JPH08182984A - Removal of heavy metal ion from heavy metal ion-containing water - Google Patents

Removal of heavy metal ion from heavy metal ion-containing water

Info

Publication number
JPH08182984A
JPH08182984A JP33771494A JP33771494A JPH08182984A JP H08182984 A JPH08182984 A JP H08182984A JP 33771494 A JP33771494 A JP 33771494A JP 33771494 A JP33771494 A JP 33771494A JP H08182984 A JPH08182984 A JP H08182984A
Authority
JP
Japan
Prior art keywords
heavy metal
containing water
calcium phosphate
metal ion
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33771494A
Other languages
Japanese (ja)
Inventor
Motoi Yasuda
基 安田
Hironori Hatono
広典 鳩野
Satoshi Kitazaki
聡 北崎
Takao Imasaka
卓男 今坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP33771494A priority Critical patent/JPH08182984A/en
Publication of JPH08182984A publication Critical patent/JPH08182984A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To remove heavy metal ions from a heavy metal ion-containing water within a short period and to miniaturize a device by bringing the heavy metal ion-containing water into contact with calcium phosphate based ceramic particles. CONSTITUTION: The heavy metal ion-containing water is brought into contact with the calcium phosphate based ceramic particles. At this time, the ratio of the calcium phosphate based ceramic particles having >=50μm and <=10mm grain size is >=70wt.% per whole particles. In a preferable condition, the heavy metal ion-containing water is passed through the calcium phosphate based ceramic particles in a space velocity of >=10l/hr. In the more preferable condition, the calcium phosphate based ceramic particles are a bone black. In this way, the time required to remove the heavy metal ion is shortened, a heavy metal removing device is miniaturized and the cost of the device is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は重金属イオンを含有する
水道水、廃水等から重金属イオンを除去する方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing heavy metal ions from tap water, waste water, etc. containing heavy metal ions.

【0002】[0002]

【従来の技術】重金属イオンを含有する水道水、廃水等
から重金属イオンを除去する方法として、例えば鉛イオ
ン含有水をキレート樹脂に接触させる方法(特開昭63
−54991号公報)が知られている。
2. Description of the Related Art As a method for removing heavy metal ions from tap water, waste water, etc. containing heavy metal ions, for example, a method in which lead ion-containing water is brought into contact with a chelating resin (Japanese Patent Laid-Open No. Sho 63-63).
No. 54991).

【0003】[0003]

【発明が解決しようとする課題】鉛イオン含有水をキレ
ート樹脂に接触させる方法には、以下の問題点があっ
た。 キレート樹脂を充填した容器に鉛イオン含有水を通水
して鉛イオンを除去する場合に、鉛イオン含有水の流水
の空間速度(流体の容積速度を充填層の見掛けの容積で
割った値)が増大すると鉛イオン除去性能が急激に低下
するので、鉛イオン含有水の流水の空間速度を低く抑え
ざるを得ず、鉛除去に時間がかかる。 キレート樹脂の鉛吸着量は少ないので、大きな容器に
多量のキレート樹脂を充填する必要があり、鉛除去装置
が大型化する。 キレート樹脂は高価なので、鉛除去装置が高価なもの
となる。本発明は上記問題に鑑みてなされたものであ
り、鉛イオン含有水をキレート樹脂に接触させる方法に
比べて、短時間で重金属イオン含有水から重金属イオン
を除去でき、重金属除去装置を小型化でき、重金属除去
装置の価格を低減できる、重金属イオン含有水から重金
属イオンを除去する方法を提供することを目的とする。
The method of contacting lead ion-containing water with the chelating resin has the following problems. When lead ion-containing water is passed through a container filled with a chelate resin to remove lead ions, the space velocity of the flowing water of lead ion-containing water (the volume velocity of the fluid divided by the apparent volume of the packed bed) If the value increases, the lead ion removal performance drops sharply, so the space velocity of the lead ion-containing water must be kept low, and lead removal takes time. Since the amount of lead adsorbed by the chelate resin is small, it is necessary to fill a large container with a large amount of the chelate resin, and the lead removal device becomes large. Since the chelate resin is expensive, the lead removing device is expensive. The present invention has been made in view of the above problems, as compared with a method of contacting lead ion-containing water with a chelate resin, it is possible to remove heavy metal ions from heavy metal ion-containing water in a short time, and it is possible to downsize the heavy metal removing device. An object of the present invention is to provide a method for removing heavy metal ions from water containing heavy metal ions, which can reduce the cost of the heavy metal removing device.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明においては、重金属イオン含有水をリン酸カ
ルシウム系セラミックス粒子と接触させることを特徴と
する重金属イオン含有水から重金属イオンを除去する方
法を提供する。本発明の好ましい態様においては、リン
酸カルシウム系セラミックス粒子の全量に占める粒径が
50μm以上10mm以下のリン酸カルシウム系セラミ
ックス粒子の割合が70重量%以上である。本発明の好
ましい態様においては、10/時以上の空間速度で重金
属イオン含有水をリン酸カルシウム系セラミックス粒子
に通水する。本発明の好ましい態様においては、前記二
つの態様において、リン酸カルシウム系セラミックス粒
子は骨炭である。
In order to solve the above problems, in the present invention, a method for removing heavy metal ions from water containing heavy metal ions, characterized in that water containing heavy metal ions is contacted with calcium phosphate ceramics particles. I will provide a. In a preferred embodiment of the present invention, the proportion of calcium phosphate-based ceramic particles having a particle size of 50 μm or more and 10 mm or less in the total amount of calcium phosphate-based ceramic particles is 70% by weight or more. In a preferred embodiment of the present invention, heavy metal ion-containing water is passed through the calcium phosphate-based ceramic particles at a space velocity of 10 / hour or more. In a preferred aspect of the present invention, in the above two aspects, the calcium phosphate-based ceramic particles are bone charcoal.

【0005】[0005]

【作用】本発明に係る重金属イオン含有水から重金属イ
オンを除去する方法においては、重金属イオン含有水を
リン酸カルシウム系セラミックス粒子と接触させるの
で、 リン酸カルシウム系セラミックス粒子を充填した容器
に重金属イオン含有水を通水して重金属イオンを除去す
る場合に、重金属イオン含有水の流水の空間速度増大に
伴う重金属除去性能の低下率が、キレート樹脂を充填し
た容器に重金属イオン含有水を通水して重金属イオンを
除去する場合に比べて小さい。従って、キレート樹脂を
充填した容器に重金属イオン含有水を通水して重金属イ
オンを除去する場合に比べて、重金属イオン含有水の流
水の空間速度を増大させることができ、ひいては、重金
属イオンの除去に要する時間を短縮できる。 リン酸カルシウム系セラミックス粒子の重金属吸着量
はキレート樹脂に比べて多いので、重金属イオン含有水
をキレート樹脂に接触させる方法に比べて、重金属除去
装置を小型化できる。 リン酸カルシウム系セラミックス粒子はキレート樹脂
に比べて安価なので、重金属イオン含有水をキレート樹
脂に接触させる方法に比べて、重金属除去装置の価格を
低減できる。
In the method for removing heavy metal ions from heavy metal ion-containing water according to the present invention, since the heavy metal ion-containing water is brought into contact with the calcium phosphate-based ceramic particles, the heavy metal ion-containing water is passed through the container filled with the calcium phosphate-based ceramic particles. When water is used to remove heavy metal ions, the rate of decrease in heavy metal removal performance due to an increase in the space velocity of running water of heavy metal ion-containing water is such that the heavy metal ion-containing water is passed through a container filled with a chelate resin to remove heavy metal ions. It is smaller than when removed. Therefore, the space velocity of the flowing water of the heavy metal ion-containing water can be increased as compared with the case where the heavy metal ion-containing water is passed through the container filled with the chelate resin to remove the heavy metal ions. The time required for Since the heavy metal adsorption amount of the calcium phosphate ceramics particles is larger than that of the chelate resin, the heavy metal removing device can be downsized as compared with the method of bringing the heavy metal ion-containing water into contact with the chelate resin. Since the calcium phosphate-based ceramic particles are cheaper than the chelate resin, the cost of the heavy metal removing device can be reduced as compared with the method of bringing the heavy metal ion-containing water into contact with the chelate resin.

【0006】リン酸カルシウム系セラミックス粒子の全
量に占める粒径が50μm以上10mm以下のリン酸カ
ルシウム系セラミックス粒子の割合が70重量%以上で
ある場合には、低空間速度領域での通水抵抗の増加が抑
制されるので、低空間速度領域でのリン酸カルシウム系
セラミックス粒子への重金属金属含有水の通水により重
金属金属含有水から重金属を除去でき、また、リン酸カ
ルシウム系セラミックス粒子の単位体積当たりの重金属
除去性能の低下が抑制されるので、重金属除去装置の大
型化を防止できる。前段の方法において、10/時以上
の空間速度で重金属イオン含有水をリン酸カルシウム系
セラミックス粒子に通水することにより、重金属金属含
有水から十分に重金属を除去できる。
When the proportion of calcium phosphate ceramics particles having a particle size of 50 μm or more and 10 mm or less in the total amount of calcium phosphate ceramics particles is 70% by weight or more, an increase in water resistance in a low space velocity region is suppressed. Therefore, it is possible to remove the heavy metal from the heavy metal-metal-containing water by passing the heavy metal-metal-containing water through the calcium phosphate-based ceramic particles in the low space velocity region, and to reduce the heavy metal removal performance per unit volume of the calcium phosphate-based ceramic particles. Since it is suppressed, it is possible to prevent the heavy metal removing device from increasing in size. In the first-stage method, the heavy metal ion-containing water is passed through the calcium phosphate-based ceramic particles at a space velocity of 10 / hour or more, whereby the heavy metal can be sufficiently removed from the heavy metal-containing water.

【0007】[0007]

【実施例】【Example】

(1)第1実施例 超純水中に各種金属塩化物(Agについては硝酸銀水溶
液)を単独に投入して溶解させ、各金属塩化合物ごと
に、金属元素濃度が10mg/dm3 の溶液を調製し
た。上記各溶液を塩酸(Agについては硝酸)又は水酸
化ナトリウムによりpH3又はpH6.5に調整し、試
験液(以下試験的に作った重金属イオン含有水を模擬鍍
金廃液と呼ぶ)とした。各模擬鍍金廃液200cm3
にカラムクロマトグラフ用ハイドロキシアパタイト(HA
p)(粒径46〜149μm)を1.0g投入し、室温に
て往復振盪機を用いて200cpmで1時間又は24時
間振盪させた。振盪後、平均細孔径が10μmのメンブ
レンフィルターで各模擬鍍金廃液を濾過し、各濾過液中
の金属元素濃度をICP発光分析装置を用いて定量し
た。定量結果を表1に示す。表1中、HAp はハイドロキ
シアパタイトを意味し、NDは検出されなかったことを意
味する。
(1) First Example Various metal chlorides (a silver nitrate aqueous solution for Ag) were individually charged and dissolved in ultrapure water, and a solution having a metal element concentration of 10 mg / dm 3 was prepared for each metal salt compound. Prepared. Each of the above solutions was adjusted to pH 3 or pH 6.5 with hydrochloric acid (nitric acid for Ag) or sodium hydroxide, and used as a test solution (hereinafter, the heavy metal ion-containing water made experimentally is referred to as simulated plating waste solution). Hydroxyapatite for column chromatography (HA) in 200 cm 3 of each simulated plating waste liquid
1.0 g of p) (particle size 46 to 149 μm) was added, and the mixture was shaken at 200 cpm for 1 hour or 24 hours using a reciprocating shaker at room temperature. After shaking, each simulated plating waste liquid was filtered with a membrane filter having an average pore size of 10 μm, and the metal element concentration in each filtrate was quantified using an ICP emission spectrometer. The quantification results are shown in Table 1. In Table 1, HAp means hydroxyapatite and ND means not detected.

【0008】[0008]

【表1】 [Table 1]

【0009】表1から、ハイドロキシアパタイトが、酸
性雰囲気中でも中性雰囲気中でも、各種重金属イオン含
有水から重金属イオンを効率良く除去することが分か
る。
It can be seen from Table 1 that hydroxyapatite efficiently removes heavy metal ions from water containing various heavy metal ions in both acidic and neutral atmospheres.

【0010】(2)第2実施例 超純水中に各種金属塩化物(Agについては硝酸銀水溶
液)を投入して溶解させ、鉛の濃度が0.5mg/dm
3 で、他の金属元素濃度が10mg/dm3 の第1混合
溶液と、鉛の濃度が0.05mg/dm3 で、他の金属
元素濃度が10mg/dm3 の第2混合溶液とを調製し
た。第1混合溶液、第2混合溶液を水酸化ナトリウムに
よりpH6.5に調整し、第1模擬鍍金廃液、第2模擬
鍍金廃液とした。第1模擬鍍金廃液200cm3 中にカ
ラムクロマトグラフ用ハイドロキシアパタイト(粒径4
6〜149μm)を0.1g投入し、室温にて往復振盪
機を用いて200cpmで1時間振盪させた。第2模擬
鍍金廃液200cm3 中にカラムクロマトグラフ用ハイ
ドロキシアパタイト(HAp)(粒径46〜149μm)を
1.0g投入し、室温にて往復振盪機を用いて200c
pmで1時間振盪させた。振盪後、平均細孔径が10μ
mのメンブレンフィルターで第1、第2模擬鍍金廃液を
濾過し、各濾過液中の金属元素濃度をICP発光分析装
置を用いて定量した。
(2) Second Embodiment Various metal chlorides (silver nitrate aqueous solution for Ag) were added to ultrapure water to dissolve them, and the lead concentration was 0.5 mg / dm 2.
3. Prepare a first mixed solution with other metal element concentration of 10 mg / dm 3 and a second mixed solution with lead concentration of 0.05 mg / dm 3 and other metal element concentration of 10 mg / dm 3 . did. The first mixed solution and the second mixed solution were adjusted to pH 6.5 with sodium hydroxide to obtain a first simulated plating waste liquid and a second simulated plating waste liquid. The first simulated plating waste liquid 200 cm 3 column chromatographic hydroxyapatite in (particle size 4
6-149 μm) was added thereto, and the mixture was shaken at 200 cpm for 1 hour using a reciprocal shaker at room temperature. Into 200 cm 3 of the second simulated plating waste liquid, 1.0 g of hydroxyapatite (HAp) for column chromatography (particle size 46 to 149 μm) was put, and 200c was used at room temperature using a reciprocal shaker.
Shake at pm for 1 hour. After shaking, the average pore size is 10μ
The first and second simulated plating waste liquids were filtered with a membrane filter of m, and the metal element concentration in each filtered liquid was quantified using an ICP emission spectrometer.

【0011】定量の結果得られた、第1、第2模擬鍍金
廃液中の各金属元素の除去率を図1、図2に示す。図
1、図2から、ハイドロキシアパタイトが、各種重金属
イオン混合含有水から、鉛に対する選択性を示すもの
の、各種重金属イオンを、比較的平均に除去することが
分かる。
The removal rates of the respective metal elements in the first and second simulated plating waste liquids obtained as a result of the quantification are shown in FIGS. 1 and 2. From FIG. 1 and FIG. 2, it can be seen that hydroxyapatite removes various heavy metal ions in a relatively average manner from water containing a mixture of various heavy metal ions, although it shows selectivity for lead.

【0012】(3)第3実施例 市販の骨炭(鳴門化学製(ピーエスチャコール)、粒径
150〜250μmと、粒径500〜1400μmの2
種類)、キレート樹脂(三菱化成製(ダイヤイオンCR
−20)、粒径300〜1180μm)、活性炭(武田
製薬製(WH2C)、粒径約500〜2400μm)
を、図3に示す実験装置のカラム1(内径25mm、カ
ラム長100mm)に充填し、0.5mg/dm3 の濃
度で鉛イオンを含有するpH3の水道水から成る模擬鍍
金廃液0.1dm3 を、ビーカー2からチュービングポ
ンプ3を介してカラム1に通水し、透過液をビーカー4
により回収した。ビーカー4に回収された透過液の鉛濃
度をポテンショメトリック・ストリッピング・アナリシ
スにより測定した。模擬鍍金廃液の流水の空間速度を1
0/時〜2000/時の範囲で種々に変え、カラムに充
填する濾過材と空間速度と透過液の鉛濃度との相関を調
べた。
(3) Third embodiment Commercially available bone charcoal (Naruto Chemical Co., Ltd. (PS charcoal), particle size of 150 to 250 μm and particle size of 500 to 1400 μm)
Type), chelate resin (manufactured by Mitsubishi Kasei (Diaion CR
-20), particle size 300 to 1180 μm), activated carbon (Takeda Pharmaceutical (WH2C), particle size about 500 to 2400 μm)
Was packed in a column 1 (internal diameter 25 mm, column length 100 mm) of the experimental apparatus shown in FIG. 3, and a simulated plating waste liquid 0.1 dm 3 consisting of tap water containing lead ions at a concentration of 0.5 mg / dm 3 and having a pH of 3. From the beaker 2 through the tubing pump 3 to the column 1, and the permeate is passed through the beaker 4
Recovered by. The lead concentration of the permeated liquid collected in the beaker 4 was measured by potentiometric stripping analysis. Set the space velocity of simulated plating waste liquid to 1
Various changes were made in the range of 0 / hour to 2000 / hour, and the correlation between the filter medium packed in the column, the space velocity, and the lead concentration in the permeate was investigated.

【0013】図4に実験結果を示す。図4において、縦
軸のC/C0 のCは透過液の鉛濃度であり、C0 は原液
である模擬鍍金廃液の鉛濃度(0.5mg/dm3 )で
ある。C/C0 が小さいほど鉛除去性能が高いことにな
る。図4から分かるように、骨炭のC/C0 は、空間速
度が100/時以下では0であり、空間速度が100/
時を超えると徐々に上昇するが、空間速度が2000/
時に達しても未だ0.2程度にとどまっている。これに
対して、キレート樹脂のC/C0 は空間速度の増大に伴
って急激に増大し、空間速度が50/時で0.4を超
え、空間速度が500/時以上になると1を超える。す
なわち空間速度が500/時以上になるとキレート樹脂
は鉛除去性能を失い、吸着した鉛を放出する場合もあ
る。また、活性炭のC/C0 は、空間速度が100/時
以下では骨炭と同様に0であるが、空間速度が100/
時を超えると急激に増大し、空間速度が500/時以上
になると1を超える。すなわち空間速度が500/時以
上になると活性炭は鉛除去性能を失い、吸着した鉛を放
出する場合もある。骨炭は粒径が150〜250μmの
ものと、粒径が500〜1400μmのものとについて
実験を行ったが、図4から、空間速度が100/時以下
では両者の鉛除去性能に差が無いことが分かる。粒径が
150〜250μmのものについては、空間速度が50
0/時以上になると抵抗の増大によりカラム1への通水
が困難になったので、500/時以上の空間速度領域で
はデータをとっていない。
The experimental results are shown in FIG. In FIG. 4, C of C / C 0 on the vertical axis is the lead concentration of the permeated liquid, and C 0 is the lead concentration (0.5 mg / dm 3 ) of the simulated plating waste liquid which is the undiluted liquid. The smaller C / C 0, the higher the lead removal performance. As can be seen from FIG. 4, the C / C 0 of bone charcoal is 0 when the space velocity is 100 / hour or less, and the space velocity is 100 / hour.
It gradually rises over time, but the space velocity is 2000 /
Even if it reaches the time, it is still around 0.2. On the other hand, the C / C 0 of the chelate resin rapidly increases as the space velocity increases, and exceeds 0.4 at a space velocity of 50 / hour and exceeds 1 at a space velocity of 500 / hour or more. . That is, when the space velocity is 500 / hour or more, the chelate resin loses the lead removal performance and may release adsorbed lead. The C / C 0 of activated carbon is 0 when the space velocity is 100 / hour or less as in the case of bone charcoal, but the space velocity is 100 / hour.
It increases sharply over time, and exceeds 1 when the space velocity reaches 500 / hour or more. That is, when the space velocity is 500 / hour or more, the activated carbon loses its lead removal performance and may release adsorbed lead. Bone charcoal was tested for particles having a particle size of 150 to 250 μm and particles having a particle size of 500 to 1400 μm. From FIG. 4, there is no difference in lead removal performance between the two when the space velocity is 100 / hr or less. I understand. If the particle size is 150 to 250 μm, the space velocity is 50.
At 0 / hr or more, it was difficult to pass water to the column 1 due to an increase in resistance, so data was not taken in the space velocity region of 500 / hr or more.

【0014】なお、骨炭の粒径については、50μm未
満の場合は、低空間速度領域においても抵抗が増大する
ので、実用的でない。他方、骨炭の粒径が10mmを超
えると、単位体積当たりの鉛除去性能が著しく低下し、
鉛除去装置の大型化を招来するので、実用的でない。骨
炭の全量に対して、50μm以上10mm以下の粒径の
骨炭が70重量%以上含有されている場合には、低空間
速度領域における抵抗増大が抑制され、単位体積当たり
の鉛除去性能の顕著な低下も抑制される。従って骨炭の
全量に対して、50μm以上10mm以下の粒径の骨炭
が70重量%以上含有されていることが望ましい。
When the particle size of bone charcoal is less than 50 μm, the resistance increases even in the low space velocity region, which is not practical. On the other hand, if the particle size of bone charcoal exceeds 10 mm, the lead removal performance per unit volume is significantly reduced,
This is not practical because it leads to an increase in the size of the lead removal device. When 70 wt% or more of the bone charcoal having a particle size of 50 μm or more and 10 mm or less is contained with respect to the total amount of the bone charcoal, the resistance increase in the low space velocity region is suppressed, and the lead removal performance per unit volume is remarkable. The decrease is also suppressed. Therefore, it is desirable that 70 wt% or more of bone charcoal having a particle size of 50 μm or more and 10 mm or less is contained with respect to the total amount of bone charcoal.

【0015】(4)第4実施例 市販の骨炭(鳴門化学製(ピーエスチャコール)、粒径
150〜250μmと、粒径500〜1400μmの2
種類)を、図3に示す実験装置のカラム1(内径25m
m、カラム長100mm)に充填し、0.5mg/dm
3 の濃度で鉛イオンを含有するpH3の水道水から成る
模擬鍍金廃液0.1dm3 を、粒径150〜250μm
の骨炭に対しては100/時の空間速度で、粒径500
〜1400μmの骨炭に対しては500/時の空間速度
で、ビーカー2からチュービングポンプ3を介してカラ
ム1に通水し、透過液をビーカー4により回収した。ビ
ーカー4に回収された透過液の鉛濃度をポテンショメト
リック・ストリッピング・アナリシスにより測定した。
市販のキレート樹脂(三菱化成製(ダイヤイオンCR−
20)、粒径300〜1180μm)を、図5に示す実
験装置のカラム11(内径10mm、カラム長214m
m)に充填し、0.5mg/dm3 の濃度で鉛イオンを
含有するpH3の水道水から成る模擬鍍金廃液0.1d
3 を、10/時の空間速度で、ビーカー12からチュ
ービングポンプ13を介してカラム11に通水し、透過
液をビーカー14により回収した。ビーカー14に回収
された透過液の鉛濃度をポテンショメトリック・ストリ
ッピング・アナリシスにより測定した。表2に実験結果
を示す。
(4) Fourth Example Commercially available bone charcoal (Naruto Kagaku Co., Ltd. (PS Charcoal), particle size 150-250 μm, particle size 500-1400 μm 2)
Type) is the column 1 (inner diameter 25 m) of the experimental device shown in FIG.
m, column length 100 mm), 0.5 mg / dm
3 concentrations simulated plating waste liquid 0.1Dm 3 consisting pH3 tap water containing lead ions, the particle size 150~250μm
For bone charcoal of 100 / h at a space velocity of 500
For bone char of ˜1400 μm, water was passed through the column 1 from the beaker 2 through the tubing pump 3 at a space velocity of 500 / hour, and the permeated liquid was collected by the beaker 4. The lead concentration of the permeated liquid collected in the beaker 4 was measured by potentiometric stripping analysis.
Commercially available chelating resin (Mitsubishi Kasei (Diaion CR-
20) and a particle size of 300 to 1180 μm) in the column 11 (inner diameter 10 mm, column length 214 m) of the experimental apparatus shown in FIG.
m), a simulated plating waste liquid 0.1d consisting of tap water of pH 3 containing lead ions at a concentration of 0.5 mg / dm 3.
m 3 was passed from the beaker 12 through the tubing pump 13 to the column 11 at a space velocity of 10 / hour, and the permeated liquid was collected by the beaker 14. The lead concentration of the permeated liquid collected in the beaker 14 was measured by potentiometric stripping analysis. Table 2 shows the experimental results.

【0016】[0016]

【表2】 [Table 2]

【0017】表2から、骨炭の鉛吸着量は、空間速度が
キレート樹脂に比べて高いにも係わらず、キレート樹脂
の鉛吸着量の5倍以上あることが分かる。
From Table 2, it can be seen that the lead adsorption amount of bone charcoal is 5 times or more the lead adsorption amount of the chelate resin, although the space velocity is higher than that of the chelate resin.

【0018】第3、第4実施例から以下が分かる。 骨炭を充填した容器に鉛イオン含有水を通水して鉛イ
オンを除去する場合に、鉛イオン含有水の流水の空間速
度増大に伴う鉛除去性能の低下率が、キレート樹脂を充
填した容器に鉛イオン含有水を通水して鉛イオンを除去
する場合に比べて小さい。従って、骨炭を充填した容器
に鉛イオン含有水を通水して鉛イオンを除去する場合に
は、キレート樹脂を充填した容器に鉛イオン含有水を通
水して鉛イオンを除去する場合に比べて、鉛イオン含有
水の流水の空間速度を増大させることができ、ひいて
は、鉛イオンの除去に要する時間を短縮できる。 骨炭の鉛吸着量はキレート樹脂に比べて多いので、鉛
イオン含有水を骨炭に接触させる鉛イオン除去方法によ
れば、鉛イオン含有水をキレート樹脂に接触させる鉛イ
オン除去方法に比べて、鉛除去装置を小型化できる。
The following can be understood from the third and fourth embodiments. When water containing lead ions is passed through a container filled with bone charcoal to remove lead ions, the rate of decrease in lead removal performance due to an increase in the space velocity of the water containing lead ions is It is smaller than when lead ions are removed by passing water containing lead ions. Therefore, when the lead ion-containing water is passed through the container filled with bone charcoal to remove the lead ion, the lead ion-containing water is passed through the container filled with the chelate resin to remove the lead ion. Thus, the space velocity of the lead ion-containing water can be increased, and the time required for removing the lead ions can be shortened. Since the amount of lead adsorbed on bone charcoal is higher than that of chelate resin, the lead ion removal method of contacting lead ion-containing water with bone charcoal is more effective than the lead ion removal method of contacting lead ion-containing water with chelate resin. The removal device can be downsized.

【0019】また、キレート樹脂の価格が約4,000
円/dm3 であるのに対し骨炭の価格は約200円/d
3 である。従って、鉛イオン含有水を骨炭に接触させ
る鉛イオン除去方法を採用した場合には、鉛イオン含有
水をキレート樹脂に接触させる鉛イオン除去方法を採用
する場合比べて、鉛除去装置の価格を低減できる。
The price of the chelating resin is about 4,000.
The price of bone charcoal is about 200 yen / d, while it is yen / dm 3.
m is 3. Therefore, when the lead ion removal method of contacting the lead ion-containing water with the bone charcoal is adopted, the cost of the lead removal device is reduced compared to the case of adopting the lead ion removal method of contacting the lead ion-containing water with the chelate resin. it can.

【0020】以上本発明の実施例を説明したが、本発明
は上記実施例に限定されるものではない。例えば、第
3、第4実施例において、骨炭に代えて略同一粒径のハ
イドロキシアパタイト粒子を用いても、図4、表2と同
様の結果が得られることを確認している。ハイドロキシ
アパタイト粒子もキレート樹脂に比べて安価である。第
1、第2実施例では、重金属イオン含有水を貯水した容
器にハイドロキシアパタイト粒子を投入した後容器を振
盪して重金属イオンを除去し、第3、第4実施例では、
骨炭が充填された容器に鉛イオン含有水を通水して鉛イ
オンを除去したが、重金属イオン含有水を貯水した容器
にハイドロキシアパタイト粒子、骨炭を投入し、容器内
の重金属イオン含有水を攪拌しても良く、或いはそのま
ま放置しても良い。また、上記実施例では、重金属イオ
ン含有水をハイドロキシアパタイト粒子、骨炭と接触さ
せたが、上記以外のリン酸カルシウム系セラミックス粒
子、例えば第1リン酸カルシウム粒子、第2リン酸カル
シウム粒子、リン酸三カルシウム粒子、リン酸四カルシ
ウム粒子、リン酸八カルシウム粒子、ピロリン酸カルシ
ウム粒子、天然骨粉等に重金属イオン含有水を接触させ
ても良い。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments. For example, in the third and fourth examples, it has been confirmed that the same results as in FIG. 4 and Table 2 can be obtained even when the hydroxyapatite particles having substantially the same particle size are used instead of the bone charcoal. Hydroxyapatite particles are also cheaper than chelate resins. In the first and second examples, after the hydroxyapatite particles were put into a container containing water containing heavy metal ions, the container was shaken to remove the heavy metal ions. In the third and fourth examples,
Water containing lead ions was passed through a container filled with bone charcoal to remove lead ions.However, a container containing water containing heavy metal ions was charged with hydroxyapatite particles and bone charcoal, and the water containing heavy metal ions was stirred. Alternatively, it may be left as it is. Further, in the above examples, the heavy metal ion-containing water was contacted with the hydroxyapatite particles and bone charcoal, but calcium phosphate-based ceramic particles other than the above, for example, primary calcium phosphate particles, secondary calcium phosphate particles, tricalcium phosphate particles, and phosphoric acid. Heavy metal ion-containing water may be contacted with tetracalcium particles, octacalcium phosphate particles, calcium pyrophosphate particles, natural bone powder and the like.

【0021】[0021]

【効果】以上説明したごとく、本発明に係る重金属イオ
ン含有水から重金属イオンを除去する方法においては、
重金属イオン含有水をリン酸カルシウム系セラミックス
粒子と接触させるので、 リン酸カルシウム系セラミックス粒子を充填した容器
に重金属イオン含有水を通水して重金属イオンを除去す
る場合に、重金属イオン含有水の流水の空間速度増大に
伴う重金属除去性能の低下率が、キレート樹脂を充填し
た容器に重金属イオン含有水を通水して重金属イオンを
除去する場合に比べて小さい。従って、キレート樹脂を
充填した容器に重金属イオン含有水を通水して重金属イ
オンを除去する場合に比べて、重金属イオン含有水の流
水の空間速度を増大させることができ、ひいては、重金
属イオンの除去に要する時間を短縮できる。 リン酸カルシウム系セラミックス粒子の重金属吸着量
はキレート樹脂に比べて多いので、重金属イオン含有水
をキレート樹脂に接触させる方法に比べて、重金属除去
装置を小型化できる。 リン酸カルシウム系セラミックス粒子はキレート樹脂
に比べて安価なので、重金属イオン含有水をキレート樹
脂に接触させる方法に比べて、重金属除去装置の価格を
低減できる。
[Effect] As described above, in the method for removing heavy metal ions from water containing heavy metal ions according to the present invention,
Since heavy metal ion-containing water is contacted with calcium phosphate-based ceramic particles, when the heavy metal ion-containing water is passed through a container filled with calcium phosphate-based ceramic particles to remove the heavy metal ions, the spatial velocity of running water of the heavy metal ion-containing water is increased. The reduction rate of the heavy metal removal performance due to the above is smaller than that when the heavy metal ion-containing water is passed through the container filled with the chelate resin to remove the heavy metal ions. Therefore, the space velocity of the flowing water of the heavy metal ion-containing water can be increased as compared with the case where the heavy metal ion-containing water is passed through the container filled with the chelate resin to remove the heavy metal ions. The time required for Since the heavy metal adsorption amount of the calcium phosphate ceramics particles is larger than that of the chelate resin, the heavy metal removing device can be downsized as compared with the method of bringing the heavy metal ion-containing water into contact with the chelate resin. Since the calcium phosphate-based ceramic particles are cheaper than the chelate resin, the cost of the heavy metal removing device can be reduced as compared with the method of bringing the heavy metal ion-containing water into contact with the chelate resin.

【0022】リン酸カルシウム系セラミックス粒子の全
量に占める粒径が50μm以上10mm以下のリン酸カ
ルシウム系セラミックス粒子の割合が70重量%以上で
ある場合には、低空間速度領域での通水抵抗の増加が抑
制されるので、低空間速度領域でのリン酸カルシウム系
セラミックス粒子への重金属金属含有水の通水により重
金属金属含有水から重金属を除去でき、また、リン酸カ
ルシウム系セラミックス粒子の単位体積当たりの重金属
除去性能の低下が抑制されるので、重金属除去装置の大
型化を防止できる。前段の方法において、10/時以上
の空間速度で重金属イオン含有水をリン酸カルシウム系
セラミックス粒子に通水することにより、重金属金属含
有水から十分に重金属を除去できる。
When the proportion of calcium phosphate ceramics particles having a particle size of 50 μm or more and 10 mm or less in the total amount of calcium phosphate ceramics particles is 70% by weight or more, an increase in water flow resistance in a low space velocity region is suppressed. Therefore, it is possible to remove the heavy metal from the heavy metal-metal-containing water by passing the heavy metal-metal-containing water through the calcium phosphate-based ceramic particles in the low space velocity region, and to reduce the heavy metal removal performance per unit volume of the calcium phosphate-based ceramic particles. Since it is suppressed, it is possible to prevent the heavy metal removing device from increasing in size. In the first-stage method, the heavy metal ion-containing water is passed through the calcium phosphate-based ceramic particles at a space velocity of 10 / hour or more, whereby the heavy metal can be sufficiently removed from the heavy metal-containing water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第2実施例に係る重金属除去実験によ
り得られた、ハイドロキシアパタイト粒子による各種重
金属の除去率を示す図である。
FIG. 1 is a diagram showing the removal rates of various heavy metals by hydroxyapatite particles obtained by a heavy metal removal experiment according to a second embodiment of the present invention.

【図2】本発明の第2実施例に係る重金属除去実験によ
り得られた、ハイドロキシアパタイト粒子による各種重
金属の除去率を示す図である。
FIG. 2 is a diagram showing removal rates of various heavy metals by hydroxyapatite particles obtained by a heavy metal removal experiment according to a second embodiment of the present invention.

【図3】本発明の第3実施例に係る鉛除去実験の装置図
である。
FIG. 3 is an apparatus diagram of a lead removal experiment according to a third embodiment of the present invention.

【図4】本発明の第3実施例に係る鉛除去実験により得
られた、空間速度と骨炭の鉛除去性能との関係を示す図
である。
FIG. 4 is a diagram showing the relationship between the space velocity and the lead removal performance of bone charcoal obtained by the lead removal experiment according to the third embodiment of the present invention.

【図5】本発明の第4実施例に係る鉛除去実験の装置図
である。
FIG. 5 is a device diagram of a lead removal experiment according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、11 カラム 2、12 ビーカー 3、13 チュービングポンプ 4、14 ビーカー 1, 11 Column 2, 12 Beaker 3, 13 Tubing Pump 4, 14 Beaker

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北崎 聡 北九州市小倉北区中島2丁目1番1号 東 陶機器株式会社内 (72)発明者 今坂 卓男 北九州市小倉北区中島2丁目1番1号 東 陶機器株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Kitazaki 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City Tohoku Kikai Co., Ltd. (72) Inventor Takuo Imasaka 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu No. Totoki Equipment Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重金属イオン含有水をリン酸カルシウム
系セラミックス粒子と接触させることを特徴とする重金
属イオン含有水から重金属イオンを除去する方法。
1. A method for removing heavy metal ions from water containing heavy metal ions, which comprises contacting water containing heavy metal ions with calcium phosphate ceramics particles.
【請求項2】 リン酸カルシウム系セラミックス粒子の
全量に占める粒径が50μm以上10mm以下のリン酸
カルシウム系セラミックス粒子の割合が70重量%以上
であることを特徴とする請求項1に記載の方法。
2. The method according to claim 1, wherein the proportion of calcium phosphate ceramics particles having a particle size of 50 μm or more and 10 mm or less in the total amount of calcium phosphate ceramics particles is 70% by weight or more.
【請求項3】 10/時以上の空間速度で重金属イオン
含有水をリン酸カルシウム系セラミックス粒子に通水す
ることを特徴とする請求項2に記載の方法。
3. The method according to claim 2, wherein the heavy metal ion-containing water is passed through the calcium phosphate ceramics particles at a space velocity of 10 / hour or more.
【請求項4】 リン酸カルシウム系セラミックス粒子は
骨炭であることを特徴とする請求項2又は3に記載の方
法。
4. The method according to claim 2, wherein the calcium phosphate-based ceramic particles are bone charcoal.
JP33771494A 1994-12-28 1994-12-28 Removal of heavy metal ion from heavy metal ion-containing water Pending JPH08182984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33771494A JPH08182984A (en) 1994-12-28 1994-12-28 Removal of heavy metal ion from heavy metal ion-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33771494A JPH08182984A (en) 1994-12-28 1994-12-28 Removal of heavy metal ion from heavy metal ion-containing water

Publications (1)

Publication Number Publication Date
JPH08182984A true JPH08182984A (en) 1996-07-16

Family

ID=18311280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33771494A Pending JPH08182984A (en) 1994-12-28 1994-12-28 Removal of heavy metal ion from heavy metal ion-containing water

Country Status (1)

Country Link
JP (1) JPH08182984A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1017959C2 (en) * 2001-04-27 2002-10-29 Res Program Counselling B V Device and method for removing a contaminant from a liquid containing this contaminant.
WO2005100253A1 (en) * 2004-03-31 2005-10-27 National University Corporation Kagawa University Method of treating strongly acid wastewater containing harmful substance
JP2007160202A (en) * 2005-12-13 2007-06-28 Kawamoto Pump Mfg Co Ltd Water purifying device
JP2008304280A (en) * 2007-06-06 2008-12-18 Hitachi-Ge Nuclear Energy Ltd Actinoid adsorption material and method for treating radioactive waste liquid
JP2010221104A (en) * 2009-03-23 2010-10-07 Institute Of National Colleges Of Technology Japan Heavy metal-containing wastewater treatment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1017959C2 (en) * 2001-04-27 2002-10-29 Res Program Counselling B V Device and method for removing a contaminant from a liquid containing this contaminant.
WO2002088027A1 (en) * 2001-04-27 2002-11-07 Research Program Counselling B.V. Apparatus and method for the remeoval of a contaminant from a fluid comprising said contaminant
WO2005100253A1 (en) * 2004-03-31 2005-10-27 National University Corporation Kagawa University Method of treating strongly acid wastewater containing harmful substance
JP2007160202A (en) * 2005-12-13 2007-06-28 Kawamoto Pump Mfg Co Ltd Water purifying device
JP2008304280A (en) * 2007-06-06 2008-12-18 Hitachi-Ge Nuclear Energy Ltd Actinoid adsorption material and method for treating radioactive waste liquid
JP2010221104A (en) * 2009-03-23 2010-10-07 Institute Of National Colleges Of Technology Japan Heavy metal-containing wastewater treatment method

Similar Documents

Publication Publication Date Title
US5149437A (en) Water filter
US6200482B1 (en) Arsenic filtering media
US20010052495A1 (en) Method and apparatus for the removal of arsenic from water
KR20010071377A (en) Process for the recovery of fluorinated alkanoic acids from waste waters
US7256049B2 (en) Devices and methods for separating phospholipids from biological samples
US5665240A (en) Point-of-use removal of lead in drinking water using phosphate and carbonate minerals
JP5936196B2 (en) Cesium-containing layered double hydroxide composite, solidified solid, method for treating cesium-containing wastewater, layered double hydroxide composite, and method for producing layered double hydroxide composite
JPH08182984A (en) Removal of heavy metal ion from heavy metal ion-containing water
JP6531013B2 (en) Purification method and purification agent
JP2007505736A (en) Apparatus and method for removing arsenite and arsenate from water
MX2011008730A (en) Water purification and enhancement systems.
JP6208648B2 (en) Treatment agent and treatment method for contaminated water or soil
Miladinovic et al. Ammonia removal from saline wastewater by ion exchange
JP6840354B2 (en) Treatment method of boron-containing water
CN108622973B (en) Cleaning agent and cleaning method
JPH11309448A (en) Arsenic (iii, v), and fluorine adsorbing filter medium and production thereof
US5332509A (en) Chemical process for removing organometallic compounds from water
JP3537503B2 (en) Water purification equipment
JP3143177U (en) Water purification reduction filter
JP3443573B2 (en) Arsenic-removing filter medium and method for purifying water containing arsenic
Allawzi et al. Assessment of the natural jojoba residues as adsorbent for removal of cadmium from aqueous solutions
JP3520342B2 (en) Extraction and removal of pentavalent arsenic ions
JP2004174418A (en) Method for removing heavy metal in raw water
Ortuzar et al. Inorganic anion removal from water using natural adsorbents
Lee Removal of microcystin-LR from drinking water using adsorption and membrane processes

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040217