JPH08182282A - Permanent magnetic excitation synchronous motor for vehicle - Google Patents

Permanent magnetic excitation synchronous motor for vehicle

Info

Publication number
JPH08182282A
JPH08182282A JP6324271A JP32427194A JPH08182282A JP H08182282 A JPH08182282 A JP H08182282A JP 6324271 A JP6324271 A JP 6324271A JP 32427194 A JP32427194 A JP 32427194A JP H08182282 A JPH08182282 A JP H08182282A
Authority
JP
Japan
Prior art keywords
permanent magnet
synchronous motor
excitation synchronous
outer rotor
rotor yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6324271A
Other languages
Japanese (ja)
Other versions
JP3133224B2 (en
Inventor
Koichi Matsuoka
孝一 松岡
Shintaro Oe
晋太郎 大江
Keiichiro Kondo
圭一郎 近藤
Toshiro Hasebe
寿郎 長谷部
Shigetomo Shiraishi
茂智 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Railway Technical Research Institute
Original Assignee
Toshiba Corp
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Railway Technical Research Institute filed Critical Toshiba Corp
Priority to JP06324271A priority Critical patent/JP3133224B2/en
Publication of JPH08182282A publication Critical patent/JPH08182282A/en
Application granted granted Critical
Publication of JP3133224B2 publication Critical patent/JP3133224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Brushless Motors (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE: To suppress the increase in loss due to high harmonics and the temperature increase of a permanent magnet and at the same time improve motor efficiency by setting the gap dimension between a stator core and the permanent magnet and the ratio of the opening width of a slot to the width of a core gear part to values within each specific limited range. CONSTITUTION: The gap length between a permanent magnet and a stator core is set to 2.5mm or less and the gear width of the stator core is at least doubled as compared with a slot width to set the magnet temperature increase of the permanent magnet mounted to an outer rotor yoke to 20K or less. On the other hand, the gap length is set to 5mm or less to avoid the increased size of a motor due to the increase in the core length and the slot width of a gear width is set to four times larger than the slot width or less to eliminate the trouble in terms of manufacture of the stator due to the increase in slot depth, thus suppressing the increase in loss due to high harmonics and temperature increase of the permanent magnet and improving the motor efficiency within a range which is reasonable for the slot and an armature coil without increasing the size of the motor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば鉄道車両等に使
用される永久磁石励磁同期電動機に係り、特に空間高調
波や時間高調波による損失の増加や永久磁石の昇温を抑
制して、効率を高められるようにした車両用永久磁石励
磁同期電動機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet excitation synchronous motor used in, for example, railway vehicles, and in particular, it suppresses increase in loss due to spatial harmonics and time harmonics and temperature rise of permanent magnets. The present invention relates to a permanent magnet excitation synchronous motor for a vehicle, which can improve efficiency.

【0002】[0002]

【従来の技術】一般に、例えば鉄道車両等の車輪を電動
機により直接駆動する方式においては、アウターロータ
ヨークに取り付けられた永久磁石を界磁とし、ステータ
鉄心にスロットを有する永久磁石励磁同期電動機が、多
く使用されている。
2. Description of the Related Art Generally, for example, in a method of directly driving a wheel of a railway vehicle by an electric motor, many permanent magnet synchronous synchronous motors having a permanent magnet attached to an outer rotor yoke as a field and a stator iron core having a slot. in use.

【0003】図11はこの種の従来の鉄道車両用永久磁
石励磁同期電動機の構成例を示す断面図、図12は同鉄
道車両用永久磁石励磁同期電動機の構成例を示す部分断
面図である。
FIG. 11 is a sectional view showing a structural example of a conventional permanent magnet excited synchronous motor for a railroad vehicle, and FIG. 12 is a partial sectional view showing a structural example of the same permanent magnet excited synchronous motor for a railway vehicle.

【0004】すなわち、鉄道車両用永久磁石励磁同期電
動機は、図11および図12に示すように、台車枠1に
模式的に示した弾性部材である軸バネ2を介して直接固
定された回転しない車軸3に、直接、またはスリーブ
(図示せず)等を介して間接的に積層されたステータ鉄
心4を固定し、このステータ鉄心4にはスロット5と歯
6を構成し、かつこのスロット5には電機子コイル7を
配置して電機子が構成されている。
That is, as shown in FIGS. 11 and 12, a permanent magnet excitation synchronous motor for a railway vehicle is fixed directly via a shaft spring 2 which is an elastic member schematically shown in a bogie frame 1 and does not rotate. A stator core 4 laminated directly or indirectly via a sleeve (not shown) or the like is fixed to the axle 3, and slots 5 and teeth 6 are formed in the stator core 4 and The armature is constructed by arranging the armature coil 7.

【0005】また、上記車軸3にベアリング8を介して
設置された車輪9に、磁性材からなるアウターロータヨ
ーク10を直接固定し、さらにこのアウターロータヨー
ク10に、界磁となる永久磁石11を固定して構成され
ている。
An outer rotor yoke 10 made of a magnetic material is directly fixed to a wheel 9 installed on the axle 3 via a bearing 8, and a permanent magnet 11 serving as a field is fixed to the outer rotor yoke 10. Is configured.

【0006】ところで、このような鉄道車両用永久磁石
励磁同期電動機においては、永久磁石11を界磁として
使用する場合、永久磁石11とステータ鉄心4との間の
ギャップ寸法gが小さければ小さい程、永久磁石11の
動作磁束密度が大きくなり、電動機が小形軽量となる。
By the way, in such a permanent magnet excitation synchronous motor for a railway vehicle, when the permanent magnet 11 is used as a field, the smaller the gap dimension g between the permanent magnet 11 and the stator core 4, the smaller the The operating magnetic flux density of the permanent magnet 11 increases, and the electric motor becomes small and lightweight.

【0007】しかしながら、余りギャップを小さくし過
ぎると、吸引力の極端な増大を招いたり、組み立てが困
難になるため、一般的には、車両用の誘導電動機並みの
1.5mm〜2mm前後のギャップ寸法としている。
However, if the gap is made too small, the suction force will be extremely increased and the assembly will be difficult. Therefore, in general, a gap of about 1.5 mm to 2 mm, which is the same as that of an induction motor for a vehicle, is created. The dimensions are used.

【0008】また、鉄道車両用永久磁石励磁同期電動機
の駆動電源としては、高耐圧のGTOやIGBTといっ
たようなパワーデバイスを用いたインバータ(図示せ
ず)が使用されている。
An inverter (not shown) using a power device such as a high breakdown voltage GTO or IGBT is used as a drive power source of a permanent magnet excitation synchronous motor for a railway vehicle.

【0009】しかしながら、現在のところ、このような
高耐圧形のパワーデバイスでは高周波化に限界があり、
運転周波数によっては比較的低次の高調波電流が含有し
ていることが知られている。
However, at present, there is a limit to the high frequency in such a high breakdown voltage type power device,
It is known that a relatively low order harmonic current is contained depending on the operating frequency.

【0010】ところが、このような鉄道車両用永久磁石
励磁同期電動機においては、ステータ鉄心4にスロット
5が設けられているため、永久磁石11の表面では、ス
ロット5の対向する位置と歯6の対向する位置でパーミ
アンスが変化し、磁束密度分布に脈動が発生する。
However, in such a permanent magnet excitation synchronous motor for a railroad vehicle, since the stator iron core 4 is provided with the slots 5, on the surface of the permanent magnet 11, the positions where the slots 5 face each other and the teeth 6 face each other. The permeance changes depending on the position, and pulsation occurs in the magnetic flux density distribution.

【0011】図13は従来の鉄道車両用永久磁石励磁同
期電動機における断面磁束分布解析結果の一例を示す概
要図、図14は同鉄道車両用永久磁石励磁同期電動機に
おける永久磁石表面11の磁束密度分布解析結果の一例
を示す概要図である。
FIG. 13 is a schematic diagram showing an example of a cross-sectional magnetic flux distribution analysis result in a conventional railcar permanent magnet excitation synchronous motor, and FIG. 14 is a magnetic flux density distribution on the permanent magnet surface 11 in the same railroad vehicle permanent magnet excitation synchronous motor. It is a schematic diagram which shows an example of an analysis result.

【0012】このような永久磁石11の表面における大
きな磁束脈動は、永久磁石11に渦電流を発生し、渦電
流ロスによって永久磁石11が発熱し、高速鉄道に対応
するような回転数、例えば1000rpm以上の領域で
は、摂氏100度以上の温度上昇となったり、損失の増
大によって効率が低下する原因となっている。
Such a large magnetic flux pulsation on the surface of the permanent magnet 11 generates an eddy current in the permanent magnet 11, and the permanent magnet 11 generates heat due to an eddy current loss, and the rotation speed corresponds to a high-speed railway, for example, 1000 rpm. In the above range, the temperature rises by 100 degrees Celsius or more, and the increase in loss causes the efficiency to decrease.

【0013】また、最近実用化が進んできているNd−
Fe−B系の永久磁石は、極めて高いエネルギー積によ
って機器の小形化が可能であるが、温度特性が悪く、高
耐熱のものでも摂氏150度以上の温度では特性が劣化
し、最悪の場合には減磁してしまうという問題点があ
る。
In addition, Nd- which has been recently put into practical use
Fe-B based permanent magnets can be downsized due to their extremely high energy product, but they have poor temperature characteristics, and even with high heat resistance, the characteristics deteriorate at temperatures above 150 degrees Celsius. Has the problem of being demagnetized.

【0014】さらに、インバータで駆動する場合、低次
の高調波電流によって同期回転数以外の回転磁界が発生
し、これは見かけ上、主磁束全体を脈動させることとな
る。その結果、永久磁石11のみならず、アウターロー
タヨーク10も含めた回転子全体に渦電流ロスが発生
し、温度上昇と共に効率の低下を招くという問題点があ
る。
Furthermore, when driven by an inverter, a rotating magnetic field other than the synchronous rotation speed is generated by the low-order harmonic current, which apparently causes the entire main magnetic flux to pulsate. As a result, eddy current loss occurs not only in the permanent magnet 11 but also in the entire rotor including the outer rotor yoke 10, and there is a problem in that efficiency is lowered as temperature rises.

【0015】[0015]

【発明が解決しようとする課題】以上のように、従来の
車両用永久磁石励磁同期電動機においては、空間高調波
や時間高調波によって損失の増加や永久磁石の昇温が発
生し、効率が低いという問題があった。
As described above, in the conventional vehicle permanent magnet excitation synchronous motor, the loss is increased and the temperature of the permanent magnet is increased due to the spatial harmonics and the time harmonics, and the efficiency is low. There was a problem.

【0016】本発明の目的は、空間高調波や時間高調波
による損失の増加や永久磁石の昇温を抑制して、効率を
高めることが可能な車両用永久磁石励磁同期電動機を提
供することにある。
An object of the present invention is to provide a permanent magnet excitation synchronous motor for a vehicle capable of suppressing the increase of loss due to space harmonics and time harmonics and the temperature rise of the permanent magnets to improve the efficiency. is there.

【0017】[0017]

【課題を解決するための手段】上記の目的を達成するた
めに、台車枠に軸バネ等の弾性部材を介して直接固定さ
れた回転しない車軸に、直接、または間接的に積層され
たステータ鉄心を固定し、かつ当該ステータ鉄心に設け
られたスロット内に電機子コイルを配置してなる電機子
と、車軸にベアリングを介して設置された車輪に直接固
定された磁性材からなるアウターロータヨークと、当該
アウターロータヨークに固定された界磁となる永久磁石
とから構成される車両用永久磁石励磁同期電動機におい
て、まず、請求項1に係る発明では、ステータ鉄心と永
久磁石との間のギャップ寸法を2.5mm〜5mmの範
囲とし、かつスロットの開口幅と鉄心歯部の幅との比を
2〜4の範囲として成る。
To achieve the above object, a stator core directly or indirectly laminated on a non-rotating axle fixed directly to a bogie frame via an elastic member such as a shaft spring. And an armature in which an armature coil is arranged in a slot provided in the stator iron core, and an outer rotor yoke made of a magnetic material that is directly fixed to a wheel installed through a bearing on an axle, In a permanent magnet excitation synchronous motor for a vehicle, comprising a permanent magnet serving as a magnetic field fixed to the outer rotor yoke, first, in the invention according to claim 1, the gap size between the stator core and the permanent magnet is set to 2 It is set in the range of 0.5 mm to 5 mm, and the ratio of the opening width of the slot and the width of the iron core tooth portion is set in the range of 2 to 4.

【0018】また、請求項2に係る発明では、永久磁石
を周方向および軸方向に複数個に分割し、かつ当該分割
面に絶縁を施し接着して成る。さらに、請求項3に係る
発明では、永久磁石のギャップ側に、積層された電磁鋼
板からなる補助磁極を設けて成る。
In the invention according to claim 2, the permanent magnet is divided into a plurality of pieces in the circumferential direction and the axial direction, and the divided surfaces are insulated and bonded. Further, in the invention according to claim 3, an auxiliary magnetic pole made of laminated electromagnetic steel plates is provided on the gap side of the permanent magnet.

【0019】ここで、特に上記アウターロータヨークの
内径側の径方向の一部を、積層された電磁鋼板により構
成することが望ましい。また、上記アウターロータヨー
クの一部を、隣り合う永久磁石の間をブリッジするよう
に積層された電磁鋼板により構成することが望ましい。
Here, it is particularly preferable that a part of the outer rotor yoke on the inner diameter side in the radial direction is made of laminated electromagnetic steel sheets. Further, it is desirable that a part of the outer rotor yoke is made of electromagnetic steel sheets laminated so as to bridge between adjacent permanent magnets.

【0020】さらに、上記永久磁石を取り囲むように巻
回された短絡コイルを設けることが望ましい。さらにま
た、上記補助磁極に、軸方向に貫通する複数本の良導体
からなるダンパーバーを設け、永久磁石の軸方向両端で
短絡させることが望ましい。
Further, it is desirable to provide a short-circuit coil wound so as to surround the permanent magnet. Furthermore, it is preferable that a damper bar made of a plurality of good conductors penetrating in the axial direction is provided on the auxiliary magnetic pole, and short-circuited at both axial ends of the permanent magnet.

【0021】[0021]

【作用】従って、まず、請求項1に係る発明の車両用永
久磁石励磁同期電動機においては、永久磁石表面におけ
る磁束脈動は、永久磁石表面とステータ鉄心との間の距
離、すなわちギャップが大きい程小さくなり、ステータ
鉄心のスロット幅が小さく、歯幅が大きい程小さくなる
が、ギャップ寸法が大きくなればなる程、一定の磁束量
を確保するために永久磁石の厚さを増大する必要があ
り、電動機が大形化してしまい、またスロット幅を小さ
く、歯幅を大きくするためには、ステータ鉄心の径を大
きくするか、スロット深さを深くする必要があり、電動
機構成上限界があるが、ステータ鉄心と永久磁石との間
のギャップ寸法を2.5mm〜5mmの範囲とし、かつ
スロットの開口幅と鉄心歯部の幅との比を2〜4の範囲
とすることにより、電動機が大形化せずに、スロットや
電機子コイルの構成に無理がない範囲で、永久磁石の昇
温を許容できる値に低減して、損失を減少させることが
できる。
Therefore, first, in the permanent magnet excitation synchronous motor for a vehicle according to the first aspect of the invention, the magnetic flux pulsation on the permanent magnet surface decreases as the distance between the permanent magnet surface and the stator iron core, that is, the gap increases. The smaller the slot width of the stator core and the larger the tooth width, the smaller it becomes. However, as the gap size becomes larger, it is necessary to increase the thickness of the permanent magnet in order to secure a certain amount of magnetic flux. However, in order to reduce the slot width and increase the tooth width, it is necessary to increase the diameter of the stator iron core or increase the slot depth. By setting the gap dimension between the iron core and the permanent magnet to be in the range of 2.5 mm to 5 mm, and the ratio of the opening width of the slot to the width of the iron core tooth portion being in the range of 2 to 4, Without motive large in size, in the range not unreasonable to the configuration of the slots and the armature coils, to reduce to a value acceptable Atsushi Nobori of the permanent magnet, it is possible to reduce the loss.

【0022】また、請求項2に係る発明の車両用永久磁
石励磁同期電動機においては、永久磁石中で発生する渦
電流は、スロット位置と対応する永久磁石位置に発生す
るので、軸方向に長い渦電流となるが、永久磁石を軸方
向に複数個に分割することにより、渦電流パスが等価的
に長くなるため、抵抗値が増大して発生ロスが減少す
る。さらに、アウターロータヨークの回転によって、永
久磁石とスロットとの相対位置関係が変わるが、永久磁
石を周方向に複数個に分割することにより、等価的に抵
抗値が増大して発生ロスが減少する。
Further, in the vehicle permanent magnet excitation synchronous motor according to the second aspect of the invention, since the eddy current generated in the permanent magnet is generated at the permanent magnet position corresponding to the slot position, the eddy current that is long in the axial direction is generated. Although it becomes an electric current, by dividing the permanent magnet into a plurality of pieces in the axial direction, the eddy current path becomes equivalently long, so that the resistance value increases and the generated loss decreases. Further, the relative positional relationship between the permanent magnet and the slot changes due to the rotation of the outer rotor yoke, but by dividing the permanent magnet into a plurality of pieces in the circumferential direction, the resistance value equivalently increases and the loss generated decreases.

【0023】これらの作用により、永久磁石の昇温を抑
えて、損失を低減させることができる。さらに、請求項
3に係る発明の車両用永久磁石励磁同期電動機において
は、永久磁石のギャップ側に、積層された電磁鋼板から
なる補助磁極を設けることにより、ステータ鉄心のスロ
ットによる磁束脈動は、この補助磁極内で平滑化されて
しまうため、永久磁石表面に到達するころには、ほとん
どリップル分がなくなってしまう。さらに、補助磁極と
ステータ鉄心との間のギャップを小さくしても、この効
果は変わらないため、永久磁石の厚さを薄くしても同一
の磁束密度が得られるので、電動機がほとんど大形化す
ることなく、永久磁石の昇温を抑えて、損失を低減させ
ることができる。
By these actions, the temperature rise of the permanent magnet can be suppressed and the loss can be reduced. Further, in the permanent magnet excitation synchronous motor for a vehicle according to the third aspect of the invention, by providing an auxiliary magnetic pole made of laminated electromagnetic steel sheets on the gap side of the permanent magnet, the magnetic flux pulsation due to the slots of the stator core is Since it is smoothed in the auxiliary magnetic pole, there is almost no ripple when it reaches the surface of the permanent magnet. Furthermore, even if the gap between the auxiliary magnetic pole and the stator core is reduced, this effect does not change. Therefore, even if the thickness of the permanent magnet is reduced, the same magnetic flux density can be obtained. Without doing so, the temperature rise of the permanent magnet can be suppressed and the loss can be reduced.

【0024】一方、請求項4、または請求項5に係る発
明の車両用永久磁石励磁同期電動機においては、インバ
ータによって発生する低次の時間高調波がもとで見かけ
上主磁束が脈動するが、その脈動磁界によって発生する
渦電流ロスの多くは、永久磁石の体積固有抵抗に比べて
アウターロータヨークの体積固有抵抗が1桁小さいた
め、渦電流が流れ易いことから、アウターロータヨーク
内で発生するが、アウターロータヨークの一部を、積層
された電磁鋼板により構成することにより、磁束脈動分
は交流磁気抵抗の小さい電磁鋼板内を通るため、アウタ
ーロータヨーク内での渦電流ロスが減少し、ひいては永
久磁石の昇温を抑えて、損失を低減させることができ
る。
On the other hand, in the vehicle permanent magnet excitation synchronous motor of the invention according to claim 4 or 5, although the main magnetic flux apparently pulsates due to the low-order time harmonics generated by the inverter, Most of the eddy current loss generated by the pulsating magnetic field is generated in the outer rotor yoke because the volume specific resistance of the outer rotor yoke is one digit smaller than the volume specific resistance of the permanent magnet, and therefore eddy currents easily flow. By constructing a part of the outer rotor yoke with laminated electromagnetic steel sheets, the magnetic flux pulsation passes through the electromagnetic steel sheet with low AC magnetic resistance, so the eddy current loss in the outer rotor yoke is reduced, and eventually the permanent magnet The temperature rise can be suppressed and the loss can be reduced.

【0025】また、請求項6に係る発明の車両用永久磁
石励磁同期電動機においては、インバータによって発生
する低次の時間高調波がもとで見かけ上主磁束が脈動す
るが、永久磁石を取り囲むように巻回された短絡コイル
を設けることにより、その脈動磁界によって短絡コイル
に脈動磁界を打ち消す方向の短絡電流が流れ、結果的に
永久磁石やアウターロータヨークに脈動磁界が作用しな
くなるため、渦電流ロスが減少し、永久磁石の昇温を抑
えて、損失を低減させることができる。
In the vehicle permanent magnet excitation synchronous motor of the invention according to claim 6, the main magnetic flux apparently pulsates due to the low-order time harmonics generated by the inverter, but the permanent magnet is surrounded. By providing a short-circuit coil wound around the pulsating magnetic field, a short-circuit current in the direction that cancels the pulsating magnetic field flows in the short-circuit coil due to the pulsating magnetic field. Can be reduced, the temperature rise of the permanent magnet can be suppressed, and the loss can be reduced.

【0026】さらに、請求項7に係る発明の車両用永久
磁石励磁同期電動機においては、請求項3に係る発明の
補助磁極に、軸方向に貫通する複数本の良導体よりなる
ダンパーバーを設け、永久磁石の軸方向両端で短絡させ
ることにより、請求項6に係る発明の場合と同様に、イ
ンバータによって発生する低次の時間高調波による主磁
束脈動を、補助磁極に入る前に打ち消すことで、永久磁
石内やアウターロータヨークのみならず、補助磁極内で
の鉄損をも減少させることができるため、回転子全体の
昇温を抑えて、損失を低減させることができる。
Further, in the vehicle permanent magnet excitation synchronous motor of the invention according to claim 7, the auxiliary magnetic pole of the invention according to claim 3 is provided with a damper bar made of a plurality of good conductors penetrating in the axial direction, By short-circuiting both ends in the axial direction of the magnet, as in the case of the invention according to claim 6, the main magnetic flux pulsation due to the low-order time harmonics generated by the inverter is canceled before entering the auxiliary magnetic pole. Since iron loss can be reduced not only in the magnet and the outer rotor yoke but also in the auxiliary magnetic pole, it is possible to suppress the temperature rise of the entire rotor and reduce the loss.

【0027】[0027]

【実施例】以下、本発明の実施例について図面を参照し
て詳細に説明する。なお、以下の説明では、鉄道車両用
の80kWの永久磁石励磁同期電動機を設計した場合の
例に基づいて述べる。
Embodiments of the present invention will now be described in detail with reference to the drawings. The following description will be given based on an example in the case of designing an 80 kW permanent magnet excitation synchronous motor for railway vehicles.

【0028】(第1の実施例)本実施例による鉄道車両
用永久磁石励磁同期電動機の構成は、前述した図11お
よび図12とほとんど同様であり、次のような点のみが
異なっている。
(First Embodiment) The construction of a permanent magnet excitation synchronous motor for a railway vehicle according to the present embodiment is almost the same as that of FIGS. 11 and 12 described above, except for the following points.

【0029】すなわち、本実施例の車両用永久磁石励磁
同期電動機は、前記ステータ鉄心4と永久磁石11との
間のギャップ寸法を2.5mm〜5mmの範囲とし、か
つスロット5の開口幅と鉄心歯6部の幅との比を2〜4
の範囲として成っている。
That is, in the vehicle permanent magnet excitation synchronous motor of this embodiment, the gap size between the stator iron core 4 and the permanent magnet 11 is in the range of 2.5 mm to 5 mm, and the opening width of the slot 5 and the iron core. The ratio with the width of 6 teeth is 2 to 4
Made up of a range of.

【0030】次に、以上のように構成した本実施例の鉄
道車両用永久磁石励磁同期電動機の作用について説明す
る。永久磁石11表面における磁束脈動は、永久磁石1
1表面とステータ鉄心4との間の距離、すなわちギャッ
プが大きい程小さくなり、ステータ鉄心4のスロット5
の幅が小さく、歯6の幅が大きい程小さくなる。しかし
ながら、この永久磁石11とステータ鉄心4との間のギ
ャップ寸法が大きくなればなる程、一定の磁束量を確保
するために永久磁石11の厚さを増大する必要があり、
電動機が大形化してしまう。また、スロット5の幅を小
さく、歯6の幅を大きくするためには、ステータ鉄心4
の径を大きくするか、スロット5の深さを深くする必要
があり、電動機構成上限界がある。
Next, the operation of the permanent magnet excitation synchronous motor for a railway vehicle according to this embodiment having the above-mentioned structure will be described. The magnetic flux pulsation on the surface of the permanent magnet 11 is
1 The distance between the surface and the stator core 4, that is, the larger the gap, the smaller the slot 5 of the stator core 4.
Is smaller and the width of the tooth 6 is larger, the smaller. However, as the size of the gap between the permanent magnet 11 and the stator core 4 increases, the thickness of the permanent magnet 11 needs to be increased in order to secure a constant amount of magnetic flux.
The electric motor becomes larger. Further, in order to reduce the width of the slot 5 and increase the width of the teeth 6, the stator core 4
It is necessary to increase the diameter of the slot or to increase the depth of the slot 5, which limits the configuration of the electric motor.

【0031】この点、本実施例の鉄道車両用永久磁石励
磁同期電動機においては、ステータ鉄心4と永久磁石1
1との間のギャップ寸法を2.5mm〜5mmの範囲と
し、かつスロット5の開口幅と鉄心歯6部の幅との比を
2〜4の範囲としていることにより、電動機が大形化せ
ずに、スロット5や電機子コイル7の構成に無理がない
範囲で、永久磁石11の昇温を許容できる値に低減し
て、損失を減少させることができる。
In this respect, in the permanent magnet excitation synchronous motor for a railway vehicle of this embodiment, the stator iron core 4 and the permanent magnet 1 are used.
The size of the electric motor can be increased by setting the gap dimension with respect to 1 to be in the range of 2.5 mm to 5 mm and the ratio of the opening width of the slot 5 to the width of the iron core teeth 6 being in the range of 2 to 4. In addition, the temperature rise of the permanent magnet 11 can be reduced to an allowable value and the loss can be reduced within a range where the configurations of the slot 5 and the armature coil 7 are not unreasonable.

【0032】図1は永久磁石11とステータ鉄心4との
間のギャップ寸法に対する永久磁石11温度上昇と鉄心
長の関係を示す特性図、図2はスロット5の開口幅Sと
歯6の幅Tとの比(T/S)に対する永久磁石11温度
上昇とスロット5深さの関係を示す特性図である。
FIG. 1 is a characteristic diagram showing the relationship between the temperature rise of the permanent magnet 11 and the iron core length with respect to the gap size between the permanent magnet 11 and the stator iron core 4, and FIG. 2 is the opening width S of the slot 5 and the width T of the tooth 6. FIG. 6 is a characteristic diagram showing the relationship between the temperature rise of the permanent magnet 11 and the depth of the slot 5 with respect to the ratio (T / S).

【0033】すなわち、図1および図2から、永久磁石
11の昇温を20K以上とするなら、永久磁石11とス
テータ鉄心4との間のギャップ寸法がおおよそ2.5m
m以上で、スロット5の開口幅Sと歯6の幅Tとの比
(T/S)は2以上とするのが望ましいことがわかる。
That is, from FIGS. 1 and 2, if the temperature rise of the permanent magnet 11 is set to 20 K or more, the gap size between the permanent magnet 11 and the stator core 4 is about 2.5 m.
It can be seen that it is desirable that the ratio (T / S) of the opening width S of the slot 5 and the width T of the tooth 6 is 2 or more when m or more.

【0034】一方、永久磁石11とステータ鉄心4との
間のギャップ寸法を5mm以上とすると、必要鉄心長さ
が極端に増加する傾向にある。そして、この現象は、鉄
道車両用永久磁石励磁同期電動機を設計する場合に、鉄
道の限界寸法の関係よりアウターロータヨーク10の外
径寸法を最大にとった状態で固定し、外側より寸法を決
定していくために、「ギャップ増加→永久磁石11厚さ
増加→ステータ鉄心4外径減少→ステータ鉄心4長さ増
大」の関係から決まり、これより極端な電動機の大形化
を避けるためには、永久磁石11とステータ鉄心4との
間のギャップ寸法を5mm以下に抑えることが望まし
い。
On the other hand, when the gap size between the permanent magnet 11 and the stator iron core 4 is 5 mm or more, the required iron core length tends to be extremely increased. When designing a permanent magnet excitation synchronous motor for a railway vehicle, this phenomenon is fixed in a state where the outer diameter of the outer rotor yoke 10 is maximized in view of the limit dimensions of the railway, and the dimension is determined from the outside. To increase the gap, increase the thickness of the permanent magnet 11 → decrease the outer diameter of the stator core 4 → increase the length of the stator iron core 4. It is desirable to keep the gap dimension between the permanent magnet 11 and the stator core 4 to 5 mm or less.

【0035】また、スロット5の開口幅Sと歯6の幅T
との比(T/S)を4以上とすると、スロット5の深さ
が50mmを超え、ステータの製作に支障をきたすこと
が考えられるため、スロット5の開口幅Sと歯6の幅T
との比(T/S)を4以下に抑えることが望ましい。
Further, the opening width S of the slot 5 and the width T of the tooth 6 are
When the ratio (T / S) to 4 or more is set to 4 or more, the depth of the slot 5 exceeds 50 mm, which may hinder the manufacture of the stator. Therefore, the opening width S of the slot 5 and the width T of the tooth 6 are
It is desirable to keep the ratio (T / S) to 4 or less.

【0036】図3は、以上のような条件により、永久磁
石11とステータ鉄心4との間のギャップ寸法を4m
m、スロット5の開口幅Sと歯6の幅Tとの比(T/
S)を約2.8とした場合の永久磁石11表面の磁束密
度分布の解析結果を示す特性図である。
FIG. 3 shows that the gap size between the permanent magnet 11 and the stator core 4 is 4 m under the above conditions.
m, the ratio of the opening width S of the slot 5 to the width T of the tooth 6 (T /
It is a characteristic view which shows the analysis result of the magnetic flux density distribution on the surface of the permanent magnet 11 when (S) is set to about 2.8.

【0037】上述したように、本実施例の鉄道車両用永
久磁石励磁同期電動機では、ステータ鉄心4と永久磁石
11との間のギャップ寸法を2.5mm〜5mmの範囲
とし、かつスロット5の開口幅と鉄心歯6部の幅との比
を2〜4の範囲としたので、電動機が大形化せずに、ス
ロット5や電機子コイル7の構成に無理がない範囲で、
永久磁石11の昇温を許容できる値に低減して、損失を
減少させることができる。
As described above, in the railcar permanent magnet excitation synchronous motor of the present embodiment, the gap size between the stator core 4 and the permanent magnet 11 is in the range of 2.5 mm to 5 mm, and the opening of the slot 5 is formed. Since the ratio of the width to the width of the iron core teeth 6 is set in the range of 2 to 4, the electric motor does not increase in size and the structure of the slot 5 and the armature coil 7 is within a reasonable range.
Loss can be reduced by reducing the temperature rise of the permanent magnet 11 to an acceptable value.

【0038】これにより、空間高調波や時間高調波によ
る損失の増加や永久磁石11の昇温を抑制して、極めて
高効率な鉄道車両用永久磁石励磁同期電動機を得ること
が可能となる。
As a result, it is possible to obtain an extremely efficient permanent magnet excitation synchronous motor for a railroad vehicle by suppressing an increase in loss due to space harmonics and time harmonics and increasing the temperature of the permanent magnet 11.

【0039】(第2の実施例)図4は、本実施例による
鉄道車両用永久磁石励磁同期電動機における永久磁石部
分の構成例を示す部分斜視図であり、図11および図1
2と同一要素には同一符号を付してその説明を省略し、
ここでは異なる部分についてのみ述べる。
(Second Embodiment) FIG. 4 is a partial perspective view showing a constitutional example of a permanent magnet portion in a permanent magnet excitation synchronous motor for a railway vehicle according to this embodiment, and FIG. 11 and FIG.
The same elements as those of 2 are given the same reference numerals and the description thereof will be omitted.
Here, only different parts will be described.

【0040】すなわち、本実施例の車両用永久磁石励磁
同期電動機は、前記永久磁石11を周方向および軸方向
に複数個に分割し、この分割面に絶縁を施した後に接着
した構成としている。
That is, the permanent magnet excitation synchronous motor for a vehicle of this embodiment has a structure in which the permanent magnet 11 is divided into a plurality of pieces in the circumferential direction and the axial direction, and the divided surfaces are insulated and then bonded.

【0041】次に、以上のように構成した本実施例の鉄
道車両用永久磁石励磁同期電動機の作用について説明す
る。永久磁石11中で発生する渦電流は、スロット5位
置と対応する永久磁石11位置に発生するので、軸方向
に長い渦電流となるが、この点、本実施例の鉄道車両用
永久磁石励磁同期電動機においては、永久磁石11を軸
方向に複数個に分割している(細分化している)ことに
より、一つ一つの渦電流パスが小さくなり、鎖交磁束量
が減少し、さらに全体としての渦電流パスが等価的に長
くなるため、抵抗値が増大して発生ロスが減少する。
Next, the operation of the permanent magnet excitation synchronous motor for a railway vehicle according to this embodiment having the above-mentioned structure will be described. Since the eddy current generated in the permanent magnet 11 is generated at the position of the permanent magnet 11 corresponding to the position of the slot 5, it becomes a long eddy current in the axial direction. In the electric motor, the permanent magnet 11 is divided into a plurality of parts in the axial direction (subdivided), so that each eddy current path becomes smaller, the amount of interlinkage magnetic flux decreases, and further, as a whole. Since the eddy current path becomes equivalently long, the resistance value increases and the generated loss decreases.

【0042】さらに、アウターロータヨーク10の回転
によって、永久磁石11とスロット5との相対位置関係
が変わるが、この点、本実施例の鉄道車両用永久磁石励
磁同期電動機においては、永久磁石11を周方向に複数
個に分割している(細分化している)ことにより、等価
的に抵抗値が増大して発生ロスが減少する。
Further, the relative positional relationship between the permanent magnet 11 and the slot 5 changes due to the rotation of the outer rotor yoke 10. In this respect, in the permanent magnet excitation synchronous motor for a railway vehicle of this embodiment, the permanent magnet 11 is surrounded. By dividing (subdividing) into a plurality of parts in the direction, the resistance value equivalently increases and the generated loss decreases.

【0043】これらの作用により、永久磁石11の昇温
を抑えて、損失を低減させることができる。上述したよ
うに、本実施例の鉄道車両用永久磁石励磁同期電動機で
は、永久磁石11を周方向および軸方向に複数個に分割
し、この分割面に絶縁を施した後に接着するようにした
ので、渦電流パスが等価的に長くなるため、抵抗値が増
大して発生ロスが減少し、もって永久磁石11の昇温を
抑えて、損失を低減させることができる。
By these actions, the temperature rise of the permanent magnet 11 can be suppressed and the loss can be reduced. As described above, in the railcar permanent magnet excitation synchronous motor of the present embodiment, the permanent magnet 11 is divided into a plurality of pieces in the circumferential direction and the axial direction, and the divided surfaces are insulated and then bonded. Since the eddy current path becomes equivalently long, the resistance value increases and the generated loss decreases, so that the temperature rise of the permanent magnet 11 can be suppressed and the loss can be reduced.

【0044】これにより、空間高調波や時間高調波によ
る損失の増加や永久磁石11の昇温を抑制して、極めて
高効率な鉄道車両用永久磁石励磁同期電動機を得ること
が可能となる。
As a result, it is possible to obtain an extremely efficient permanent magnet excitation synchronous motor for a railroad vehicle by suppressing an increase in loss due to space harmonics and time harmonics and a temperature rise of the permanent magnet 11.

【0045】(第3の実施例)図5は、本実施例による
鉄道車両用永久磁石励磁同期電動機の構成例を示す部分
断面図であり、図11および図12と同一要素には同一
符号を付してその説明を省略し、ここでは異なる部分に
ついてのみ述べる。
(Third Embodiment) FIG. 5 is a partial cross-sectional view showing a structural example of a permanent magnet excitation synchronous motor for a railway vehicle according to this embodiment. The same elements as those in FIGS. 11 and 12 are designated by the same reference numerals. The description thereof will be omitted and only different parts will be described here.

【0046】すなわち、本実施例の車両用永久磁石励磁
同期電動機は、前記永久磁石11のギャップ側に、積層
された扇形の電磁鋼板からなる補助磁極12を設けた構
成としている。
That is, the permanent magnet excitation synchronous motor for a vehicle of this embodiment is constructed such that the auxiliary magnetic pole 12 made of laminated fan-shaped electromagnetic steel plates is provided on the gap side of the permanent magnet 11.

【0047】次に、以上のように構成した本実施例の鉄
道車両用永久磁石励磁同期電動機の作用について説明す
る。本実施例の鉄道車両用永久磁石励磁同期電動機にお
いては、永久磁石11のギャップ側に、積層された扇形
の電磁鋼板からなる補助磁極12を設けていることによ
り、補助磁極12とステータ鉄心4との間のギャップを
小さくして磁束の脈動が大きくなっても、透磁率と高い
電磁鋼板内ではすぐに平滑化されてしまい、永久磁石1
1の表面ではほとんど磁束脈動が無くなってしまう。さ
らに、磁気的なギャップが小さくなるので、永久磁石1
1の厚さを薄くしても同一の磁束密度が得られ、電動機
はほとんど大形化しないで、永久磁石11の昇温を抑制
して、損失を低減できる。
Next, the operation of the permanent magnet excitation synchronous motor for a railroad vehicle of this embodiment having the above-mentioned structure will be described. In the permanent magnet excitation synchronous motor for a railway vehicle of the present embodiment, the auxiliary magnetic pole 12 made of laminated fan-shaped electromagnetic steel plates is provided on the gap side of the permanent magnet 11, so that the auxiliary magnetic pole 12 and the stator core 4 are connected. Even if the gap between the two is reduced and the pulsation of the magnetic flux is increased, it is immediately smoothed in the magnetic steel sheet having high magnetic permeability, and the permanent magnet 1
The magnetic flux pulsation almost disappears on the surface of No. 1. Further, since the magnetic gap becomes smaller, the permanent magnet 1
Even if the thickness of 1 is thinned, the same magnetic flux density can be obtained, the motor is hardly increased in size, and the temperature rise of the permanent magnet 11 can be suppressed to reduce the loss.

【0048】図6は、本実施例の鉄道車両用永久磁石励
磁同期電動機における、永久磁石11の厚さを1/2、
ギャップ寸法を2mm、残りの部分を補助鉄心12とし
た場合の永久磁石11の表面磁束分布の解析結果を示す
特性図である。
FIG. 6 shows that the thickness of the permanent magnet 11 in the permanent magnet excitation synchronous motor for a railway vehicle of this embodiment is 1/2.
It is a characteristic view which shows the analysis result of the surface magnetic flux distribution of the permanent magnet 11 in case the gap dimension is 2 mm and the remaining part is the auxiliary iron core 12.

【0049】上述したように、本実施例の鉄道車両用永
久磁石励磁同期電動機では、永久磁石11のギャップ側
に、積層された扇形の電磁鋼板からなる補助磁極12を
設けるようにしたので、磁束脈動分は交流磁気抵抗の小
さい電磁鋼板内を通るため、アウターロータヨーク内で
の渦電流ロスが減少し、ひいては永久磁石の昇温を抑え
て、損失を低減させることができる。
As described above, in the permanent magnet excitation synchronous motor for a railroad vehicle of this embodiment, the auxiliary magnetic pole 12 made of laminated fan-shaped magnetic steel sheets is provided on the gap side of the permanent magnet 11, so that the magnetic flux. Since the pulsating component passes through the electromagnetic steel plate having a small AC magnetic resistance, the eddy current loss in the outer rotor yoke is reduced, and the temperature rise of the permanent magnet is suppressed, and the loss can be reduced.

【0050】これにより、空間高調波や時間高調波によ
る損失の増加や永久磁石11の昇温を抑制して、極めて
高効率な鉄道車両用永久磁石励磁同期電動機を得ること
が可能となる。
As a result, it is possible to obtain an extremely highly efficient permanent magnet excitation synchronous motor for railway vehicles by suppressing an increase in loss due to space harmonics and time harmonics and temperature rise of the permanent magnet 11.

【0051】(第4の実施例)図7は、本実施例による
鉄道車両用永久磁石励磁同期電動機の構成例を示す部分
断面図であり、図11および図12と同一要素には同一
符号を付してその説明を省略し、ここでは異なる部分に
ついてのみ述べる。
(Fourth Embodiment) FIG. 7 is a partial cross-sectional view showing a structural example of a permanent magnet excitation synchronous motor for a railway vehicle according to the present embodiment. The same elements as those in FIGS. 11 and 12 are designated by the same reference numerals. The description thereof will be omitted and only different parts will be described here.

【0052】すなわち、本実施例の車両用永久磁石励磁
同期電動機は、前記アウターロータヨーク10の内径側
の径方向の一部を、積層された電磁鋼板13により構成
している。
That is, in the vehicle permanent magnet excitation synchronous motor of this embodiment, a part of the outer rotor yoke 10 on the inner diameter side in the radial direction is formed by the laminated electromagnetic steel plates 13.

【0053】次に、以上のように構成した本実施例の鉄
道車両用永久磁石励磁同期電動機の作用について説明す
る。インバータによって駆動する場合に発生する低次の
時間高調波がもとで、主磁束よりも回転数の高い正回
転、または逆回転の回転磁界が発生し、これらの高調波
回転磁界は永久磁石11上では主磁束の時間脈動として
現れ、その脈動磁界によって発生する渦電流ロスの多く
は、永久磁石11の体積固有抵抗に比べてアウターロー
タヨーク10の体積固定抵抗が1桁小さいため、アウタ
ーロータヨーク10内で発生するが、この点、本実施例
の鉄道車両用永久磁石励磁同期電動機においては、アウ
ターロータヨーク10の内径側の径方向の一部を、積層
された電磁鋼板13により構成していることにより、主
磁束の時間脈動分は交流磁気抵抗の小さい積層電磁鋼板
13を通るため、アウターロータヨーク10内での渦電
流ロスが減少し、ひいては永久磁石11の昇温を抑え
て、損失を低減させることができる。
Next, the operation of the permanent magnet excitation synchronous motor for a railway vehicle according to this embodiment having the above-mentioned structure will be described. On the basis of the low-order time harmonics generated when driven by an inverter, a rotating magnetic field of normal rotation or reverse rotation having a higher rotation speed than the main magnetic flux is generated, and these harmonic rotating magnetic fields generate permanent magnets 11 In the above, most of the eddy current loss that appears as time pulsation of the main magnetic flux and is generated by the pulsating magnetic field is because the volume fixed resistance of the outer rotor yoke 10 is one order of magnitude smaller than the volume specific resistance of the permanent magnet 11. However, in this respect, in the permanent magnet excitation synchronous motor for a railway vehicle of the present embodiment, a part of the outer rotor yoke 10 on the inner diameter side in the radial direction is formed by the laminated electromagnetic steel plates 13. Since the time pulsation of the main magnetic flux passes through the laminated electromagnetic steel sheet 13 having a small AC magnetic resistance, the eddy current loss in the outer rotor yoke 10 is reduced, and By suppressing the Atsushi Nobori of the permanent magnet 11, it is possible to reduce the loss.

【0054】上述したように、本実施例の鉄道車両用永
久磁石励磁同期電動機では、アウターロータヨーク10
の内径側の径方向の一部を、積層された電磁鋼板13に
より構成するようにしたので、磁束脈動分は交流磁気抵
抗の小さい積層電磁鋼板13内を通るため、アウターロ
ータヨーク10内での渦電流ロスが減少し、ひいては永
久磁石11の昇温を抑えて、損失を低減させることがで
きる。
As described above, in the permanent magnet excitation synchronous motor for railway vehicles of this embodiment, the outer rotor yoke 10 is used.
Since a part of the radial direction on the inner diameter side of the electromagnetic wave is constituted by the laminated electromagnetic steel plates 13, the magnetic flux pulsation component passes through the laminated electromagnetic steel plates 13 having a small AC magnetic resistance, so that the vortex inside the outer rotor yoke 10 is generated. The current loss is reduced, and eventually the temperature rise of the permanent magnet 11 is suppressed, and the loss can be reduced.

【0055】これにより、空間高調波や時間高調波によ
る損失の増加や永久磁石11の昇温を抑制して、極めて
高効率な鉄道車両用永久磁石励磁同期電動機を得ること
が可能となる。
As a result, it is possible to obtain an extremely efficient permanent magnet excitation synchronous motor for a railroad vehicle by suppressing an increase in loss due to space harmonics or time harmonics and a temperature rise of the permanent magnet 11.

【0056】(第5の実施例)図8は、本実施例による
鉄道車両用永久磁石励磁同期電動機の構成例を示す部分
断面図であり、図11および図12と同一要素には同一
符号を付してその説明を省略し、ここでは異なる部分に
ついてのみ述べる。
(Fifth Embodiment) FIG. 8 is a partial cross-sectional view showing an example of the construction of a permanent magnet excitation synchronous motor for a railway vehicle according to this embodiment. The same elements as those in FIGS. 11 and 12 are designated by the same reference numerals. The description thereof will be omitted and only different parts will be described here.

【0057】すなわち、本実施例の車両用永久磁石励磁
同期電動機は、前記アウターロータヨーク10の一部
を、隣り合う永久磁石11の間をブリッジするように積
層された電磁鋼板13により構成している。
That is, in the vehicle permanent magnet excitation synchronous motor of this embodiment, a part of the outer rotor yoke 10 is formed by the electromagnetic steel plates 13 laminated so as to bridge between the adjacent permanent magnets 11. .

【0058】次に、以上のように構成した本実施例の鉄
道車両用永久磁石励磁同期電動機の作用について説明す
る。インバータによって駆動する場合に発生する低次の
時間高調波がもとで、主磁束よりも回転数の高い正回
転、または逆回転の回転磁界が発生し、これらの高調波
回転磁界は永久磁石11上では主磁束の時間脈動として
現れ、その脈動磁界によって発生する渦電流ロスの多く
は、永久磁石11の体積固有抵抗に比べてアウターロー
タヨーク10の体積固定抵抗が1桁小さいため、アウタ
ーロータヨーク10内で発生するが、この点、本実施例
の鉄道車両用永久磁石励磁同期電動機においては、アウ
ターロータヨーク10の一部を、隣り合う永久磁石11
の間をブリッジするように積層された電磁鋼板13によ
り構成していることにより、主磁束の時間脈動分は交流
磁気抵抗の小さい積層電磁鋼板13を通るため、アウタ
ーロータヨーク10内での渦電流ロスが減少し、ひいて
は永久磁石11の昇温を抑えて、損失を低減させること
ができる。
Next, the operation of the permanent magnet excitation synchronous motor for a railway vehicle according to this embodiment having the above-mentioned structure will be described. On the basis of the low-order time harmonics generated when driven by an inverter, a rotating magnetic field of normal rotation or reverse rotation having a higher rotation speed than the main magnetic flux is generated, and these harmonic rotating magnetic fields generate permanent magnets 11 In the above, most of the eddy current loss that appears as time pulsation of the main magnetic flux and is generated by the pulsating magnetic field is because the volume fixed resistance of the outer rotor yoke 10 is one order of magnitude smaller than the volume specific resistance of the permanent magnet 11. However, in this respect, in the permanent magnet excitation synchronous motor for a railway vehicle of this embodiment, a part of the outer rotor yoke 10 is provided with the adjacent permanent magnets 11.
Since the electromagnetic steel plates 13 are laminated so as to bridge between them, the time pulsation of the main magnetic flux passes through the laminated electromagnetic steel plates 13 having a small AC magnetic resistance, so that the eddy current loss in the outer rotor yoke 10 is reduced. Can be reduced, and by extension, the temperature rise of the permanent magnet 11 can be suppressed, and the loss can be reduced.

【0059】上述したように、本実施例の鉄道車両用永
久磁石励磁同期電動機では、アウターロータヨーク10
の一部を、隣り合う永久磁石11の間をブリッジするよ
うに積層された電磁鋼板13により構成するようにした
ので、磁束脈動分は交流磁気抵抗の小さい積層電磁鋼板
13内を通るため、アウターロータヨーク10内での渦
電流ロスが減少し、ひいては永久磁石11の昇温を抑え
て、損失を低減させることができる。
As described above, in the permanent magnet excitation synchronous motor for railway vehicles of this embodiment, the outer rotor yoke 10 is used.
Part of the magnetic field is constituted by the electromagnetic steel plates 13 laminated so as to bridge between the adjacent permanent magnets 11. Therefore, the magnetic flux pulsation component passes through the laminated electromagnetic steel plates 13 having a small AC magnetic resistance, so that the outer The eddy current loss in the rotor yoke 10 is reduced, and the temperature rise of the permanent magnet 11 is suppressed, and the loss can be reduced.

【0060】これにより、空間高調波や時間高調波によ
る損失の増加や永久磁石11の昇温を抑制して、極めて
高効率な鉄道車両用永久磁石励磁同期電動機を得ること
が可能となる。
As a result, it is possible to obtain an extremely highly efficient permanent magnet excitation synchronous motor for a railroad vehicle by suppressing an increase in loss due to space harmonics and time harmonics and increasing the temperature of the permanent magnet 11.

【0061】(第6の実施例)図9は、本実施例による
鉄道車両用永久磁石励磁同期電動機の構成例を示す部分
断面図であり、図11および図12と同一要素には同一
符号を付してその説明を省略し、ここでは異なる部分に
ついてのみ述べる。
(Sixth Embodiment) FIG. 9 is a partial cross-sectional view showing a structural example of a permanent magnet excitation synchronous motor for a railway vehicle according to this embodiment. The same elements as those in FIGS. 11 and 12 are designated by the same reference numerals. The description thereof will be omitted and only different parts will be described here.

【0062】すなわち、本実施例の車両用永久磁石励磁
同期電動機は、前記永久磁石11を取り囲むように巻回
された短絡コイル14を設けた構成としている。次に、
以上のように構成した本実施例の鉄道車両用永久磁石励
磁同期電動機の作用について説明する。
That is, the permanent magnet excitation synchronous motor for a vehicle of this embodiment is provided with the short-circuit coil 14 wound so as to surround the permanent magnet 11. next,
The operation of the railway vehicle permanent magnet excitation synchronous motor of the present embodiment configured as described above will be described.

【0063】インバータによって駆動する場合に発生す
る低次の時間高調波がもとで、主磁束よりも回転数の高
い正回転、または逆回転の回転磁界が発生し、これらの
高調波回転磁界は永久磁石11上では主磁束の時間脈動
として現れ、その脈動磁界によって発生する渦電流ロス
の多くは、永久磁石11の体積固有抵抗に比べてアウタ
ーロータヨーク10の体積固定抵抗が1桁小さいため、
アウターロータヨーク10内で発生するが、この点、本
実施例の鉄道車両用永久磁石励磁同期電動機において
は、永久磁石11を取り囲むように巻回された短絡コイ
ル14を設けていることにより、その脈動磁界によって
短絡コイル14に脈動磁界を打ち消す方向の短絡電流が
流れ、結果的に永久磁石11やアウターロータヨーク1
0に脈動磁界が作用しなくなるため、渦電流ロスが減少
し、永久磁石11の昇温を抑えて、損失を低減させるこ
とができる。
On the basis of the low-order time harmonics generated when driven by an inverter, a normal or reverse rotating magnetic field having a higher rotation speed than the main magnetic flux is generated, and these harmonic rotating magnetic fields are generated. On the permanent magnet 11, the main magnetic flux appears as time pulsation, and most of the eddy current loss generated by the pulsating magnetic field is because the volume fixed resistance of the outer rotor yoke 10 is one digit smaller than the volume specific resistance of the permanent magnet 11.
This occurs in the outer rotor yoke 10. In this respect, however, in the permanent magnet excitation synchronous motor for a railway vehicle of this embodiment, the short circuit coil 14 wound so as to surround the permanent magnet 11 causes the pulsation. Due to the magnetic field, a short-circuit current flows in the short-circuit coil 14 in the direction of canceling the pulsating magnetic field, resulting in the permanent magnet 11 and the outer rotor yoke 1.
Since the pulsating magnetic field does not act on 0, the eddy current loss is reduced, the temperature rise of the permanent magnet 11 is suppressed, and the loss can be reduced.

【0064】上述したように、本実施例の鉄道車両用永
久磁石励磁同期電動機では、永久磁石11を取り囲むよ
うに巻回された短絡コイル14を設けて構成するように
したので、脈動磁界によって短絡コイル14に脈動磁界
を打ち消す方向の短絡電流が流れ、結果的に永久磁石1
1やアウターロータヨーク10に脈動磁界が作用しなく
なるため、渦電流ロスが減少し、永久磁石11の昇温を
抑えて、損失を低減させることができる。
As described above, in the railcar permanent magnet excitation synchronous motor of this embodiment, since the short circuit coil 14 wound around the permanent magnet 11 is provided, the pulsating magnetic field causes a short circuit. A short-circuit current flows in the coil 14 in the direction of canceling the pulsating magnetic field, and as a result, the permanent magnet 1
Since the pulsating magnetic field does not act on 1 and the outer rotor yoke 10, the eddy current loss is reduced, the temperature rise of the permanent magnet 11 is suppressed, and the loss can be reduced.

【0065】これにより、空間高調波や時間高調波によ
る損失の増加や永久磁石11の昇温を抑制して、極めて
高効率な鉄道車両用永久磁石励磁同期電動機を得ること
が可能となる。
As a result, it is possible to obtain an extremely highly efficient permanent magnet excitation synchronous motor for a railroad vehicle by suppressing an increase in loss due to space harmonics and time harmonics and increasing the temperature of the permanent magnet 11.

【0066】(第7の実施例)図10は、本実施例によ
る鉄道車両用永久磁石励磁同期電動機の構成例を示す部
分断面図であり、図11および図12と同一要素には同
一符号を付してその説明を省略し、ここでは異なる部分
についてのみ述べる。
(Seventh Embodiment) FIG. 10 is a partial cross-sectional view showing a structural example of a permanent magnet excitation synchronous motor for a railway vehicle according to this embodiment, and the same elements as those in FIGS. 11 and 12 are designated by the same reference numerals. The description thereof will be omitted and only different parts will be described here.

【0067】すなわち、本実施例の車両用永久磁石励磁
同期電動機は、前記補助磁極12に、軸方向に貫通する
複数本の良導体よりなるダンパーバー15を設け、永久
磁石11の軸方向両端で短絡させた構成としている。
That is, in the vehicle permanent magnet excitation synchronous motor of this embodiment, the auxiliary magnetic pole 12 is provided with the damper bar 15 made of a plurality of good conductors penetrating in the axial direction, and short-circuited at both axial ends of the permanent magnet 11. It is made to have a configuration.

【0068】次に、以上のように構成した本実施例の鉄
道車両用永久磁石励磁同期電動機の作用について説明す
る。インバータによって駆動する場合に発生する低次の
時間高調波がもとで、主磁束よりも回転数の高い正回
転、または逆回転の回転磁界が発生し、これらの高調波
回転磁界は永久磁石11上では主磁束の時間脈動として
現れ、その脈動磁界によって発生する渦電流ロスの多く
は、永久磁石11の体積固有抵抗に比べてアウターロー
タヨーク10の体積固定抵抗が1桁小さいため、アウタ
ーロータヨーク10内で発生するが、この点、本実施例
の鉄道車両用永久磁石励磁同期電動機においては、補助
磁極12に、軸方向に貫通する複数本の良導体よりなる
ダンパーバー15を設け、永久磁石11の軸方向両端で
短絡させていることにより、その脈動磁界によってダン
パーバー15に脈動磁界を打ち消す方向の短絡電流が流
れ、結果的に永久磁石11やアウターロータヨーク10
に脈動磁界が作用しなくなるため、渦電流ロスが減少
し、永久磁石11の昇温を抑えて、損失を低減させるこ
とができる。
Next, the operation of the permanent magnet excited synchronous motor for a railway vehicle according to this embodiment having the above-mentioned structure will be described. On the basis of the low-order time harmonics generated when driven by an inverter, a rotating magnetic field of normal rotation or reverse rotation having a higher rotation speed than the main magnetic flux is generated, and these harmonic rotating magnetic fields generate permanent magnets 11 In the above, most of the eddy current loss that appears as time pulsation of the main magnetic flux and is generated by the pulsating magnetic field is because the volume fixed resistance of the outer rotor yoke 10 is one order of magnitude smaller than the volume specific resistance of the permanent magnet 11. However, in this respect, in the permanent magnet excitation synchronous motor for a railway vehicle of the present embodiment, the auxiliary magnetic pole 12 is provided with the damper bar 15 made of a plurality of good conductors penetrating in the axial direction, and the shaft of the permanent magnet 11 is provided. By short-circuiting at both ends in the direction, the pulsating magnetic field causes a short-circuit current in the direction of canceling the pulsating magnetic field in the damper bar 15, resulting in the permanent magnet 1 And outer rotor yoke 10
Since the pulsating magnetic field does not act on, the eddy current loss is reduced, the temperature rise of the permanent magnet 11 is suppressed, and the loss can be reduced.

【0069】上述したように、本実施例の鉄道車両用永
久磁石励磁同期電動機では、補助磁極12に、軸方向に
貫通する複数本の良導体よりなるダンパーバー15を設
け、永久磁石11の軸方向両端で短絡させて構成するよ
うにしたので、脈動磁界によってダンパーバー15に脈
動磁界を打ち消す方向の短絡電流が流れ、結果的に永久
磁石11やアウターロータヨーク10に脈動磁界が作用
しなくなるため、渦電流ロスが減少し、永久磁石11の
昇温を抑えて、損失を低減させることができる。
As described above, in the permanent magnet excitation synchronous motor for a railway vehicle of this embodiment, the auxiliary magnetic pole 12 is provided with the damper bar 15 made of a plurality of good conductors penetrating in the axial direction and the axial direction of the permanent magnet 11 is increased. Since the pulsating magnetic field causes the pulsating magnetic field to generate a short-circuit current in the direction of canceling the pulsating magnetic field, the pulsating magnetic field does not act on the permanent magnet 11 or the outer rotor yoke 10, resulting in a vortex. The current loss is reduced, the temperature rise of the permanent magnet 11 is suppressed, and the loss can be reduced.

【0070】これにより、空間高調波や時間高調波によ
る損失の増加や永久磁石11の昇温を抑制して、極めて
高効率な鉄道車両用永久磁石励磁同期電動機を得ること
が可能となる。
As a result, it is possible to obtain an extremely efficient permanent magnet excitation synchronous motor for a railroad vehicle by suppressing an increase in loss due to space harmonics and time harmonics and suppressing the temperature rise of the permanent magnet 11.

【0071】尚、本発明は上記各実施例に限定されるも
のではなく、次のようにしても同様に実施できるもので
ある。上記各実施例では、本発明を鉄道車両用永久磁石
励磁同期電動機に適用する場合について説明したが、何
らこれに限定されるものではなく、その他の車両用の永
久磁石励磁同期電動機に適用することも可能であり、こ
の場合にも前述の場合と同様の作用効果が得られること
は言うまでもない。
The present invention is not limited to the above embodiments, but can be implemented in the same manner as described below. In each of the above-mentioned embodiments, the case where the present invention is applied to the permanent magnet excitation synchronous motor for railway vehicles has been described, but the present invention is not limited to this, and it is applicable to other permanent magnet excitation synchronous motors for vehicles. Needless to say, in this case as well, the same effect as the above case can be obtained.

【0072】[0072]

【発明の効果】以上説明したように本発明によれば、台
車枠に軸バネ等の弾性部材を介して直接固定された回転
しない車軸に、直接、または間接的に積層されたステー
タ鉄心を固定し、かつ当該ステータ鉄心に設けられたス
ロット内に電機子コイルを配置してなる電機子と、車軸
にベアリングを介して設置された車輪に直接固定された
磁性材からなるアウターロータヨークと、当該アウター
ロータヨークに固定された界磁となる永久磁石とから構
成される車両用永久磁石励磁同期電動機において、ステ
ータ鉄心と永久磁石との間のギャップ寸法を2.5mm
〜5mmの範囲とし、かつスロットの開口幅と鉄心歯部
の幅との比を2〜4の範囲とするか、または永久磁石を
周方向および軸方向に複数個に分割し、かつ当該分割面
に絶縁を施し接着するか、もしくは永久磁石のギャップ
側に、積層された電磁鋼板からなる補助磁極を設けるよ
うにしたので、空間高調波や時間高調波による損失の増
加や永久磁石の昇温を抑制して、効率を高めることが可
能な車両用永久磁石励磁同期電動機が提供できる。
As described above, according to the present invention, the stator core directly or indirectly laminated is fixed to the non-rotating axle that is directly fixed to the bogie frame via the elastic member such as the shaft spring. And an armature having an armature coil arranged in a slot provided in the stator iron core, an outer rotor yoke made of a magnetic material fixed directly to a wheel installed on an axle via a bearing, and the outer member. In a permanent magnet excitation synchronous motor for a vehicle, which comprises a permanent magnet serving as a field fixed to a rotor yoke, a gap size between a stator iron core and the permanent magnet is 2.5 mm.
To 5 mm and the ratio of the opening width of the slot to the width of the iron core tooth portion is in the range of 2 to 4, or the permanent magnet is divided into a plurality in the circumferential direction and the axial direction, and Insulation is applied to and bonded to the permanent magnet, or an auxiliary magnetic pole made of laminated electromagnetic steel sheets is provided on the gap side of the permanent magnet, so that loss due to spatial harmonics and time harmonics and temperature rise of the permanent magnet are increased. It is possible to provide a permanent magnet excitation synchronous motor for a vehicle that can be suppressed to improve efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による鉄道車両用永久磁
石励磁同期電動機における永久磁石とステータ鉄心との
間のギャップ寸法に対する永久磁石温度上昇と鉄心長の
関係を示す特性図。を示す図。
FIG. 1 is a characteristic diagram showing a relationship between a temperature increase of a permanent magnet and an iron core length with respect to a gap size between a permanent magnet and a stator iron core in a permanent magnet excitation synchronous motor for a railway vehicle according to a first embodiment of the present invention. FIG.

【図2】同第1の実施例による鉄道車両用永久磁石励磁
同期電動機におけるスロットの開口幅と歯の幅との比に
対する永久磁石温度上昇とスロット深さの関係を示す特
性図。
FIG. 2 is a characteristic diagram showing a relationship between a permanent magnet temperature rise and a slot depth with respect to a ratio of an opening width of a slot to a width of a tooth in the permanent magnet excitation synchronous motor for a railway vehicle according to the first embodiment.

【図3】同第1の実施例による鉄道車両用永久磁石励磁
同期電動機における永久磁石とステータ鉄心との間のギ
ャップ寸法を4mm、スロットの開口幅と歯の幅との比
を約2.8とした場合の永久磁石表面の磁束密度分布の
解析結果を示す特性図。
FIG. 3 is a diagram illustrating a gap dimension between a permanent magnet and a stator iron core in a permanent magnet excitation synchronous motor for a railroad vehicle according to the first embodiment of 4 mm, and a ratio of a slot opening width to a tooth width of about 2.8. FIG. 6 is a characteristic diagram showing an analysis result of a magnetic flux density distribution on the surface of the permanent magnet in the case where

【図4】本発明の第2の実施例による鉄道車両用永久磁
石励磁同期電動機における永久磁石の構成例を示す部分
斜視図。
FIG. 4 is a partial perspective view showing a configuration example of a permanent magnet in a permanent magnet excitation synchronous motor for a railway vehicle according to a second embodiment of the present invention.

【図5】本発明の第3の実施例による鉄道車両用永久磁
石励磁同期電動機の構成例を示す部分断面図。
FIG. 5 is a partial cross-sectional view showing a configuration example of a permanent magnet excitation synchronous motor for railway vehicles according to a third embodiment of the present invention.

【図6】同第3の実施例による鉄道車両用永久磁石励磁
同期電動機における永久磁石表面の磁束密度分布の解析
結果を示す特性図。
FIG. 6 is a characteristic diagram showing an analysis result of a magnetic flux density distribution on the surface of a permanent magnet in a permanent magnet excitation synchronous motor for a railway vehicle according to the third embodiment.

【図7】本発明の第4の実施例による鉄道車両用永久磁
石励磁同期電動機の構成例を示す部分断面図。
FIG. 7 is a partial cross-sectional view showing a configuration example of a permanent magnet excitation synchronous motor for railway vehicles according to a fourth embodiment of the present invention.

【図8】本発明の第5の実施例による鉄道車両用永久磁
石励磁同期電動機の構成例を示す部分断面図。
FIG. 8 is a partial cross-sectional view showing a configuration example of a permanent magnet excitation synchronous motor for railway vehicles according to a fifth embodiment of the present invention.

【図9】本発明の第6の実施例による鉄道車両用永久磁
石励磁同期電動機の構成例を示す部分断面図。
FIG. 9 is a partial cross-sectional view showing a configuration example of a permanent magnet excitation synchronous motor for railway vehicles according to a sixth embodiment of the present invention.

【図10】本発明の第7の実施例による鉄道車両用永久
磁石励磁同期電動機の構成例を示す部分断面図。
FIG. 10 is a partial cross-sectional view showing a configuration example of a permanent magnet excitation synchronous motor for railway vehicles according to a seventh embodiment of the present invention.

【図11】従来の鉄道車両用永久磁石励磁同期電動機の
構成例を示す断面図。
FIG. 11 is a cross-sectional view showing a configuration example of a conventional permanent magnet excitation synchronous motor for railway vehicles.

【図12】従来の鉄道車両用永久磁石励磁同期電動機の
構成例を示す部分断面図。
FIG. 12 is a partial cross-sectional view showing a configuration example of a conventional permanent magnet excitation synchronous motor for railway vehicles.

【図13】従来の鉄道車両用永久磁石励磁同期電動機に
おける断面磁束分布の解析結果を示す概要図。
FIG. 13 is a schematic diagram showing a result of analysis of a cross-sectional magnetic flux distribution in a conventional permanent magnet excitation synchronous motor for a railway vehicle.

【図14】従来の鉄道車両用永久磁石励磁同期電動機に
おける永久磁石表面の磁束密度分布の解析結果を示す特
性図。
FIG. 14 is a characteristic diagram showing an analysis result of a magnetic flux density distribution on the surface of a permanent magnet in a conventional permanent magnet excitation synchronous motor for a railway vehicle.

【符号の説明】[Explanation of symbols]

1…台車枠、 2…軸バネ、 3…車軸、 4…ステータ鉄心、 5…スロット、 6…歯、 7…電機子コイル、 8…ベアリング、 9…車輪、 10…アウターロータヨーク、 11…永久磁石、 12…補助磁極、 13…積層電磁鋼板、 14…短絡コイル、 15…ダンパーバー。 DESCRIPTION OF SYMBOLS 1 ... Bogie frame, 2 ... Axle spring, 3 ... Axle, 4 ... Stator iron core, 5 ... Slot, 6 ... Tooth, 7 ... Armature coil, 8 ... Bearing, 9 ... Wheel, 10 ... Outer rotor yoke, 11 ... Permanent magnet , 12 auxiliary magnetic poles, 13 laminated magnetic steel sheets, 14 short circuit coils, 15 damper bars.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 圭一郎 東京都国分寺市光町二丁目8番地38 財団 法人 鉄道総合技術研究所内 (72)発明者 長谷部 寿郎 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 白石 茂智 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Keiichiro Kondo 2-chome, Kochiro, Kokubunji, Tokyo 38 38 Incorporated Research Institute of Railway Technology (72) Inventor, Juro Hasebe 1st, Toshiba-cho, Fuchu-shi, Tokyo Toshiba Corporation Inside the Fuchu Factory (72) Inventor Shigetoshi Shiraishi 1st Toshiba Town, Fuchu City, Tokyo Inside the Fuchu Factory, Toshiba Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 台車枠に軸バネ等の弾性部材を介して直
接固定された回転しない車軸に、直接、または間接的に
積層されたステータ鉄心を固定し、かつ当該ステータ鉄
心に設けられたスロット内に電機子コイルを配置してな
る電機子と、前記車軸にベアリングを介して設置された
車輪に直接固定された磁性材からなるアウターロータヨ
ークと、当該アウターロータヨークに固定された界磁と
なる永久磁石とから構成される車両用永久磁石励磁同期
電動機において、 前記ステータ鉄心と前記永久磁石との間のギャップ寸法
を2.5mm〜5mmの範囲とし、かつ前記スロットの
開口幅と鉄心歯部の幅との比を2〜4の範囲として成る
ことを特徴とする車両用永久磁石励磁同期電動機。
1. A slot provided in a stator core directly or indirectly fixed to a non-rotating axle fixed directly to a bogie frame via an elastic member such as a shaft spring, and a slot provided in the stator core. An armature having an armature coil disposed therein, an outer rotor yoke made of a magnetic material directly fixed to a wheel installed on the axle via a bearing, and a permanent field magnet fixed to the outer rotor yoke. A permanent magnet excitation synchronous motor for a vehicle comprising a magnet, wherein a gap size between the stator iron core and the permanent magnet is in a range of 2.5 mm to 5 mm, and an opening width of the slot and a width of an iron core tooth portion. And a permanent magnet excitation synchronous motor for a vehicle.
【請求項2】 台車枠に軸バネ等の弾性部材を介して直
接固定された回転しない車軸に、直接、または間接的に
積層されたステータ鉄心を固定し、かつ当該ステータ鉄
心に設けられたスロット内に電機子コイルを配置してな
る電機子と、前記車軸にベアリングを介して設置された
車輪に直接固定された磁性材からなるアウターロータヨ
ークと、当該アウターロータヨークに固定された界磁と
なる永久磁石とから構成される車両用永久磁石励磁同期
電動機において、 前記永久磁石を周方向および軸方向に複数個に分割し、
かつ当該分割面に絶縁を施し接着して成ることを特徴と
する車両用永久磁石励磁同期電動機。
2. A slot provided in a stator core, which is directly or indirectly laminated, is fixed to a non-rotating axle that is directly fixed to a bogie frame via an elastic member such as a shaft spring, and the stator core is provided with the stator core. An armature having an armature coil disposed therein, an outer rotor yoke made of a magnetic material that is directly fixed to a wheel that is installed on the axle via a bearing, and a permanent magnetic field that is fixed to the outer rotor yoke. In a permanent magnet excitation synchronous motor for a vehicle composed of a magnet, the permanent magnet is divided into a plurality in the circumferential direction and the axial direction,
A permanent magnet excitation synchronous motor for a vehicle, characterized in that the divided surface is insulated and adhered.
【請求項3】 台車枠に軸バネ等の弾性部材を介して直
接固定された回転しない車軸に、直接、または間接的に
積層されたステータ鉄心を固定し、かつ当該ステータ鉄
心に設けられたスロット内に電機子コイルを配置してな
る電機子と、前記車軸にベアリングを介して設置された
車輪に直接固定された磁性材からなるアウターロータヨ
ークと、当該アウターロータヨークに固定された界磁と
なる永久磁石とから構成される車両用永久磁石励磁同期
電動機において、 前記永久磁石のギャップ側に、積層された電磁鋼板から
なる補助磁極を設けたことを特徴とする車両用永久磁石
励磁同期電動機。
3. A slot provided in a stator core directly or indirectly fixed to a non-rotating axle fixed directly to a bogie frame via an elastic member such as a shaft spring, and provided in the stator core. An armature having an armature coil disposed therein, an outer rotor yoke made of a magnetic material that is directly fixed to a wheel that is installed on the axle via a bearing, and a permanent magnetic field that is fixed to the outer rotor yoke. A permanent magnet excitation synchronous motor for a vehicle comprising a magnet, wherein an auxiliary magnetic pole made of laminated electromagnetic steel sheets is provided on the gap side of the permanent magnet.
【請求項4】 前記アウターロータヨークの内径側の径
方向の一部を、積層された電磁鋼板により構成したこと
を特徴とする請求項1乃至請求項3のいずれか1項に記
載の車両用永久磁石励磁同期電動機。
4. The permanent magnet for a vehicle according to claim 1, wherein a part of the outer rotor yoke on the inner diameter side in the radial direction is made of laminated electromagnetic steel sheets. Magnet excitation synchronous motor.
【請求項5】 前記アウターロータヨークの一部を、隣
り合う永久磁石の間をブリッジするように積層された電
磁鋼板により構成したことを特徴とする請求項1乃至請
求項3のいずれか1項に記載の車両用永久磁石励磁同期
電動機。
5. The outer rotor yoke according to claim 1, wherein a part of the outer rotor yoke is made of electromagnetic steel sheets laminated so as to bridge between adjacent permanent magnets. A permanent magnet excitation synchronous motor for a vehicle as described.
【請求項6】 前記永久磁石を取り囲むように巻回され
た短絡コイルを設けたことを特徴とする請求項1乃至請
求項5のいずれか1項に記載の車両用永久磁石励磁同期
電動機。
6. The permanent magnet excitation synchronous motor for a vehicle according to claim 1, further comprising a short-circuit coil wound so as to surround the permanent magnet.
【請求項7】 前記補助磁極に、軸方向に貫通する複数
本の良導体からなるダンパーバーを設け、永久磁石の軸
方向両端で短絡させたことを特徴とする請求項3に記載
の車両用永久磁石励磁同期電動機。
7. The permanent magnet for a vehicle according to claim 3, wherein the auxiliary pole is provided with a damper bar made of a plurality of good conductors penetrating in the axial direction, and short-circuited at both axial ends of the permanent magnet. Magnet excitation synchronous motor.
JP06324271A 1994-12-27 1994-12-27 Permanent magnet excitation synchronous motor for vehicles Expired - Fee Related JP3133224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06324271A JP3133224B2 (en) 1994-12-27 1994-12-27 Permanent magnet excitation synchronous motor for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06324271A JP3133224B2 (en) 1994-12-27 1994-12-27 Permanent magnet excitation synchronous motor for vehicles

Publications (2)

Publication Number Publication Date
JPH08182282A true JPH08182282A (en) 1996-07-12
JP3133224B2 JP3133224B2 (en) 2001-02-05

Family

ID=18163950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06324271A Expired - Fee Related JP3133224B2 (en) 1994-12-27 1994-12-27 Permanent magnet excitation synchronous motor for vehicles

Country Status (1)

Country Link
JP (1) JP3133224B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069699A (en) * 1998-08-21 2000-03-03 Toshiba Corp Rotor of motor
WO2005112227A1 (en) 2004-05-13 2005-11-24 Kabushiki Kaisha Toshiba Rotor core of rotating electric machine and method of manufacturing the same
JP2005354899A (en) * 2005-09-09 2005-12-22 Mitsubishi Electric Corp Permanent magnet type motor
WO2006001216A1 (en) * 2004-06-28 2006-01-05 Kabushiki Kaisha Toshiba Outer-side-rotation rotor for dynamo-electric machines
JP2008043094A (en) * 2006-08-08 2008-02-21 Toyota Motor Corp Vehicle and method for raising temperature of permanent magnet provided in rotor of motor generator mounted therein
JP2009055776A (en) * 2007-07-31 2009-03-12 Seiko Epson Corp Brushless motor
WO2009154007A1 (en) * 2008-06-20 2009-12-23 株式会社 東芝 Permanent magnet type rotating electric machine
JP2010004673A (en) * 2008-06-20 2010-01-07 Toshiba Corp Permanent magnet type rotating electrical machine
JP2010130859A (en) * 2008-11-28 2010-06-10 Toshiba Corp Permanent magnet type dynamo electric machine
WO2010070888A1 (en) * 2008-12-15 2010-06-24 株式会社 東芝 Permanent magnet type rotary electrical machine
JP2010142059A (en) * 2008-12-15 2010-06-24 Toshiba Corp Permanent magnet rotary electric machine
JP2010148180A (en) * 2008-12-16 2010-07-01 Toshiba Corp Permanent magnet type rotating electric machine
JP2010148179A (en) * 2008-12-16 2010-07-01 Toshiba Corp Permanent magnet type rotating electric machine
JP2011103747A (en) * 2009-11-11 2011-05-26 Toshiba Corp Permanent magnet type rotary electric machine
JP2011130537A (en) * 2009-12-15 2011-06-30 Toshiba Corp Permanent magnet type dynamo-electric machine
US20110309706A1 (en) * 2008-12-18 2011-12-22 Kabushiki Kaisha Toshiba Permanent magnet electric motor
US8338999B2 (en) 2007-07-31 2012-12-25 Seiko Epson Corporation Brushless motor
JP2014011866A (en) * 2012-06-29 2014-01-20 Hitachi Ltd Rotary electric machine
JP2020171156A (en) * 2019-04-04 2020-10-15 株式会社日立製作所 Power conversion device, railway vehicle, and production method of railway vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139063A (en) * 1980-03-31 1981-10-30 Shinko Electric Co Ltd Outer rotor type motor
JPS5822571A (en) * 1981-07-29 1983-02-09 Japan Servo Co Ltd Dc brushless motor
JPS60174047A (en) * 1984-02-16 1985-09-07 Sanyo Electric Co Ltd Manufacture of motor
JPH02206348A (en) * 1989-01-31 1990-08-16 Koyo Seiko Co Ltd Motor
JPH0421331A (en) * 1990-05-15 1992-01-24 Shibaura Eng Works Co Ltd Motor
JPH05328687A (en) * 1992-05-20 1993-12-10 Toshiba Corp Outer-rotor motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139063A (en) * 1980-03-31 1981-10-30 Shinko Electric Co Ltd Outer rotor type motor
JPS5822571A (en) * 1981-07-29 1983-02-09 Japan Servo Co Ltd Dc brushless motor
JPS60174047A (en) * 1984-02-16 1985-09-07 Sanyo Electric Co Ltd Manufacture of motor
JPH02206348A (en) * 1989-01-31 1990-08-16 Koyo Seiko Co Ltd Motor
JPH0421331A (en) * 1990-05-15 1992-01-24 Shibaura Eng Works Co Ltd Motor
JPH05328687A (en) * 1992-05-20 1993-12-10 Toshiba Corp Outer-rotor motor

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069699A (en) * 1998-08-21 2000-03-03 Toshiba Corp Rotor of motor
US8138650B2 (en) 2004-05-13 2012-03-20 Toshiba Ha Products Co., Ltd. Rotor core having bridges connection magnetic pole and method of manufacturing the same
WO2005112227A1 (en) 2004-05-13 2005-11-24 Kabushiki Kaisha Toshiba Rotor core of rotating electric machine and method of manufacturing the same
WO2006001216A1 (en) * 2004-06-28 2006-01-05 Kabushiki Kaisha Toshiba Outer-side-rotation rotor for dynamo-electric machines
JP2005354899A (en) * 2005-09-09 2005-12-22 Mitsubishi Electric Corp Permanent magnet type motor
JP2008043094A (en) * 2006-08-08 2008-02-21 Toyota Motor Corp Vehicle and method for raising temperature of permanent magnet provided in rotor of motor generator mounted therein
JP2009055776A (en) * 2007-07-31 2009-03-12 Seiko Epson Corp Brushless motor
US8338999B2 (en) 2007-07-31 2012-12-25 Seiko Epson Corporation Brushless motor
US8674575B2 (en) 2008-06-20 2014-03-18 Kabushiki Kaisha Toshiba Permanent magnet electric motor inducing short circuit current in short circuit coil
WO2009154007A1 (en) * 2008-06-20 2009-12-23 株式会社 東芝 Permanent magnet type rotating electric machine
CN103779994A (en) * 2008-06-20 2014-05-07 株式会社东芝 Permanent magnet type rotating electric machine
JP2010004673A (en) * 2008-06-20 2010-01-07 Toshiba Corp Permanent magnet type rotating electrical machine
JP2010004672A (en) * 2008-06-20 2010-01-07 Toshiba Corp Permanent magnet type electric rotating machine
JP2010130859A (en) * 2008-11-28 2010-06-10 Toshiba Corp Permanent magnet type dynamo electric machine
US9496774B2 (en) 2008-12-15 2016-11-15 Kabushiki Kaisha Toshiba Permanent magnet electric motor
JP2010142059A (en) * 2008-12-15 2010-06-24 Toshiba Corp Permanent magnet rotary electric machine
US9490684B2 (en) 2008-12-15 2016-11-08 Kabushiki Kaisha Toshiba Permanent magnet electric motor
EP2372885A4 (en) * 2008-12-15 2016-09-14 Toshiba Kk Permanent magnet type rotary electrical machine
WO2010070888A1 (en) * 2008-12-15 2010-06-24 株式会社 東芝 Permanent magnet type rotary electrical machine
US8796898B2 (en) 2008-12-15 2014-08-05 Kabushiki Kaisha Toshiba Permanent magnet electric motor
US9373992B2 (en) 2008-12-15 2016-06-21 Kabushiki Kaisha Toshiba Permanent magnet electric motor
JP2010148179A (en) * 2008-12-16 2010-07-01 Toshiba Corp Permanent magnet type rotating electric machine
JP2010148180A (en) * 2008-12-16 2010-07-01 Toshiba Corp Permanent magnet type rotating electric machine
US20110309706A1 (en) * 2008-12-18 2011-12-22 Kabushiki Kaisha Toshiba Permanent magnet electric motor
US8653710B2 (en) * 2008-12-18 2014-02-18 Kabushiki Kaisha Toshiba Permanent magnet electric motor
JP2011103747A (en) * 2009-11-11 2011-05-26 Toshiba Corp Permanent magnet type rotary electric machine
JP2011130537A (en) * 2009-12-15 2011-06-30 Toshiba Corp Permanent magnet type dynamo-electric machine
JP2014011866A (en) * 2012-06-29 2014-01-20 Hitachi Ltd Rotary electric machine
JP2020171156A (en) * 2019-04-04 2020-10-15 株式会社日立製作所 Power conversion device, railway vehicle, and production method of railway vehicle

Also Published As

Publication number Publication date
JP3133224B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
JPH08182282A (en) Permanent magnetic excitation synchronous motor for vehicle
KR100807853B1 (en) A dynamoelectric machine
JP4403253B1 (en) Magnetic flux amount variable axial gap rotating electrical machine system
US7777384B2 (en) Permanent magnet dynamoelectric machine with variable magnetic flux excitation
US8987967B2 (en) Claw-pole motor with permanent magnet and electrically exciting parts
US6628031B2 (en) Harmonic-frequency synchronous machine with flux concentration
US20080246362A1 (en) Radial airgap, transverse flux machine
US20040251761A1 (en) Radial airgap, transverse flux motor
CN103390978B (en) A kind of bimorph transducer disc type mixed excitation electric machine
WO2020216012A1 (en) Drive motor employing asymmetric-magnetic-pole permanent magnet and claw-pole electromagnet for use in electric vehicle
JP2006516879A (en) Trapezoidal motor magnetic pole device that increases magnetic flux to improve motor torque density
JP2003032978A (en) Dynamo-electric machine
Horiuchi et al. Effect of magnetic wedge characteristics on torque ripple and loss in interior permanent magnet synchronous motor
JPH0870541A (en) Permanent magnet-type rotating electric machine
JPH10304633A (en) Synchronous rotary machine using permanent magnet and method for driving it
CN113437850B (en) Double-stator single-rotor axial magnetic flux hybrid excitation motor
JP2003032983A (en) Dynamo-electric machine
JP2004088880A (en) Back surface field type inductor rotating machine
JP5554442B2 (en) Railway vehicle drive system
JP2007166798A (en) Dynamo-electric machine, compressor, blower, and air conditioner
CN220628980U (en) Permanent magnet sinusoidal segmented high-performance high-speed surface-mounted permanent magnet synchronous motor
JP2000037052A (en) Permanent magnet rotating machine
CN111654128B (en) Axial synchronous reluctance motor
JP2001157389A (en) Electric motor
JP2006141106A (en) Hybrid motor or generator, and motor or generator driving system using it

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees