manufacture thereof
JPH09180740A (en) Solid high-molecular fuel cell and manufacture and device thereof
JP2006140061A (en) Electrode and membrane-electrode assembly of fuel cell, and fuel cell system
JPH0684528A (en) Solid high polymer electrolyte type fuel cell
JPH08185875A (en) Sealing method for solid high molecular fuel cell
JPH1116584A (en) Cell for solid high polymer type fuel cell and its manufacture