JPH08185854A - Hydrogen storage alloy electrode and alkaline secondary battery using it - Google Patents

Hydrogen storage alloy electrode and alkaline secondary battery using it

Info

Publication number
JPH08185854A
JPH08185854A JP6327594A JP32759494A JPH08185854A JP H08185854 A JPH08185854 A JP H08185854A JP 6327594 A JP6327594 A JP 6327594A JP 32759494 A JP32759494 A JP 32759494A JP H08185854 A JPH08185854 A JP H08185854A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
fluorine
alloy electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6327594A
Other languages
Japanese (ja)
Inventor
Takeshi Nishimura
健 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Battery Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6327594A priority Critical patent/JPH08185854A/en
Publication of JPH08185854A publication Critical patent/JPH08185854A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a hydrogen storage alloy electrode which excels in a characteristic and an alkaline secondary battery using this electrode. CONSTITUTION: A fluororesin binder having the melting point of not more than 150 deg.C is used as a binder for the active material component of a hydrogen storage alloy electrode. Or a fluororesin water repellent agent having a contact angle θ to water of not less than 130 deg. is mixed into the active material component. Since the melting point of a fluororesin binder is low, baking can be performed at a low temperature, so that the characteristic of a hydrogen storage alloy is not deteriorated. Also, since an active material component having a large contact angle to water is mixed thereinto, reaction between a solid and a gas is improved. Accordingly, an inner pressure is lowered and a discharge capacity is enhanced in a battery using the electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特性に優れた水素吸蔵
合金電極及び前記水素吸蔵合金電極を用いた放電容量の
高いアルカリ二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode having excellent characteristics and an alkaline secondary battery having a high discharge capacity using the hydrogen storage alloy electrode.

【0002】[0002]

【従来の技術】近年、水素の吸蔵・放出が電気化学的に
可能な水素吸蔵合金が、アルカリ二次電池(ニッケル水
素電池等)の電極に用いられるようになった。水素吸蔵
合金電極は、例えば水素吸蔵合金粉末に弗素系樹脂結着
剤を配合し、更に必要に応じて各種添加剤を配合してペ
ースト状物とし、これを多孔質基板に塗布又は充填し、
所定厚さにプレス後、真空中で焼成して製造される。前
記弗素系樹脂結着剤は、焼成時に溶融して、水素吸蔵合
金粉末や各種添加剤を粉末同士で結着させたり、粉末と
多孔質基板とを結着させる。前記各種添加剤とは、導電
性付与の為の銅、ニッケル、カーボン等の粉末(導電
剤)、又は活物質の利用率を高めたり腐食を防止する為
の希土類酸化物等である。
2. Description of the Related Art In recent years, hydrogen storage alloys capable of storing and releasing hydrogen electrochemically have come to be used for electrodes of alkaline secondary batteries (such as nickel-hydrogen batteries). The hydrogen storage alloy electrode is prepared by, for example, mixing a hydrogen storage alloy powder with a fluorine-based resin binder, and further adding various additives as necessary to form a paste, which is coated or filled on a porous substrate,
It is manufactured by pressing to a predetermined thickness and then firing in vacuum. The fluorine-based resin binder is melted at the time of firing to bind the hydrogen storage alloy powder and various additives to each other, or to bind the powder and the porous substrate. The various additives are powders (conductive agents) such as copper, nickel and carbon for imparting conductivity, or rare earth oxides for increasing the utilization rate of the active material and preventing corrosion.

【0003】[0003]

【発明が解決しようとする課題】従来、水素吸蔵合金電
極の結着剤にはPVDF (ポリフッ化ビニリデン)が用
いられていた。このPVDFは融点が 160〜180 ℃と高
く、従って焼成は 200℃の比較的高温で行われており、
真空中で焼成しても、水素吸蔵合金は若干なりとも酸化
してその機能が低下した。この他、密閉型アルカリ二次
電池には、使用中に内圧が上昇してくる問題があった。
この内圧上昇の原因は、充電時に負極に発生する水素ガ
ス、又は過充電時に正極に発生する酸素ガスにある。こ
の内圧上昇を防止するには、負極の理論容量を正極の理
論容量より大きくとる正極規制法により行ってている。
この方法は、充電時に発生する水素ガスを水素吸蔵合金
に吸収させておき、過充電時に発生する酸素ガスに反応
(次式)させて水にする方法である。 M+1/2H2 → MH 、MH+1/4O2 → M+ 1/2H2O (Mは水素
吸蔵合金)。 この他、水素吸蔵合金電極を用いたアルカリ二次電池に
は、放電容量の更なる向上が切望されていた。本発明
は、特性に優れた水素吸蔵合金電極、及び前記電極を用
いた繰返し試験後の放電容量維持率の高いアルカリ二次
電池の提供を目的とする。
Conventionally, PVDF (polyvinylidene fluoride) has been used as a binder for hydrogen storage alloy electrodes. This PVDF has a high melting point of 160-180 ° C, so firing is performed at a relatively high temperature of 200 ° C.
Even when fired in a vacuum, the hydrogen storage alloy was oxidized to some extent and its function deteriorated. In addition, the sealed alkaline secondary battery has a problem that the internal pressure increases during use.
The cause of this increase in internal pressure lies in hydrogen gas generated in the negative electrode during charging or oxygen gas generated in the positive electrode during overcharging. In order to prevent this increase in internal pressure, a positive electrode regulation method is adopted in which the theoretical capacity of the negative electrode is larger than the theoretical capacity of the positive electrode.
This method is a method in which hydrogen gas generated during charging is absorbed by a hydrogen storage alloy and reacted with oxygen gas generated during overcharging (the following formula) to form water. M + 1 / 2H 2 → MH, MH + 1 / 4O 2 → M + 1 / 2H 2 O (M is hydrogen storage alloy). In addition, further improvement in discharge capacity has been earnestly desired for alkaline secondary batteries using hydrogen storage alloy electrodes. It is an object of the present invention to provide a hydrogen storage alloy electrode having excellent characteristics, and an alkaline secondary battery having a high discharge capacity retention rate after a repeated test using the electrode.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
少なくとも水素吸蔵合金粉末と弗素系樹脂結着剤からな
る活物質構成材を多孔質基板に塗布又は充填した水素吸
蔵合金電極において、前記弗素系樹脂結着剤の融点が 1
50℃以下であることを特徴とする水素吸蔵合金電極であ
る。
According to the first aspect of the present invention,
In a hydrogen storage alloy electrode in which an active material constituent material comprising at least hydrogen storage alloy powder and a fluorine-based resin binder is applied or filled in a porous substrate, the melting point of the fluorine-based resin binder is 1
The hydrogen storage alloy electrode is characterized by having a temperature of 50 ° C. or lower.

【0005】この発明において、融点が 150℃以下の弗
素系樹脂結着剤としてはTHV( テトラフルオロエチレ
ン−ヘキサフルオロプロピレン−ビニリデンフルオライ
ド、融点115 〜125 ℃)等がある。この結着剤を用いた
場合の焼成温度は 130℃程度であり、従来の焼成温度が
200℃のときの真空度をもってすれば、水素吸蔵合金粉
末の酸化はほぼ完全に防止できる。この弗素系樹脂結着
剤aの水素吸蔵合金粉末bに対する含有率c〔但し、c
=a/(a+b)〕が 0.5wt%未満ではその結着効果が
十分に得られず、10wt%を超えると水素吸蔵合金粉末の
量が相対的に減少して放電容量が低下する。従って0.5
〜10wt%が好ましい。
In the present invention, THV (tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride, melting point 115-125 ° C) and the like are examples of the fluorine-based resin binder having a melting point of 150 ° C or less. When using this binder, the firing temperature is around 130 ° C, which is
With the vacuum degree at 200 ° C, the hydrogen storage alloy powder can be almost completely prevented from being oxidized. The content ratio c of the fluorine-based resin binder a with respect to the hydrogen storage alloy powder b [however, c
= A / (a + b)] is less than 0.5% by weight, the binding effect cannot be sufficiently obtained, and if it exceeds 10% by weight, the amount of hydrogen storage alloy powder is relatively reduced and the discharge capacity is reduced. Therefore 0.5
-10 wt% is preferable.

【0006】請求項2記載の発明は、少なくとも水素吸
蔵合金粉末と弗素系樹脂結着剤からなる活物質構成材を
多孔質基板に塗布又は充填した水素吸蔵合金電極におい
て、前記活物質構成材に、水との接触角度θが 130度以
上の弗素系樹脂撥水剤が混合されていることを特徴とす
る水素吸蔵合金電極である。
According to a second aspect of the present invention, in a hydrogen storage alloy electrode having a porous substrate coated or filled with an active material constituent material comprising at least a hydrogen storage alloy powder and a fluorine-based resin binder, the active material constituent material is A hydrogen storage alloy electrode is characterized in that a fluorine resin water repellent having a contact angle θ with water of 130 degrees or more is mixed.

【0007】上記ガス吸収反応は固相と気相間(固−気
間)反応の為、電極表面に乾いた部分が必要であるが、
従来この乾いた部分の面積は十分には広くなかった。こ
の乾いた部分は、弗素系樹脂結着剤の水との接触角度θ
が大きい(水濡れ性が悪い)程、広くなるが、構成物質
の中で水濡れ性の悪い弗素系樹脂結着剤(PVDF)で
すら、接触角度θが 115度程度で、撥水部分が十分に広
いものではなかった。前記結着剤の水濡れ性は、固−気
間反応のみならず電極反応(固−液間反応)にも影響
し、放電容量を低下させる原因にもなっていた。
Since the above gas absorption reaction is a reaction between a solid phase and a gas phase (solid-gas), a dry portion is required on the electrode surface.
Conventionally, the area of this dry part was not large enough. This dry portion has a contact angle θ with the water of the fluororesin binder.
The larger the value is (the poorer the water wettability), the wider it becomes, but even with the fluororesin binder (PVDF), which has poor water wettability among the constituent materials, the contact angle θ is about 115 degrees and the water repellent part It wasn't wide enough. The water wettability of the binder affects not only the solid-gas reaction but also the electrode reaction (solid-liquid reaction), and is a cause of lowering the discharge capacity.

【0008】この発明では、活物質構成材に水との接触
角度θが 130度以上の極めて水濡れ性の悪い撥水剤を混
合させるので、僅かな添加量で水素吸蔵合金の表面に乾
いた部分を確保し、固−気間反応を活発にすることが可
能となる。この発明において、この弗素系樹脂撥水剤d
の水素吸蔵合金粉末bに対する含有率h〔但し、h=d
/(d+b)〕が0.05wt%未満ではその撥水効果が十分
に得られず、5wt%を超えると水素吸蔵合金粉末の量が
相対的に減少して放電容量が低下する。従って前記撥水
剤の含有率hは、0.05〜5wt%が好ましい。この発明に
おいて、水との接触角度θが 130度以上の弗素系樹脂結
着剤には、PTFE(ポリテトラフルオロエチレン)、
THV等のオリゴマー(分子量1万以下のもの)が適用
される。こゝで、水との接触角度θは図1に示す角度θ
を言う。
In the present invention, the active material constituent material is mixed with a water repellent having a contact angle θ with water of 130 degrees or more and having extremely poor wettability, so that the surface of the hydrogen storage alloy can be dried with a small amount of addition. It becomes possible to secure a portion and activate the solid-gas reaction. In the present invention, the fluorine-based resin water repellent d
Content h of hydrogen storage alloy powder b [however, h = d
If (/ (d + b)] is less than 0.05 wt%, the water-repellent effect cannot be sufficiently obtained, and if it exceeds 5 wt%, the amount of the hydrogen storage alloy powder is relatively reduced and the discharge capacity is reduced. Therefore, the content h of the water repellent is preferably 0.05 to 5 wt%. In this invention, the fluororesin binder having a contact angle θ with water of 130 degrees or more includes PTFE (polytetrafluoroethylene),
An oligomer such as THV (having a molecular weight of 10,000 or less) is applied. Here, the contact angle θ with water is the angle θ shown in Fig. 1.
Say

【0009】請求項3記載の発明は、請求項2記載の水
素吸蔵合金電極において、前記水素吸蔵合金電極の内側
にある活物質構成材より外側にある活物質構成材に、水
との接触角度θが 130度以上の弗素系樹脂撥水剤が高濃
度に混合されていることを特徴とする水素吸蔵合金電極
である。
According to a third aspect of the present invention, in the hydrogen storage alloy electrode according to the second aspect, the contact angle of water with the active material constituent material outside the active material constituent material inside the hydrogen storage alloy electrode. A hydrogen storage alloy electrode, characterized in that a fluorine-based resin water repellent having a θ of 130 degrees or more is mixed in a high concentration.

【0010】固−気間反応は主に電極表層部で起きるの
で、電極外側の活物質構成材に撥水剤をより高濃度に混
合させると、その固−気間反応促進効果が有効に発揮さ
れる。固−気間反応促進にバランスして固−液間反応も
活発化して放電容量が増大する。又撥水剤を電極外側に
高濃度に混合させることは水素吸蔵合金粉末の剥離防止
にも効果がある。尚、この発明で、撥水剤には、請求項
2記載の発明の場合と同じ撥水剤が使用できる。
Since the solid-gas reaction mainly occurs in the surface layer of the electrode, the solid-gas reaction accelerating effect is effectively exhibited when the water repellent is mixed with the active material constituting material outside the electrode in a higher concentration. To be done. The solid-liquid reaction is activated and the discharge capacity is increased in balance with the promotion of the solid-gas reaction. In addition, mixing the water repellent at a high concentration on the outside of the electrode is effective in preventing the hydrogen storage alloy powder from peeling. In this invention, the same water repellent agent as in the second aspect of the invention can be used as the water repellent agent.

【0011】請求項4の発明は、少なくとも水素吸蔵合
金粉末と弗素系樹脂結着剤からなる活物質構成材を多孔
質基板に塗布又は充填した水素吸蔵合金電極において、
前記水素吸蔵合金電極の少なくとも表面又は表層部に、
水との接触角度θが 130度以上の弗素系樹脂撥水剤が存
在していることを特徴とする水素吸蔵合金電極である。
この発明では、より少ない量で撥水剤の効果が一層効率
良く発揮される。
According to a fourth aspect of the present invention, there is provided a hydrogen storage alloy electrode comprising a porous substrate coated or filled with an active material constituent material comprising at least hydrogen storage alloy powder and a fluorine-based resin binder,
At least the surface or surface layer of the hydrogen storage alloy electrode,
The hydrogen storage alloy electrode is characterized by the presence of a fluorine-based resin water repellent having a contact angle θ with water of 130 degrees or more.
In the present invention, the effect of the water repellent can be more efficiently exhibited with a smaller amount.

【0012】以下に請求項2乃至請求項4記載の水素吸
蔵合金電極の製法を比較例示する。 請求項2の電極:MH(水素吸蔵合金粉末)と結着剤と
撥水剤のスラリー→多孔板に塗布→乾燥→裁断→圧延→
焼成→打抜→MH電極。 請求項3の電極:MHと結着剤のスラリー→多孔板に塗
布→乾燥→裁断→撥水剤ディスパージョンに浸漬→乾燥
→圧延→焼成→打抜→MH電極。 請求項4の電極:MHと結着剤のスラリー→多孔板に塗
布→乾燥→裁断→圧延→焼成→撥水剤ディスパージョン
に浸漬→乾燥→打抜→MH電極。 請求項2の電極では、撥水剤はMHと結着剤に均一に混
合される。請求項3の電極では撥水剤ディスパージョン
の浸漬工程を圧延前に行うので、撥水剤は深く浸透す
る。請求項4では、撥水剤ディスパージョンの浸漬工程
を圧延後に行うので撥水剤は表面に付着するか、電極表
層部に浸透して撥水性の強い表面層を形成する。
A method for producing the hydrogen storage alloy electrode according to claims 2 to 4 will be comparatively exemplified below. The electrode according to claim 2: slurry of MH (hydrogen storage alloy powder), a binder and a water repellent agent → coating on a porous plate → drying → cutting → rolling →
Firing → punching → MH electrode. Electrode according to claim 3: slurry of MH and binder → coating on porous plate → drying → cutting → dipping in water repellent dispersion → drying → rolling → firing → punching → MH electrode. Electrode according to claim 4, slurry of MH and binder → coating on porous plate → drying → cutting → rolling → firing → immersion in water repellent agent dispersion → drying → punching → MH electrode. In the electrode of claim 2, the water repellent agent is uniformly mixed with the MH and the binder. In the electrode of the third aspect, the water repellent dispersion is soaked before the rolling, so that the water repellent penetrates deeply. In the fourth aspect, since the water repellent dispersion immersion step is performed after rolling, the water repellent adheres to the surface or penetrates into the electrode surface layer portion to form a surface layer having strong water repellency.

【0013】請求項5記載の発明は、水素吸蔵合金粉末
と導電剤と弗素系樹脂結着剤からなる活物質構成材を多
孔質基板に塗布又は充填した水素吸蔵合金電極におい
て、前記水素吸蔵合金粉末に、表面に弗素系樹脂撥水剤
と導電剤の複合皮膜が形成された水素吸蔵合金粉末が、
少なくとも10wt%含有されていることを特徴とする請求
項1乃至請求項4記載の水素吸蔵合金電極である。
According to a fifth aspect of the present invention, there is provided a hydrogen storage alloy electrode in which a porous substrate is coated or filled with an active material constituent material comprising a hydrogen storage alloy powder, a conductive agent, and a fluorine-based resin binder. The hydrogen-absorbing alloy powder on the surface of which the composite film of the fluorine resin water repellent and the conductive agent is formed,
The hydrogen storage alloy electrode according to any one of claims 1 to 4, wherein the hydrogen storage alloy electrode contains at least 10 wt%.

【0014】この発明によれば、ニッケルや銅等の導電
剤及び撥水剤が水素吸蔵合金粉末とともに電極全体に均
一に分布するので、放電容量が向上する。例えば、表面
にニッケルと弗素系樹脂撥水剤の複合皮膜が形成された
水素吸蔵合金粉末は、弗素系樹脂撥水剤を分散させたニ
ッケルめっき液を用いて、水素吸蔵合金粉末にニッケル
を電気めっきすることにより形成することができる。水
素吸蔵合金粉末への給電は、陰極に接続したSUS製回
転ドラムに水素吸蔵合金粉末を入れる等して行う。
According to the present invention, the conductive agent such as nickel and copper and the water repellent agent are evenly distributed over the entire electrode together with the hydrogen storage alloy powder, so that the discharge capacity is improved. For example, for a hydrogen storage alloy powder on the surface of which a composite film of nickel and a fluorine-based resin water repellent is formed, a nickel plating solution in which a fluorine-based resin water repellent is dispersed is used to electrically convert nickel into the hydrogen storage alloy powder. It can be formed by plating. The power supply to the hydrogen storage alloy powder is performed by putting the hydrogen storage alloy powder in a SUS rotating drum connected to the cathode.

【0015】電池の充放電は電極表面において最も活発
におきる。従って水素吸蔵合金電極の表面に、導電剤と
弗素系樹脂撥水剤の複合皮膜を形成すると、その効果が
効率良く得られる。電極表面に前記複合皮膜を形成する
には、例えば、弗素系樹脂撥水剤を分散させたニッケル
めっき液を用いて、水素吸蔵合金電極表面にニッケルを
電気めっきすることにより形成することができる。この
ように、請求項5記載の発明は、導電剤と弗素系樹脂撥
水剤の複合皮膜の形成を水素吸蔵合金粉末に対して、或
いは、既に成形された電極に対して行っても同等の効果
を発揮する。
Charging / discharging of the battery occurs most actively on the electrode surface. Therefore, when a composite film of a conductive agent and a fluorine-based resin water repellent agent is formed on the surface of the hydrogen storage alloy electrode, the effect can be efficiently obtained. The composite coating can be formed on the electrode surface by, for example, electroplating nickel on the surface of the hydrogen storage alloy electrode using a nickel plating solution in which a fluorine-based resin water repellent is dispersed. As described above, the invention according to claim 5 is equivalent to the case where the composite film of the conductive agent and the fluorine-based resin water repellent is formed on the hydrogen storage alloy powder or on the already formed electrode. Be effective.

【0016】[0016]

【作用】請求項1記載の発明電極は、活物質構成材の弗
素系樹脂結着剤の融点が 150℃以下である。この為、焼
成温度を低くでき、通常の真空度で焼成しても、水素吸
蔵合金粉末が酸化せず、固−気間反応及び固−液間反応
が促進する。その結果、内圧が低下し又負極の容量マー
ジンを低めに設定することが可能となり、正極活物質を
増量することによって放電容量が増大する。請求項2記
載の発明電極は、活物質構成材に、水との接触角度θが
130度以上の極めて撥水性の強い弗素系樹脂撥水剤が混
合されている。従って、僅かな添加量で所定の撥水性を
確保でき、固−気間反応が活発化して内圧が低下し、又
放電容量が向上する。請求項3記載の発明電極は、水素
吸蔵合金電極の内側にある活物質構成材より外側にある
活物質構成材に、水との接触角度θが 130度以上の弗素
系樹脂撥水剤が高濃度に混合されている。固−気間反応
は主に電極表層部で起きるので、その効果が有効に発揮
される。請求項4記載の発明電極は、水素吸蔵合金電極
の少なくとも表面又は表層部に、水との接触角度θが 1
30度以上の弗素系樹脂撥水剤が存在しているので、撥水
剤の効果がより効率よく得られる。又弗素系樹脂撥水剤
が少量の添加で所定の効果を発揮するので、活物質を増
量することが可能となり、放電容量が向上する。請求項
5記載の発明電極は、水素吸蔵合金粉末に、表面に弗素
系樹脂撥水剤と導電剤の複合皮膜が形成された水素吸蔵
合金粉末が、少なくとも10wt%含有されているので、ニ
ッケルや銅の導電剤及び撥水剤が均一に分布し、放電容
量が向上する。特に電流容量が高いとき、その効果はよ
り顕著となる。請求項6記載の発明電池は、水素吸蔵合
金粉末の品質が高く又は撥水性が良好な請求項1乃至請
求項5記載の水素吸蔵合金電極を用いて構成した電池な
ので、内圧が低く放電容量が高い。
In the invention electrode according to claim 1, the melting point of the fluorine-based resin binder of the active material constituting material is 150 ° C. or less. For this reason, the firing temperature can be lowered, and the hydrogen storage alloy powder is not oxidized even when fired at a normal vacuum degree, and the solid-gas reaction and the solid-liquid reaction are promoted. As a result, the internal pressure is lowered, and the capacity margin of the negative electrode can be set lower, and the discharge capacity is increased by increasing the amount of the positive electrode active material. In the invention electrode according to claim 2, the active material constituting material has a contact angle θ with water.
Fluorine resin water repellent with extremely strong water repellency of 130 degrees or more is mixed. Therefore, the predetermined water repellency can be secured with a small amount of addition, the solid-gas reaction is activated, the internal pressure is lowered, and the discharge capacity is improved. In the invention electrode according to claim 3, a fluorine-based resin water repellent having a contact angle θ with water of 130 degrees or more is high in the active material constituent material outside the hydrogen storage alloy electrode outside the active material constituent material. Mixed in concentration. The solid-gas reaction mainly occurs in the surface layer of the electrode, so that the effect is effectively exhibited. In the invention electrode according to claim 4, the contact angle θ with water is 1 at least on the surface or surface layer of the hydrogen storage alloy electrode.
Since the fluorine-based resin water repellent having a temperature of 30 degrees or more is present, the effect of the water repellent can be obtained more efficiently. Further, since the fluorine-based resin water repellent exerts a predetermined effect by adding a small amount, it becomes possible to increase the amount of the active material, and the discharge capacity is improved. In the invention electrode according to claim 5, since the hydrogen storage alloy powder contains at least 10 wt% of the hydrogen storage alloy powder having the composite coating film of the fluorine-based resin water repellent and the conductive agent formed on the surface, nickel or nickel The copper conductive agent and the water repellent are evenly distributed, and the discharge capacity is improved. Especially when the current capacity is high, the effect becomes more remarkable. The invention battery according to claim 6 is a battery configured by using the hydrogen storage alloy electrode according to any one of claims 1 to 5 in which the quality of the hydrogen storage alloy powder is high or the water repellency is good, so that the internal pressure is low and the discharge capacity is low. high.

【0017】[0017]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)組成式がMm1.0 Ni3.4 Co0.7 Al
0.3 Mn0.4(Mm:ミッシュメタル、La、Ce等の混
合物)で表される水素吸蔵合金粉末(直径20〜60μm)
に、導電剤としてカーボニルニッケルパウダーを10wt
%、結着剤としてTHVを含有させ、これに増粘剤(1
wt%CMC 水溶液)を20wt%添加し、混合してペースト状
物とした。このペースト状物をNiめっきした鉄製多孔
板に塗布し、これを80℃で1時間保持して乾燥させたの
ち加圧して厚さ 0.5mmの板状体とした。この板状体を真
空度 1.3Pa の真空炉内で 150℃1時間焼成して水素吸
蔵合金電極を製造した。THVの含有量は種々に変化さ
せた。同様に、結着剤としてPVDF又はETFE(テ
トラフルオロエチレン−共重合体)をそれぞれの融点に
合わせた焼成温度を設定して用いた。
The present invention will be described below in detail with reference to examples. (Example 1) The composition formula is Mm 1.0 Ni 3.4 Co 0.7 Al
Hydrogen storage alloy powder (diameter 20-60 μm) represented by 0.3 Mn 0.4 (Mm: mixture of misch metal, La, Ce, etc.)
And 10wt% of carbonyl nickel powder as conductive agent
%, THV as a binder, to which a thickener (1
wt% CMC aqueous solution) was added and mixed to form a paste. The paste-like material was applied to a Ni-plated iron perforated plate, kept at 80 ° C. for 1 hour, dried, and then pressed to form a plate-shaped body having a thickness of 0.5 mm. This plate-shaped body was fired in a vacuum furnace having a vacuum degree of 1.3 Pa at 150 ° C. for 1 hour to produce a hydrogen storage alloy electrode. The content of THV was variously changed. Similarly, PVDF or ETFE (tetrafluoroethylene-copolymer) was used as the binder with the firing temperature set to match the respective melting points.

【0018】得られた水素吸蔵合金電極を負極とし、発
泡Niを基板としたペースト式水酸化Ni電極を正極と
して密閉型ニッケル水素電池(1100mAhのAAサイズ)を組
立てた。この電池について、電池内圧と放電容量を下記
方法により測定した。電池内圧測定:20℃の条件下で1C
mAの充電電流で正極容量の 450%までの充電を行い、そ
の時点での電池内圧を測定した。放電容量の測定(充放
電サイクル試験):20℃の条件下で1CmAの充電電流で
正極容量の 150%充電し、1CmAの放電電流で1Vまで
連続放電を行い、そのサイクルを 500サイクル繰り返し
たあとの放電容量維持率を測定した。放電容量維持率は
初期容量に対する百分率で表した。前記初期容量は全て
の電池において1170〜1200mAh の間にあった。比較の
為、弗素系樹脂結着剤にPVDFポリマーを用いた従来
の電池についても同様の試験を行った。結果を表1に示
す。
A hermetically sealed nickel-hydrogen battery (AA size of 1100 mAh) was assembled using the obtained hydrogen storage alloy electrode as a negative electrode and a paste type nickel hydroxide electrode having a foamed Ni substrate as a positive electrode. The battery internal pressure and discharge capacity of this battery were measured by the following methods. Battery internal pressure measurement: 1C at 20 ℃
It was charged up to 450% of the positive electrode capacity with a charging current of mA, and the battery internal pressure at that time was measured. Discharge capacity measurement (charging / discharging cycle test): 150% of the positive electrode capacity was charged with a charging current of 1 CmA under the condition of 20 ° C, continuous discharging was performed up to 1 V with a discharging current of 1 CmA, and the cycle was repeated 500 times The discharge capacity retention rate of was measured. The discharge capacity retention rate was expressed as a percentage of the initial capacity. The initial capacity was between 1170 and 1200 mAh for all batteries. For comparison, a similar test was conducted on a conventional battery using a PVDF polymer as the fluorine-based resin binder. The results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】表1より明らかなように、本発明例品(N
o.1〜6)は、従来品(No.7,8) に較べて、いずれも内圧
が低く又放電容量維持率が高かった。これは、焼成温度
が低く、水素吸蔵合金粉末が酸化せず、固−気間反応及
び固−液間反応(電極反応)が良好になされた為であ
る。尚、No.1は結着剤の量が少なかった為、又No.6は結
着剤の量が多く、その分水素吸蔵合金粉末量が減少した
為、いずれも特性が若干低下した。
As is clear from Table 1, the product of the present invention (N
Compared with the conventional products (No.7, 8), o.1-6) had lower internal pressure and higher discharge capacity retention rate. This is because the firing temperature was low, the hydrogen storage alloy powder was not oxidized, and the solid-gas reaction and the solid-liquid reaction (electrode reaction) were well performed. Incidentally, No. 1 had a small amount of the binder, and No. 6 had a large amount of the binder, and the amount of the hydrogen-absorbing alloy powder decreased correspondingly.

【0021】(実施例2)組成式がMm1.0 Ni3.4
0.7 Al0.3 Mn0.4(Mm:ミッシュメタル、La、
Ce等の混合物)で表される水素吸蔵合金粉末(直径20
〜60μm)に、導電剤としてカーボニルニッケルパウダ
ーを10wt%、結着剤としてTHV2wt%を含有させ、こ
れに増粘剤(1wt%CMC 水溶液)20wt%を添加し、更に
撥水剤を混合してペースト状物(スラリー)とした。撥
水剤には、分子量1万以下の、PTFEオリゴマー、T
HVオリゴマー、PFA(テトラフルオロエチレンパー
フルオロアルキルビニルエーテル共重合体)オリゴマ
ー、ETFEオリゴマー、FEPオリゴマーをそれぞれ
用いた。PTFEオリゴマーは含有量を種々に変えた。
次に、前記ペースト状物をNiめっきした鉄製多孔板に
塗布し、これを80℃で1時間保持して乾燥させたのち加
圧して厚さ 0.5mmの板状体とした。この板状体を真空度
1.3Pa の真空加熱炉内で 150℃1時間焼成して水素吸
蔵合金電極を製造した。PTFEオリゴマーの混合量は
種々に変化させた。次に得られた水素吸蔵合金電極を所
定形状に裁断して負極とし、水酸化Ni基板を正極とし
て密閉型ニッケル水素電池(1100mAhのAAサイズ)を組立
てた。この電池について、実施例1と同じ方法により、
電池内圧と放電容量維持率を測定した。結果を表3に示
す。
Example 2 The composition formula is Mm 1.0 Ni 3.4 C
o 0.7 Al 0.3 Mn 0.4 (Mm: misch metal, La,
Hydrogen storage alloy powder (diameter 20)
-60 μm) containing 10% by weight of carbonyl nickel powder as a conductive agent and 2% by weight of THV as a binder, to which 20% by weight of a thickener (1% by weight CMC aqueous solution) was added, and further mixed with a water repellent. It was a paste (slurry). For the water repellent, PTFE oligomer, T having a molecular weight of 10,000 or less,
HV oligomer, PFA (tetrafluoroethylene perfluoroalkyl vinyl ether copolymer) oligomer, ETFE oligomer, and FEP oligomer were used, respectively. The content of PTFE oligomer was variously changed.
Next, the paste-like material was applied to a Ni-plated iron perforated plate, kept at 80 ° C. for 1 hour, dried, and pressed to form a plate-shaped body having a thickness of 0.5 mm. This plate is a vacuum
A hydrogen storage alloy electrode was manufactured by firing in a vacuum heating furnace of 1.3 Pa at 150 ° C. for 1 hour. The mixing amount of the PTFE oligomer was variously changed. Next, the obtained hydrogen storage alloy electrode was cut into a predetermined shape to form a negative electrode, and the Ni hydroxide substrate was used as a positive electrode to assemble a sealed nickel-hydrogen battery (AA size of 1100 mAh). For this battery, by the same method as in Example 1,
The battery internal pressure and the discharge capacity retention rate were measured. The results are shown in Table 3.

【0022】[0022]

【表2】 [Table 2]

【0023】表2より明らかなように、本発明例品 (N
o.9〜17) はいずれも、内圧が低く又放電容量維持率
(放電容量)が高かった。尚、No.9は撥水剤(PTFEオリ
ゴマー)の含有量が少なかった為固−気間反応がやや低
下し内圧が若干上昇した。又No.13 は前記撥水剤の含有
量が多かった為、水素吸蔵合金粉末が相対的に減少して
放電容量が低下した。これに対し、従来品の No.18は、
弗素系樹脂結着剤の水との接触角度θが低かった為、固
−気間反応が十分になされず、内圧が上昇し容量が低下
した。
As is clear from Table 2, the products of the present invention (N
9) to 17), the internal pressure was low and the discharge capacity retention rate (discharge capacity) was high. Incidentally, No. 9 had a small content of the water repellent (PTFE oligomer), so the solid-gas reaction was slightly decreased and the internal pressure was slightly increased. Further, in No. 13, since the content of the water repellent was large, the hydrogen storage alloy powder was relatively decreased and the discharge capacity was decreased. On the other hand, the conventional product No. 18 is
Since the contact angle θ of the fluorine-based resin binder with water was low, the solid-gas reaction was not sufficient, and the internal pressure increased and the capacity decreased.

【0024】(実施例3)組成式がMm1.0 Ni3.4
0.7 Al0.3 Mn0.4(Mm:ミッシュメタル、La、
Ce等の混合物)で表される水素吸蔵合金粉末(直径20
〜60μm)に、導電剤としてカーボニルニッケルパウダ
ーを10wt%、結着剤としてTHVを2wt%含有させ、こ
れに増粘剤(1wt%CMC 水溶液)20wt%を添加してペー
スト状物(スラリー)とした。次に、前記ペースト状物
をNiめっきした鉄製多孔板に塗布し、これを80℃で1
時間保持して乾燥させたのち、撥水剤ディスパージョン
に浸漬し、次いでこれを再び80℃で1時間保持して乾燥
させ、次いでこれを加圧して厚さ 0.5mmの板状体とし
た。この板状体を真空度 1.3Pa の真空加熱炉内で 150
℃1時間焼成して水素吸蔵合金電極を製造した。撥水剤
ディスパージョンには、PTFEオリゴマーを分散させ
た市販品を用いた。
Example 3 The composition formula is Mm 1.0 Ni 3.4 C
o 0.7 Al 0.3 Mn 0.4 (Mm: misch metal, La,
Hydrogen storage alloy powder (diameter 20)
-60 μm) containing 10 wt% of carbonyl nickel powder as a conductive agent and 2 wt% of THV as a binder, and adding 20 wt% of a thickener (1 wt% CMC aqueous solution) to the paste-like material (slurry). did. Next, the paste-like material was applied to a Ni-plated perforated plate made of iron,
After holding for a period of time to dry, it was dipped in a water repellent dispersion and then held again at 80 ° C. for 1 hour to dry, and this was pressed to form a plate having a thickness of 0.5 mm. This plate is placed in a vacuum heating furnace with a vacuum degree of 1.3 Pa for 150
A hydrogen storage alloy electrode was manufactured by firing at ℃ for 1 hour. A commercially available product in which a PTFE oligomer was dispersed was used as the water repellent dispersion.

【0025】(実施例4)実施例3において、撥水剤デ
ィスパージョンへの浸漬を、焼成工程後に行った他は、
実施例3と同じ方法により水素吸蔵合金電極を製造し
た。このようにして得られた水素吸蔵合金電極を所定形
状に裁断して負極とし、発泡Niを基板としたペースト
式水酸化Ni電極を正極として密閉型ニッケル水素電池
(1100mAhのAAサイズ)を組立てた。この電池について、
実施例1と同じ方法により、電池内圧と放電容量維持率
を測定した。結果を、実施例2のNo.11 と比較して表3
に示す。
(Example 4) In Example 3, except that the immersion in the water repellent dispersion was performed after the firing step,
A hydrogen storage alloy electrode was manufactured by the same method as in Example 3. The hydrogen storage alloy electrode thus obtained is cut into a predetermined shape to form a negative electrode, and a paste type nickel hydroxide electrode having foamed Ni as a substrate is used as a positive electrode in a sealed nickel-hydrogen battery.
(1100mAh AA size) was assembled. About this battery
The battery internal pressure and the discharge capacity retention rate were measured by the same method as in Example 1. The results are compared with No. 11 of Example 2 and Table 3
Shown in

【0026】[0026]

【表3】 [Table 3]

【0027】表3より明らかなように、No.19 は撥水剤
を外側に多く混合させ、又No.20 は撥水剤を表層にのみ
存在させたので、撥水剤を均一に混合させたNo.11 より
特性が向上した。撥水剤を表層にのみ存在させたNo.20
は、少量の撥水剤でNo.19 に近い特性が得られ、その効
果が効率よく得られた。
As is clear from Table 3, No. 19 had a large amount of water repellent mixed on the outside, and No. 20 had a water repellent present only on the surface layer, so that the water repellent was uniformly mixed. The characteristics are improved from No.11. No.20 with water repellent only on the surface
With a small amount of a water repellent, the properties close to No. 19 were obtained, and the effect was efficiently obtained.

【0028】(実施例5)水との接触角度θが 130度以
上の種々のPTFEオリゴマーを分散させたニッケルめ
っき液を用いて水素吸蔵合金粉末表面にニッケルめっき
した。水素吸蔵合金粉末へのめっきは、水素吸蔵合金粉
末をSUS製回転ドラム内に入れ、前記ドラムを陰極に
荷電して行った。ニッケルめっき後の水素吸蔵合金粉末
表面には弗素系樹脂撥水剤とニッケルの複合皮膜が形成
されていた。この複合皮膜を形成した水素吸蔵合金粉末
を、元の水素吸蔵合金粉末に種々の比率で混合して、実
施例1と同じ方法により水素吸蔵合金電極を作製し、こ
の電極を用いてニッケル水素電池を組立てた。弗素系樹
脂結着剤の含有率はすべて 0.5wt%にした。得られた電
池について、実施例1と同じ方法により電池内圧と放電
容量維持率を調べた。結果を表4に示す。
Example 5 The surface of the hydrogen storage alloy powder was nickel-plated with a nickel plating solution in which various PTFE oligomers having a contact angle θ with water of 130 degrees or more were dispersed. The hydrogen storage alloy powder was plated by placing the hydrogen storage alloy powder in a SUS rotary drum and charging the drum with a cathode. A composite film of a fluorine-based resin water repellent and nickel was formed on the surface of the hydrogen storage alloy powder after nickel plating. The hydrogen-storing alloy powder having this composite coating was mixed with the original hydrogen-storing alloy powder at various ratios to prepare a hydrogen-storing alloy electrode by the same method as in Example 1, and using this electrode, a nickel-hydrogen battery was used. Was assembled. The content of the fluorine-based resin binder was 0.5% by weight. With respect to the obtained battery, the battery internal pressure and the discharge capacity retention ratio were examined by the same method as in Example 1. The results are shown in Table 4.

【0029】[0029]

【表4】 [Table 4]

【0030】表4より明らかなように、本発明例品(No.
21〜24) は、いずれも、従来品(No.26) より内圧が低く
又放電容量維持率が高かった。これは、弗素系樹脂撥水
剤と導電剤が水素吸蔵合金粉末の表面に均一に分布した
為である。比較例品(No.25)は、表面に弗素系樹脂撥水
剤と導電剤の複合皮膜が形成された水素吸蔵合金粉末の
量が少なかった為、その均一分布の効果が余り見られな
かった。又同様のニッケルめっきを、既に成形された電
極に対しても行ったが、従来品より内圧が低く又放電容
量維持率が高くなることが確認された。
As is clear from Table 4, the product of the present invention (No.
21 to 24) had lower internal pressure and higher discharge capacity maintenance rate than the conventional product (No. 26). This is because the fluorine-based resin water repellent and the conductive agent were uniformly distributed on the surface of the hydrogen storage alloy powder. Since the comparative example product (No. 25) had a small amount of the hydrogen-absorbing alloy powder on the surface of which the composite film of the fluorine-based resin water repellent and the conductive agent was formed, the effect of its uniform distribution was hardly seen. . The same nickel plating was also performed on the already formed electrode, but it was confirmed that the internal pressure was lower and the discharge capacity maintenance ratio was higher than the conventional product.

【0031】[0031]

【効果】以上に述べたように、本発明の水素吸蔵合金電
極は、電極構成材の弗素系樹脂結着剤の融点が低いので
従来より低い温度で焼成でき、この電極を用いた電池は
放電容量維持率が向上する。又水との接触角が大きい弗
素系樹脂撥水剤を、活物質に混合させることにより固−
気間反応が活発化して内圧の低下、放電容量の増大が計
れる。又弗素系樹脂撥水剤と導電剤の複合皮膜を形成し
た水素吸蔵合金粉末を用いることにより、撥水剤の効果
が一層発揮される。
[Effect] As described above, the hydrogen storage alloy electrode of the present invention can be fired at a lower temperature than before because the fluorine resin binder of the electrode constituent material has a low melting point, and a battery using this electrode can be discharged. The capacity retention rate is improved. Further, by mixing a fluorine-based resin water repellent having a large contact angle with water with the active material,
The aerial reaction is activated and the internal pressure can be reduced and the discharge capacity can be increased. Further, the effect of the water repellent is further exerted by using the hydrogen storage alloy powder having the composite film of the fluorine resin water repellent and the conductive agent formed thereon.

【図面の簡単な説明】[Brief description of drawings]

【図1】弗素系樹脂撥水剤の水との濡れ性の説明図であ
る。
FIG. 1 is an explanatory diagram of wettability of a water repellent agent of a fluororesin with water.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも水素吸蔵合金粉末と弗素系樹
脂結着剤からなる活物質構成材を多孔質基板に塗布又は
充填した水素吸蔵合金電極において、前記弗素系樹脂結
着剤の融点が 150℃以下であることを特徴とする水素吸
蔵合金電極。
1. In a hydrogen storage alloy electrode in which an active material constituent material comprising at least hydrogen storage alloy powder and a fluorine resin binder is applied or filled in a porous substrate, the melting point of the fluorine resin binder is 150 ° C. A hydrogen storage alloy electrode, characterized in that:
【請求項2】 少なくとも水素吸蔵合金粉末と弗素系樹
脂結着剤からなる活物質構成材を多孔質基板に塗布又は
充填した水素吸蔵合金電極において、前記活物質構成材
に、水との接触角度θが 130度以上の弗素系樹脂撥水剤
が混合されていることを特徴とする水素吸蔵合金電極。
2. A hydrogen storage alloy electrode in which a porous substrate is coated or filled with an active material constituent material comprising at least hydrogen storage alloy powder and a fluorine-based resin binder, wherein the active material constituent material has a contact angle with water. A hydrogen storage alloy electrode, wherein a fluorine resin water repellent having a θ of 130 degrees or more is mixed.
【請求項3】 請求項2記載の水素吸蔵合金電極におい
て、前記水素吸蔵合金電極の内側にある活物質構成材よ
り外側にある活物質構成材に、水との接触角度θが 130
度以上の弗素系樹脂撥水剤が高濃度に混合されているこ
とを特徴とする水素吸蔵合金電極。
3. The hydrogen storage alloy electrode according to claim 2, wherein an active material constituent material outside the active material constituent material inside the hydrogen storage alloy electrode has a contact angle θ with water of 130.
A hydrogen storage alloy electrode, characterized in that a fluorine-based resin water repellent of a certain degree or more is mixed in a high concentration.
【請求項4】 少なくとも水素吸蔵合金粉末と弗素系樹
脂結着剤からなる活物質構成材を多孔質基板に塗布又は
充填した水素吸蔵合金電極において、前記水素吸蔵合金
電極の少なくとも表面又は表層部に、水との接触角度θ
が 130度以上の弗素系樹脂撥水剤が存在していることを
特徴とする水素吸蔵合金電極。
4. A hydrogen storage alloy electrode in which an active material constituent material comprising at least hydrogen storage alloy powder and a fluorine-based resin binder is applied or filled in a porous substrate, and at least a surface or a surface layer portion of the hydrogen storage alloy electrode. , Contact angle with water θ
A hydrogen storage alloy electrode characterized by the presence of a fluorine-based resin water repellent having a temperature of 130 degrees or more.
【請求項5】 水素吸蔵合金粉末と導電剤と弗素系樹脂
結着剤からなる活物質構成材を多孔質基板に塗布又は充
填した水素吸蔵合金電極において、前記水素吸蔵合金粉
末に、表面に弗素系樹脂撥水剤と導電剤の複合皮膜が形
成された水素吸蔵合金粉末が、少なくとも10wt%含有さ
れていることを特徴とする請求項2乃至請求項4記載の
水素吸蔵合金電極。
5. A hydrogen storage alloy electrode having a porous substrate coated or filled with an active material constituent material comprising a hydrogen storage alloy powder, a conductive agent and a fluorine-based resin binder, wherein the hydrogen storage alloy powder has fluorine on its surface. 5. The hydrogen storage alloy electrode according to claim 2, wherein the hydrogen storage alloy powder containing at least 10 wt% of the hydrogen storage alloy powder on which a composite film of a water-based resin water repellent and a conductive agent is formed.
【請求項6】 請求項1乃至請求項5記載の水素吸蔵合
金電極を負極に用いたことを特徴とするアルカリ二次電
池。
6. An alkaline secondary battery using the hydrogen storage alloy electrode according to claim 1 for a negative electrode.
JP6327594A 1994-12-28 1994-12-28 Hydrogen storage alloy electrode and alkaline secondary battery using it Pending JPH08185854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6327594A JPH08185854A (en) 1994-12-28 1994-12-28 Hydrogen storage alloy electrode and alkaline secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6327594A JPH08185854A (en) 1994-12-28 1994-12-28 Hydrogen storage alloy electrode and alkaline secondary battery using it

Publications (1)

Publication Number Publication Date
JPH08185854A true JPH08185854A (en) 1996-07-16

Family

ID=18200808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6327594A Pending JPH08185854A (en) 1994-12-28 1994-12-28 Hydrogen storage alloy electrode and alkaline secondary battery using it

Country Status (1)

Country Link
JP (1) JPH08185854A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055920A (en) * 2008-08-28 2010-03-11 Sanyo Electric Co Ltd Anode for alkaline storage battery and alkaline storage battery
WO2014083741A1 (en) * 2012-11-28 2014-06-05 パナソニック株式会社 Nickel-hydrogen storage battery and battery pack
CN108631008A (en) * 2017-03-17 2018-10-09 株式会社东芝 Secondary cell, battery pack and vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055920A (en) * 2008-08-28 2010-03-11 Sanyo Electric Co Ltd Anode for alkaline storage battery and alkaline storage battery
WO2014083741A1 (en) * 2012-11-28 2014-06-05 パナソニック株式会社 Nickel-hydrogen storage battery and battery pack
JP5975307B2 (en) * 2012-11-28 2016-08-23 パナソニックIpマネジメント株式会社 Nickel metal hydride storage battery and battery pack
US9755226B2 (en) 2012-11-28 2017-09-05 Panasonic Intellectual Property Management Co., Ltd. Nickel-hydrogen storage battery and battery pack
CN108631008A (en) * 2017-03-17 2018-10-09 株式会社东芝 Secondary cell, battery pack and vehicle

Similar Documents

Publication Publication Date Title
US20230101375A1 (en) Iron electrode employing a polyvinyl alcohol binder
US20230121023A1 (en) Continuous manufacture ofa nickel-iron battery
US20230129997A1 (en) Continuous coated iron electrode
JPH08170126A (en) Porous metallic body, its production and plate for battery using the same
WO2001073872A1 (en) Rechargeable battery
JP6385368B2 (en) Coated iron electrode and method for producing the iron electrode
EP0986121B1 (en) Electrode for non-aqueous electrolyte battery
JPH08185854A (en) Hydrogen storage alloy electrode and alkaline secondary battery using it
JP2762881B2 (en) Non-aqueous electrolyte lithium battery
JP2004327387A (en) Nickel-hydrogen storage battery and method for manufacturing negative electrode plate
JP4944370B2 (en) Nickel electrode for alkaline storage battery and storage battery using the same
JPH08287906A (en) Hydrogen storage alloy electrode
JPS63138646A (en) Cylindrical nonaqueous electrolyte cell
JP2001093520A (en) Hydrogen storage alloy electrode and preparation thereof
WO2023195233A1 (en) Negative electrode for zinc battery, and zinc battery
JPH0765826A (en) Hydrogen storage alloy electrode
EP2951871B1 (en) Iron electrode employing a polyvinyl alcohol binder
JP2000090918A (en) Hydrogen storage electrode
JP2562640B2 (en) Cadmium electrode for alkaline storage battery
JP3030146B2 (en) Electrode
JPH0773876A (en) Nickel electrode for secondary battery and manufacture thereof
JPH06215764A (en) Manufacture of hydrogen absorbing electrode and metal oxide-hydrogen storage battery with hydrogen absorbing electrode
JPH11111304A (en) Metal porous electrode material and manufacture thereof
JPH10106549A (en) Hydrogen storage electrode
JPH0888002A (en) Hydrogen storage alloy electrode and manufacture thereof