JPH08181562A - Surface acoustic wave element - Google Patents

Surface acoustic wave element

Info

Publication number
JPH08181562A
JPH08181562A JP31741494A JP31741494A JPH08181562A JP H08181562 A JPH08181562 A JP H08181562A JP 31741494 A JP31741494 A JP 31741494A JP 31741494 A JP31741494 A JP 31741494A JP H08181562 A JPH08181562 A JP H08181562A
Authority
JP
Japan
Prior art keywords
temperature
acoustic wave
surface acoustic
frequency characteristic
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31741494A
Other languages
Japanese (ja)
Inventor
Kenji Komine
賢二 小峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP31741494A priority Critical patent/JPH08181562A/en
Publication of JPH08181562A publication Critical patent/JPH08181562A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To enhance frequency stability with respect to a temperature change by facilitating the change of the peak temperature of the element. CONSTITUTION: In the surface acoustic wave element in which an electrode is formed on a surface of a piezoelectric substrate whose temperature - frequency characteristic is a quadratic curve, fluoride polyimide resin is applied to the surface of the surface acoustic wave element and the thermal expansion rate of the resin is used to match the peak in the temperature - frequency characteristic of the element with an ambient temperature of the element. Thus, the temperature - frequency characteristic of the resin is added to the temperature - frequency characteristic of the substrate to shift the peak TP1 of the temperature frequency characteristic of the element before coating to an optional peak TP2 after coating. Furthermore, resin causing a negative thermal expansion coefficient is applied to the element using the substrate having a linear temperature - frequency characteristic to decrease gradation of the temperature characteristic thereby enhancing the stability of the frequency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、弾性表面波素子に係
り、特に温度変化に対する素子の周波数安定性を高める
ための素子構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave device, and more particularly to a device structure for increasing the frequency stability of the device against temperature changes.

【0002】[0002]

【従来の技術】一般に、弾性表面波素子は、圧電性基板
の上に、アルミニウム等の電極材料により櫛歯状電極
(IDT:Interdigital Transdu
cer)を形成して弾性表面波を励振する。
2. Description of the Related Art Generally, a surface acoustic wave element is a comb-teeth-shaped electrode (IDT: Internal Transducer) made of an electrode material such as aluminum on a piezoelectric substrate.
Cer) to excite the surface acoustic wave.

【0003】この弾性表面波を利用して、フィルタ、共
振子、信号処理デバイス等の機能素子を構成する。
Utilizing the surface acoustic waves, functional elements such as filters, resonators and signal processing devices are constructed.

【0004】図2に弾性表面波素子の基本構成例を示
し、圧電性基板1の表面に櫛歯状電極2A,2B,3
A,3Bを形成し、電極のピッチP0に応じて決定され
る弾性表面波が例えば矢印の方向に伝搬させる。
FIG. 2 shows an example of the basic structure of a surface acoustic wave device. The surface of a piezoelectric substrate 1 is provided with comb-shaped electrodes 2A, 2B and 3.
A and 3B are formed, and the surface acoustic wave determined according to the electrode pitch P 0 is propagated in the direction of the arrow, for example.

【0005】このような弾性表面波素子の温度に対する
周波数安定性は、デバイスの性能を評価する上で重要な
パラメータとなる。弾性表面波素子の場合、素子の温度
特性は、基板の種類により決定される。
The frequency stability of such a surface acoustic wave element with respect to temperature is an important parameter in evaluating the performance of the device. In the case of a surface acoustic wave element, the temperature characteristic of the element is determined by the type of substrate.

【0006】一例として、STカット水晶基板を使用し
た素子の周波数−温度特性を図3に示す。水晶基板の場
合、同図に示すように、温度特性は、零温度係数を持つ
部分を含む二次曲線になる。
As an example, FIG. 3 shows frequency-temperature characteristics of an element using an ST cut quartz substrate. In the case of a quartz substrate, as shown in the figure, the temperature characteristic becomes a quadratic curve including a portion having a zero temperature coefficient.

【0007】[0007]

【発明が解決しようとする課題】上記のように、STカ
ット水晶基板を使用した弾性表面波素子の場合、温度−
周波数特性が二次曲線になる。このため、温度変化に対
する周波数の変化量を少なくするためには二次曲線の頂
点温度Tpを素子の使用環境温度(室温など)に合わせ
込むことが必要となる。
As described above, in the case of the surface acoustic wave device using the ST cut quartz substrate, the temperature-
The frequency characteristic becomes a quadratic curve. Therefore, in order to reduce the amount of change in frequency with respect to temperature change, it is necessary to match the vertex temperature Tp of the quadratic curve with the operating environment temperature (room temperature or the like) of the element.

【0008】このための従来手法は、基板のカット角を
変化させて温度特性に合わせ込んでいる。図4に基板カ
ット角と頂点温度Tpの関係を示す。図中の実線の特性
は電極材料にアルミニウムを使った場合を示し、一点鎖
線の特性は金を使った場合を示す。
In the conventional method for this purpose, the cut angle of the substrate is changed to match the temperature characteristics. FIG. 4 shows the relationship between the substrate cut angle and the vertex temperature Tp. The solid line characteristic in the figure shows the case where aluminum is used as the electrode material, and the dashed line characteristic shows the case where gold is used.

【0009】この特性にも示されるように、温度特性が
変化する要因としては、基板結晶の温度に対する材料特
性(基板カット角)の変化と、電極として使用する材料
特性及び膜厚の変化が表面波の音速を変化させることに
起因する。
As shown in this characteristic, the factors that cause the temperature characteristic to change are the change in the material characteristic (the substrate cut angle) with respect to the temperature of the substrate crystal, and the change in the material characteristic and the film thickness used as the electrode. It is caused by changing the speed of sound of waves.

【0010】従来手法では、基板カット角を変更するこ
とにより頂点温度Tpの変更を行っていたが、電極厚み
により温度特性も変化するため、素子の電極厚みを変更
するたびにカット角を変えた基板を製造する必要があ
り、素子の製造コストを高める要因となっていた。
In the conventional method, the apex temperature Tp is changed by changing the substrate cut angle. However, since the temperature characteristic also changes depending on the electrode thickness, the cut angle is changed every time the electrode thickness of the element is changed. It is necessary to manufacture the substrate, which has been a factor of increasing the manufacturing cost of the device.

【0011】本発明の目的は、素子の頂点温度変更を容
易にする弾性表面波素子を提供することにある。
It is an object of the present invention to provide a surface acoustic wave device that facilitates changing the peak temperature of the device.

【0012】本発明の他の目的は、素子の温度変化に対
する周波数の安定性を高める弾性表面波素子を提供する
ことにある。
Another object of the present invention is to provide a surface acoustic wave device which improves the stability of frequency with respect to temperature change of the device.

【0013】[0013]

【課題を解決するための手段】本発明は、前記課題の解
決を図るため、温度−周波数特性が二次曲線になる圧電
性基板の表面に電極を形成した弾性表面波素子におい
て、前記弾性表面波素子の表面にフッ素化ポリイミド樹
脂を塗布し、該樹脂は素子の温度−周波数特性の頂点温
度を素子の使用環境温度に合わせ込む熱膨張率にした構
造を特徴とする。
In order to solve the above-mentioned problems, the present invention provides a surface acoustic wave device having electrodes formed on the surface of a piezoelectric substrate having a quadratic temperature-frequency characteristic. A fluorinated polyimide resin is applied to the surface of the wave element, and the resin is characterized by a coefficient of thermal expansion that matches the peak temperature of the temperature-frequency characteristics of the element to the operating environment temperature of the element.

【0014】また、本発明は、温度−周波数特性が直線
的になる圧電性基板の表面に電極を形成した弾性表面波
素子において、前記弾性表面波素子の表面にフッ素化ポ
リイミド樹脂を塗布し、該樹脂は素子の温度−周波数特
性の傾きを小さくする負の熱膨張率にした構造を特徴と
する。
Further, according to the present invention, in a surface acoustic wave element having electrodes formed on the surface of a piezoelectric substrate having a linear temperature-frequency characteristic, a fluorinated polyimide resin is applied to the surface of the surface acoustic wave element. The resin is characterized by a structure having a negative coefficient of thermal expansion that reduces the slope of the temperature-frequency characteristics of the device.

【0015】[0015]

【作用】基板表面に熱膨張率を調整したフッ素化ポリイ
ミド樹脂を塗布することにより、基板が持つ温度−周波
数特性に樹脂が持つ温度−周波数特性を加えて素子とし
ての温度−周波数特性を変化させ、塗布する樹脂の熱膨
張率の違いで弾性表面波素子の温度−周波数特性の頂点
温度を変える。
[Function] By applying a fluorinated polyimide resin having an adjusted coefficient of thermal expansion to the surface of the substrate, the temperature-frequency characteristic of the resin is added to the temperature-frequency characteristic of the substrate to change the temperature-frequency characteristic of the device. , The peak temperature of the temperature-frequency characteristics of the surface acoustic wave element is changed by the difference in the coefficient of thermal expansion of the applied resin.

【0016】温度−周波数特性が直線的になる圧電性基
板による素子には負の熱膨張率を持つフッ素化ポリイミ
ド樹脂を塗布することで温度−周波数特性の傾きを小さ
くして周波数安定度を高める。
A piezoelectric substrate having a linear temperature-frequency characteristic is coated with a fluorinated polyimide resin having a negative coefficient of thermal expansion to reduce the slope of the temperature-frequency characteristic and improve frequency stability. .

【0017】[0017]

【実施例】本発明の一実施例になる素子構造は、図2に
おいて圧電性基板1の表面に櫛歯状電極2A,2B,3
A,3Bを形成した後、フッ素化ポリイミド樹脂を塗布
したものになる。
EXAMPLE An element structure according to an example of the present invention is shown in FIG.
After forming A and 3B, a fluorinated polyimide resin is applied.

【0018】以下、本実施例におけるフッ素化ポリイミ
ド樹脂の特徴を説明する。図5は、フッ素化ポリイミド
の化学構成を示し、同図の(a)のものはトリフルオロ
メチル基を2つ持つ特定のフッ素化ジアミンと2種類の
酸無水物から合成された透明タイプの化学構成を示し、
通常のポリイミドと同様に熱膨張率が10-5のオーダに
なり、また低屈折率になる。
The characteristics of the fluorinated polyimide resin in this embodiment will be described below. FIG. 5 shows the chemical constitution of the fluorinated polyimide. (A) of the figure is a transparent type chemistry synthesized from a specific fluorinated diamine having two trifluoromethyl groups and two kinds of acid anhydrides. Shows the configuration,
Like a normal polyimide, it has a thermal expansion coefficient of the order of 10 −5 and a low refractive index.

【0019】同じに(b)のものは、低熱膨張タイプの
化学構成を示し、その熱膨張率は非常に小さく、10-6
のオーダでしかも負の値を持つ。
Similarly, (b) shows a chemical constitution of low thermal expansion type, and its coefficient of thermal expansion is very small, 10 −6
And has a negative value.

【0020】(c)のものは透明タイプのものと低熱膨
タイプのものの原料であるフッ素化ジアミンと2つの無
水化物の配合比を変えて共重合して作成されたもので、
この配合比を変えることで熱膨張率と屈折率を任意に制
御することが可能となる。
The type (c) is prepared by copolymerizing the transparent type and low thermal expansion type raw materials, fluorinated diamine, and two anhydrides at different compounding ratios.
The thermal expansion coefficient and the refractive index can be arbitrarily controlled by changing the compounding ratio.

【0021】このうち、熱膨張係数は、配合比を変える
ことにより、−0.5×10-5〜8.2×10-5(/°
C)のものを得ることができる。
Among them, the coefficient of thermal expansion is -0.5 × 10 -5 to 8.2 × 10 -5 (/ °) by changing the compounding ratio.
C) can be obtained.

【0022】したがって、本実施例では、基板表面に塗
布するフッ素化ポリイミド樹脂の熱膨張率を変えること
により、素子の使用環境温度に頂点温度を合わせ込んだ
素子を得る。
Therefore, in this embodiment, by changing the coefficient of thermal expansion of the fluorinated polyimide resin applied to the surface of the substrate, an element in which the peak temperature is matched with the operating environment temperature of the element is obtained.

【0023】これにより、圧電性基板の厚みや電極材料
を変えた場合、及び使用環境温度が変わった場合にも基
板のカット角を変えることなく、熱膨張率を変えたフッ
素化ポリイミド樹脂を基板に塗布することにより、所期
の頂点温度に合わせ込むことができる。
As a result, even if the thickness of the piezoelectric substrate or the electrode material is changed, or if the operating environment temperature is changed, the fluorinated polyimide resin having a different coefficient of thermal expansion can be used without changing the cutting angle of the substrate. By applying to, it is possible to adjust to the desired peak temperature.

【0024】図1は、基板材料としてSTカット水晶基
板にした素子を使用し、フッ素化ポリイミド樹脂の塗布
前の頂点温度Tp1と塗布後の頂点温度Tp2へ変化させた
温度特性を示す。このように、ポリイミド樹脂の塗布に
より、温度特性の頂点温度Tpが変化し、この要因は、
ポリイミド樹脂を塗布した素子の温度特性が弾性表面波
素子の材料の温度特性と、ポリイミド樹脂の温度特性と
の和により表されることに起因する。この材料特性の変
化が弾性表面波の音速を変化させ、温度−周波数特性を
変化させる。
FIG. 1 shows temperature characteristics obtained by using an element having an ST-cut quartz substrate as a substrate material and changing the peak temperature T p1 before coating the fluorinated polyimide resin and the peak temperature T p2 after coating. In this way, the peak temperature Tp of the temperature characteristic changes due to the application of the polyimide resin, and this factor is
This is because the temperature characteristics of the element coated with the polyimide resin are represented by the sum of the temperature characteristics of the material of the surface acoustic wave element and the temperature characteristics of the polyimide resin. This change in material property changes the speed of sound of the surface acoustic wave and changes the temperature-frequency characteristic.

【0025】上記のように、室温など素子の使用環境温
度付近での温度変化に対する周波数の変化量を少なくす
るためには、二次曲線の頂点温度Tpを室温などに合わ
せ込むことが必要となる。
As described above, in order to reduce the amount of change in frequency with respect to temperature change near the operating environment temperature of the element such as room temperature, it is necessary to adjust the peak temperature Tp of the quadratic curve to room temperature. .

【0026】本実施例のように、任意の熱膨張係数のフ
ッ素化ポリイミド樹脂を塗布することにより、任意に温
度特性の頂点温度Tpを変えることができ、設計変更に
も基板のカット角を変えることなく、塗布するフッ素化
ポリイミド樹脂の特性を変えることで済む。
By applying a fluorinated polyimide resin having an arbitrary coefficient of thermal expansion as in this embodiment, the apex temperature Tp of the temperature characteristics can be arbitrarily changed, and the cut angle of the substrate can be changed even when the design is changed. Without changing the characteristics of the fluorinated polyimide resin to be applied.

【0027】特に、本実施例に採用するフッ素化ポリイ
ミド樹脂は、マイナスからプラスにわたって熱膨張率を
任意に変えることができ、温度特性の調整範囲が広くな
る。
In particular, the fluorinated polyimide resin used in this embodiment can have its coefficient of thermal expansion arbitrarily changed from minus to plus, thus widening the adjustment range of temperature characteristics.

【0028】また、弾性表面波は、基板の1波長分にエ
ネルギーの約90%を含むため、基板の電極表面のみし
か材料的には使用されない。そこで、電極表面のみにフ
ッ素化ポリイミド樹脂を塗布した場合にも温度−周波数
特性を変えることができる。
Further, since the surface acoustic wave contains about 90% of energy in one wavelength of the substrate, only the electrode surface of the substrate is used as a material. Therefore, the temperature-frequency characteristics can be changed even when the fluorinated polyimide resin is applied only to the electrode surface.

【0029】なお、本実施例では、温度−周波数特性が
二次曲線になるSTカット水晶基板を使用した場合を示
すが、直線的な温度−周波数特性を持つ三酸化リチウム
タンタル(LiTaO3)及び三酸化リチウムニオブ
(LiNbO3)に適用して同等の作用効果を得ること
ができる。この場合、マイナスの熱膨張率を持つフッ素
化ポリイミド樹脂を塗布することにより、温度−周波数
特性の勾配を小さくして温度変化にたいして周波数変化
を小さくすることができる。
In this example, an ST cut quartz substrate having a quadratic temperature-frequency characteristic is used, but lithium tantalum trioxide (LiTaO 3 ) and a linear temperature-frequency characteristic having a quadratic curve are used. When applied to lithium niobium trioxide (LiNbO 3 ), the same effect can be obtained. In this case, by applying a fluorinated polyimide resin having a negative coefficient of thermal expansion, it is possible to reduce the gradient of the temperature-frequency characteristics and reduce the frequency change with respect to the temperature change.

【0030】[0030]

【発明の効果】以上のとおり、本発明によれば、温度−
周波数特性が二次曲線になる圧電性基板を使った弾性表
面波素子の表面にフッ素化ポリイミド樹脂を塗布し、該
樹脂は素子の温度−周波数特性の頂点温度を素子の使用
環境温度に合わせ込む熱膨張率にした構造とするため、
圧電性基板の厚みやカット角の変更及び電極材料の変更
にも、塗布する樹脂の変更のみで弾性表面波素子の温度
−周波数特性の頂点温度を容易に変更することができ
る。
As described above, according to the present invention, the temperature-
Fluorinated polyimide resin is applied to the surface of a surface acoustic wave element using a piezoelectric substrate whose frequency characteristic becomes a quadratic curve, and the resin adjusts the temperature-frequency characteristic peak temperature of the element to the operating environment temperature of the element. To have a structure with a coefficient of thermal expansion,
Even when the thickness and the cut angle of the piezoelectric substrate are changed and the electrode material is changed, the peak temperature of the temperature-frequency characteristic of the surface acoustic wave element can be easily changed only by changing the applied resin.

【0031】また、本発明は、温度−周波数特性が直線
的になる圧電性基板を使った弾性表面波素子の表面にフ
ッ素化ポリイミド樹脂を塗布し、該樹脂は素子の温度−
周波数特性の傾きを小さくする負の熱膨張率にした構造
とするため、温度−周波数特性の傾きを小さくして周波
数安定度を高めることができる。
Further, according to the present invention, a fluorinated polyimide resin is applied to the surface of a surface acoustic wave device using a piezoelectric substrate having a linear temperature-frequency characteristic, and the resin is the temperature of the device.
Since the structure has a negative coefficient of thermal expansion that reduces the inclination of the frequency characteristics, the inclination of the temperature-frequency characteristics can be reduced and the frequency stability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に基づく素子の温度−周波数
特性の変化例。
FIG. 1 is an example of changes in temperature-frequency characteristics of a device according to an embodiment of the present invention.

【図2】弾性表面波素子の構成例。FIG. 2 is a configuration example of a surface acoustic wave element.

【図3】弾性表面波素子の温度−周波数特性例。FIG. 3 is an example of temperature-frequency characteristics of a surface acoustic wave element.

【図4】圧電性基板のカット角の変化による頂点温度の
変化例。
FIG. 4 shows an example of changes in apex temperature due to changes in the cut angle of the piezoelectric substrate.

【図5】フッ素化ポリイミドの化学構成。FIG. 5: Chemical composition of fluorinated polyimide.

【符号の説明】[Explanation of symbols]

1…圧電性基板 2A、2B、3A、3B…櫛歯状電極 1 ... Piezoelectric substrate 2A, 2B, 3A, 3B ... Comb-shaped electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 温度−周波数特性が二次曲線になる圧電
性基板の表面に電極を形成した弾性表面波素子におい
て、前記弾性表面波素子の表面にフッ素化ポリイミド樹
脂を塗布し、該樹脂は素子の温度−周波数特性の頂点温
度を素子の使用環境温度に合わせ込む熱膨張率にした構
造を特徴とする弾性表面波素子。
1. A surface acoustic wave device having electrodes formed on the surface of a piezoelectric substrate having a temperature-frequency characteristic of a quadratic curve, wherein a fluorinated polyimide resin is applied to the surface of the surface acoustic wave device, and the resin is A surface acoustic wave device having a structure in which the apex temperature of the temperature-frequency characteristic of the device is set to a coefficient of thermal expansion that matches the ambient temperature of the device.
【請求項2】 温度−周波数特性が直線的になる圧電性
基板の表面に電極を形成した弾性表面波素子において、
前記弾性表面波素子の表面にフッ素化ポリイミド樹脂を
塗布し、該樹脂は素子の温度−周波数特性の傾きを小さ
くする負の熱膨張率にした構造を特徴とする弾性表面波
素子。
2. A surface acoustic wave device having electrodes formed on the surface of a piezoelectric substrate having a linear temperature-frequency characteristic,
A surface acoustic wave device having a structure in which a fluorinated polyimide resin is applied to the surface of the surface acoustic wave device, and the resin has a negative coefficient of thermal expansion that reduces the inclination of the temperature-frequency characteristics of the device.
JP31741494A 1994-12-21 1994-12-21 Surface acoustic wave element Pending JPH08181562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31741494A JPH08181562A (en) 1994-12-21 1994-12-21 Surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31741494A JPH08181562A (en) 1994-12-21 1994-12-21 Surface acoustic wave element

Publications (1)

Publication Number Publication Date
JPH08181562A true JPH08181562A (en) 1996-07-12

Family

ID=18087972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31741494A Pending JPH08181562A (en) 1994-12-21 1994-12-21 Surface acoustic wave element

Country Status (1)

Country Link
JP (1) JPH08181562A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112883A2 (en) * 2004-11-11 2006-10-26 The Penn State Research Foundation Carbon nanotube-quartz resonator with femtogram resolution
DE102014111993A1 (en) * 2014-08-21 2016-02-25 Epcos Ag Microacoustic device with improved temperature compensation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112883A2 (en) * 2004-11-11 2006-10-26 The Penn State Research Foundation Carbon nanotube-quartz resonator with femtogram resolution
WO2006112883A3 (en) * 2004-11-11 2007-01-25 Penn State Res Found Carbon nanotube-quartz resonator with femtogram resolution
US7814776B2 (en) 2004-11-11 2010-10-19 The Penn State Research Foundation Carbon nanotube-quartz resonator with femtogram resolution
DE102014111993A1 (en) * 2014-08-21 2016-02-25 Epcos Ag Microacoustic device with improved temperature compensation
DE102014111993B4 (en) * 2014-08-21 2017-12-21 Snaptrack, Inc. Microacoustic device with improved temperature compensation
US10224897B2 (en) 2014-08-21 2019-03-05 Snaptrack, Inc. Micro-acoustic component having improved temperature compensation

Similar Documents

Publication Publication Date Title
JP3339350B2 (en) Surface acoustic wave device
US5432392A (en) Surface wave device
US4489250A (en) Temperature compensated surface acoustic wave device
JP3173300B2 (en) Love wave device
US6710509B1 (en) Surface acoustic wave device
JP2006270906A (en) Temperature high stability/high-coupling groove structure surface acoustic wave substrate and surface acoustic wave function element using the substrate
US5719538A (en) Surface acoustic wave device having negative temperature coefficient of decay
JP2000151352A (en) Low loss surface acoustic wave filter on crystal substrate having optimized cut
JPS60169210A (en) Surface wave device
JPH0715274A (en) High frequency saw filter and surface acoustic wave function element using high-stability high coupling saw substrate
US20080111450A1 (en) Boundary acoustic wave device
JP2000188521A (en) Surface acoustic wave device and two port surface acoustic wave resonator
JP3255502B2 (en) Highly stable surface acoustic wave device
JP2000196410A (en) High-stability and high-coupling surface acoustic wave substrate, surface acoustic wave filter using the same and surface acoustic wave function element
JPH08181562A (en) Surface acoustic wave element
JP2002076835A (en) Surface acoustic wave element
JP2006203839A (en) Surface acoustic wave substrate having temperature highly stable diaphragm structure and surface acoustic wave function element using the substrate
JP3341596B2 (en) Surface wave device
JP2640936B2 (en) Piezoelectric resonator for overtone oscillation using higher-order mode vibration
JP3196474B2 (en) Surface wave device
JPH0228921B2 (en)
US20040150292A1 (en) Surface acoustic wave filter
JP7401999B2 (en) elastic wave element
JPS63173412A (en) Leaky saw resonator
JPS60259011A (en) Surface acoustic wave device