JPH08182758A - Automatic control apparatus for artificial lung - Google Patents

Automatic control apparatus for artificial lung

Info

Publication number
JPH08182758A
JPH08182758A JP6341083A JP34108394A JPH08182758A JP H08182758 A JPH08182758 A JP H08182758A JP 6341083 A JP6341083 A JP 6341083A JP 34108394 A JP34108394 A JP 34108394A JP H08182758 A JPH08182758 A JP H08182758A
Authority
JP
Japan
Prior art keywords
gas
oxygen
blood
artificial lung
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6341083A
Other languages
Japanese (ja)
Inventor
Hideto Kaneyasu
秀人 兼安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I VISION KK
Original Assignee
I VISION KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I VISION KK filed Critical I VISION KK
Priority to JP6341083A priority Critical patent/JPH08182758A/en
Publication of JPH08182758A publication Critical patent/JPH08182758A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

PURPOSE: To avoid to bring a living body under a non-physiological condition by controlling the oxygen concn. and the total gas flow of a mixed gas based on a signal from a blood gas sensor for a living body by means of a gas mixer and blowing the mixed gas into an artificial lung. CONSTITUTION: Target values of required concn. of oxygen and carbon dioxide in blood which are different depending on the condition of a patient are input into a microcomputor. When the concn. of oxygen and carbon dioxide in the blood of the patient are measured by a blood gas sensor 7 for a living body and the signals are input into a controller 6, the microcomputor compares them with the set target values and the controller 6 calculates the oxygen concn. and the total gas flow of a mixed gas 4 to be mixed. Then, the required flow values of oxygen and air are output as command signals to a gas mixer 3. The gas mixer 3 controls flow control valves 9 for compressed oxygen 1 and compressed air 2 based on the command signals and blows them into an artificial lung 5 as a specified mixed gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は心臓外科手術や生命維持
装置としての補助循環装置に必須である人工肺装置の自
動制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to automatic control of an artificial lung device which is indispensable for a heart surgery and an auxiliary circulator as a life support device.

【0002】[0002]

【従来の技術】従来より人工肺による血液中の酸素と二
酸化炭素の調節は、時間を要する検査結果に基づき、人
工肺に吹送される酸素と空気の混合ガスの酸素濃度とガ
ス流量を手動制御することにより行われている。
2. Description of the Related Art Conventionally, oxygen and carbon dioxide in blood have been controlled by an artificial lung based on a test result that requires time, and the oxygen concentration and gas flow rate of a mixed gas of oxygen and air blown into the artificial lung are manually controlled. It is done by doing.

【0003】[0003]

【発明が解決しようとする課題点】生命維持装置として
の人工肺の機能は血液中の酸素と二酸化炭素を適正に保
つことである。人工肺を装着された患者の状況は刻々変
化しているため、人工肺は生体の要求にリアルタイムに
追随して機能しなければならない。しかし、従来の方法
では生体反応のもつ大きな時間的な遅れや、判断する医
師の熟練度の違いなどのため、生体は非生理的な状態に
おかれることが多く、治療の遂行を妨げることになる。
本発明は、人工肺による生体血液中の酸素と二酸化炭素
の調節を自動化することにより、これらの欠点を克服す
るためになされたものである。
The function of the artificial lung as a life support device is to properly maintain oxygen and carbon dioxide in blood. Since the situation of a patient wearing an artificial lung changes from moment to moment, the artificial lung must function in real time to follow the demands of the living body. However, in the conventional method, the living body is often placed in a non-physiological state due to a large time delay of the biological reaction and the difference in the skill level of the doctors who make judgments. Become.
The present invention has been made to overcome these drawbacks by automating the regulation of oxygen and carbon dioxide in living blood by an artificial lung.

【0004】[0004]

【課題を解決するための手段】圧縮酸素(1)と圧縮空
気(2)の2つの気体を入力とする気体混合器(3)か
ら出力する混合ガス(4)を人工肺(5)に吹送する。
この気体混合器(3)は、制御器(6)を搭載してお
り、この制御器(6)には生体血液ガスセンサー(7)
からの信号(8)を入力する。
Means for Solving the Problems A mixed gas (4) output from a gas mixer (3) that receives two gases of compressed oxygen (1) and compressed air (2) is blown into an artificial lung (5). To do.
This gas mixer (3) is equipped with a controller (6), and this controller (6) has a biological blood gas sensor (7).
The signal (8) from is input.

【0005】[0005]

【作用】生体血液ガスセンサー(7)からの信号(8)
をうけた制御器(6)は、設定された目標値により血液
ガスの状態を判断し、気体混合器(3)に対して適切な
命令信号(14)を出す。気体混合器(3)はこの信号
に従い混合ガス(4)の酸素濃度と総ガス流量を調節し
て人工肺(5)に吹送する。
[Function] Signal (8) from the living blood gas sensor (7)
The controller (6) which has received the command judges the state of the blood gas based on the set target value, and issues an appropriate command signal (14) to the gas mixer (3). The gas mixer (3) adjusts the oxygen concentration and the total gas flow rate of the mixed gas (4) according to this signal and blows it to the artificial lung (5).

【0006】[0006]

【実施例】以下、本発明の具体的実施例を図1及び図2
によって説明する。 イ)気体混合器(3)は圧縮酸素(1)及び圧縮空気
(2)の入力に対応する2つの流量制御弁(9)を持っ
ている。実施例では、具体的な流量制御弁としてアナロ
グ信号によって流量を可変できるサーマルフローコント
ローラーを用い、両ガスの流量を制御する事により混合
ガス(4)の酸素濃度と総ガス流量を制御する。 ロ)制御器(6)はマイクココンピューター(11)を
用いるシステムで、周辺ユニットとしてA/D変換器
(10)、D/A変換器 (12)及びファジイ制御ユ
ニット(13)を制御している。 ハ)生体血液ガスセンサー(7)は患者体内を循環して
いる血液中の酸素及び二酸化炭素濃度をリアルタイムで
測定して、その情報を制御器(6)のA/D変換器(1
0)に与える。具体的な生体血液ガスセンサーとしては
米国CDI社製SYSTEM400がある。 ニ)マイクロコンピューター(11)には、動作プログ
ラムとしてあらかじめ熟練した医師の手動制御を参考に
したり、理論や実験、経験的に求められた知識を基にし
た制御プログラムが組み込まれる。一般的には血液中の
酸素濃度には混合ガス(4)の酸素濃度を、血液中の二
酸化炭素濃度には混合ガス(4)の総ガス流量を対応さ
せて制御する。また、必要により両者の相互作用を配慮
したプログラムを作成することも可能である。 ホ)使用にあたっては患者の状況により異なる血液中の
望ましい酸素及び二酸化炭素濃度の目標値がマイクロコ
ンピューター(11)に対してその都度与えられる。動
作中マイクロコンピューター(11)は生体血液ガスセ
ンサー(7)からの信号(8)をA/D変換器(10)
を通じて受け、目標値と比較して必要によりファジィ制
御ユニット(13)の演算機能も用いて前項で述べた動
作プログラムに従って設定すべき混合ガス(4)の酸素
濃度及び総ガス流量を算出する。マイクロコンピュータ
ー(11)は酸素と空気の所要流量値をD/A変換器
(12)を通して気体混合器(3)に対する命令信号
(14)として出力する。 ヘ)命令信号(14)に従い、気体混合器(3)の2つ
の流量制御弁が動作して混合ガス(4)が人工肺(5)
に吹送される。 以上の動作がリアルタイムで自動的に行われる事により
心臓外科手術中や、補助循環中など患者への侵襲が激し
い時でも患者の血液中の酸素濃度、及び二酸化炭素濃度
を望ましい値に保つことが可能になる。なお、本発明の
装置の目的とするところは実施例の構成素子以外でも実
現できる。たとえば流量制御弁としてオンオフ動作の弁
を使用し、マイクロコンピューターの周辺ユニット及び
プログラムを変更してオン時間のデジタル制御にする事
も可能である。またマイクロコンピューター(11)に
組み込む動作プログラムも、経験知識を積み重ねて性能
を向上させる事が可能で、また患者や使用状況に対応し
て個々に用意することも可能である。以上のように本発
明の主旨の範囲で構成できる人工肺自動制御装置は本発
明に含まれるものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below with reference to FIGS.
It will be explained by. B) The gas mixer (3) has two flow control valves (9) corresponding to the inputs of compressed oxygen (1) and compressed air (2). In the embodiment, a thermal flow controller that can change the flow rate by an analog signal is used as a specific flow rate control valve, and the oxygen concentration of the mixed gas (4) and the total gas flow rate are controlled by controlling the flow rates of both gases. (B) The controller (6) is a system that uses the microphone computer (11) and has an A / D converter as a peripheral unit.
(10), the D / A converter (12) and the fuzzy control unit (13) are controlled. C) The biological blood gas sensor (7) measures the oxygen and carbon dioxide concentrations in the blood circulating in the patient's body in real time, and the information is measured by the A / D converter (1) of the controller (6).
0) to give. As a specific biological blood gas sensor, there is SYSTEM400 manufactured by CDI, USA. D) The microcomputer (11) incorporates, as an operation program, a control program based on knowledge obtained by theory, experiment, or experience, with reference to manual control by a skilled doctor in advance. Generally, the oxygen concentration of the mixed gas (4) is controlled to correspond to the oxygen concentration in the blood, and the total gas flow rate of the mixed gas (4) is controlled to correspond to the carbon dioxide concentration in the blood. If necessary, it is also possible to create a program that takes into consideration the interaction between the two. (E) In use, target values of desired oxygen and carbon dioxide concentrations in blood which differ depending on the patient's condition are given to the microcomputer (11) each time. During operation, the microcomputer (11) converts the signal (8) from the living blood gas sensor (7) into an A / D converter (10).
Then, the oxygen concentration of the mixed gas (4) and the total gas flow rate to be set according to the operation program described in the previous section are calculated by using the calculation function of the fuzzy control unit (13) as needed in comparison with the target value. The microcomputer (11) outputs a required flow rate value of oxygen and air as a command signal (14) to the gas mixer (3) through the D / A converter (12). F) In accordance with the command signal (14), the two flow control valves of the gas mixer (3) operate and the mixed gas (4) becomes the artificial lung (5).
Be blown away. By performing the above operations automatically in real time, it is possible to maintain the oxygen concentration and the carbon dioxide concentration in the blood of the patient at desired values even during severe cardiac invasion such as during cardiac surgery and assisted circulation. It will be possible. The object of the device of the present invention can be realized by other than the constituent elements of the embodiment. For example, it is possible to use an on / off valve as the flow control valve and change the peripheral unit and program of the microcomputer to digitally control the on time. Further, the operation program incorporated in the microcomputer (11) can also improve performance by accumulating experience and knowledge, and can also be individually prepared according to the patient and the use situation. As described above, the artificial lung automatic control device that can be configured within the scope of the present invention is included in the present invention.

【0007】[0007]

【発明の効果】本発明によって生命維持装置として重要
な人工肺操作が自動化でき、操作の省力化のみならず、
生体血液中の酸素、二酸化炭素の状態が常により生理的
な環境に維持できる。
According to the present invention, the operation of the artificial lung, which is important as a life support device, can be automated, and not only the labor saving of the operation,
The state of oxygen and carbon dioxide in living blood can always be maintained in a more physiological environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す全体図である。FIG. 1 is an overall view showing an embodiment of the present invention.

【図2】本発明のうち制御器の一実施例を示す図であ
る。
FIG. 2 is a diagram showing an embodiment of a controller in the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮酸素 2 圧縮空気 3 気体混合器 4 混合ガス 5 人工肺 6 制御器 7 生体血液ガスセンサー 8 生体血液ガスセンサー7からの信号 9 流量制御弁 10 A/D変換器 11 マイクロコンピューター 12 D/A変換器 13 ファジィ制御ユニット 14 気体混合器3に対する命令信号 1 Compressed Oxygen 2 Compressed Air 3 Gas Mixer 4 Mixed Gas 5 Artificial Lung 6 Controller 7 Living Blood Gas Sensor 8 Signal from Living Blood Gas Sensor 7 Flow Control Valve 10 A / D Converter 11 Microcomputer 12 D / A Converter 13 Fuzzy control unit 14 Command signal for gas mixer 3

Claims (1)

【特許請求の範囲】[Claims] 【請求項 1】 図1において圧縮酸素(1)と圧縮空
気(2)の2つの気体を入力とし、かつ生体血液ガスセ
ンサー(7)からの信号(8)をうける制御器(6)を
搭載した、混合ガス(4)を人工肺(5)に吹送する気
体混合器(3)を有する人工肺自動制御装置。
1. A controller (6) which receives two gases, compressed oxygen (1) and compressed air (2) in FIG. 1, and receives a signal (8) from a biological blood gas sensor (7). And an automatic oxygenator control device having a gas mixer (3) for blowing the mixed gas (4) into the oxygenator (5).
JP6341083A 1994-12-28 1994-12-28 Automatic control apparatus for artificial lung Pending JPH08182758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6341083A JPH08182758A (en) 1994-12-28 1994-12-28 Automatic control apparatus for artificial lung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6341083A JPH08182758A (en) 1994-12-28 1994-12-28 Automatic control apparatus for artificial lung

Publications (1)

Publication Number Publication Date
JPH08182758A true JPH08182758A (en) 1996-07-16

Family

ID=18343098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6341083A Pending JPH08182758A (en) 1994-12-28 1994-12-28 Automatic control apparatus for artificial lung

Country Status (1)

Country Link
JP (1) JPH08182758A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119073A1 (en) 2006-04-13 2007-10-25 Haemair Ltd Blood/air mass exchange apparatus
WO2014162335A1 (en) * 2013-04-01 2014-10-09 テルモ株式会社 Circulation device and method for controlling same
JP2017018618A (en) * 2016-09-01 2017-01-26 テルモ株式会社 Circulation apparatus and method of controlling the same
WO2019246057A1 (en) * 2018-06-20 2019-12-26 The Regents Of The University Of Michigan Smart artificial lung and perfusion systems
US10589015B2 (en) 2014-10-20 2020-03-17 The Regents Of The University Of Michigan Gated-concentric artificial lung

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119073A1 (en) 2006-04-13 2007-10-25 Haemair Ltd Blood/air mass exchange apparatus
WO2014162335A1 (en) * 2013-04-01 2014-10-09 テルモ株式会社 Circulation device and method for controlling same
JP6005844B2 (en) * 2013-04-01 2016-10-12 テルモ株式会社 Circulation device and control method thereof
US9968724B2 (en) 2013-04-01 2018-05-15 Terumo Kabushiki Kaisha Circulation apparatus and method for controlling same
US10850019B2 (en) 2013-04-01 2020-12-01 Terumo Kabushiki Kaisha Circulation apparatus and method for controlling the same
US10589015B2 (en) 2014-10-20 2020-03-17 The Regents Of The University Of Michigan Gated-concentric artificial lung
JP2017018618A (en) * 2016-09-01 2017-01-26 テルモ株式会社 Circulation apparatus and method of controlling the same
WO2019246057A1 (en) * 2018-06-20 2019-12-26 The Regents Of The University Of Michigan Smart artificial lung and perfusion systems

Similar Documents

Publication Publication Date Title
US6371113B1 (en) Zero flow pause during volume ventilation
US5572993A (en) Apparatus for assisting in ventilating the lungs of a patient
US8695593B2 (en) Weaning and decision support system for mechanical ventilation
US5807737A (en) Heart and lung support assembly
JP2001286564A5 (en)
US6581597B2 (en) High-frequency oscillation artificial respiration apparatus
AU1887395A (en) Control of life support systems
AU2015270508B2 (en) Ventilation system with mechanical ventilation and extracorporeal blood gas exchange
JPH105337A (en) Artificial respiration instrument for medical treatment
JPH0924099A (en) Artificial breathing device, and control method for artificial breathing device
WO1992000777A1 (en) Automated gas delivery system for blood gas exchange devices
CN114177451B (en) Control method for single-breathing cycle pressure-capacity double-control mode of breathing machine
CN115715211A (en) Artificial ventilation system and related control method
CN111991663A (en) 3-connection intelligent system for automatically providing oxygen treatment scheme
JPH08182758A (en) Automatic control apparatus for artificial lung
Chapman et al. A feedback controller for ventilatory therapy
EP1455877A1 (en) Pressure-volume curve monitoring device
US20220249759A1 (en) Control system
KR100558088B1 (en) Artificial respiration
JPH11206884A (en) Automatic weaning system for respirator applying fuzzy theory control and record medium recorded with automatic weaning program
CN113577491B (en) Frequency self-adjusting intelligent Susheng device
JP3767329B2 (en) Computer-readable recording medium on which high-frequency ventilator and its operation control program are recorded
CN216358742U (en) Frequency self-adjusting intelligent sunliving device
Lohse et al. ROBUST CONTROL OF OXYGEN SATURATION DURING MECHANICAL VENTILATION
WO2022118931A1 (en) Monitoring apparatus and assisted circulation apparatus