JPH081806B2 - Fuel cell separator and fuel cell using the same - Google Patents

Fuel cell separator and fuel cell using the same

Info

Publication number
JPH081806B2
JPH081806B2 JP3092030A JP9203091A JPH081806B2 JP H081806 B2 JPH081806 B2 JP H081806B2 JP 3092030 A JP3092030 A JP 3092030A JP 9203091 A JP9203091 A JP 9203091A JP H081806 B2 JPH081806 B2 JP H081806B2
Authority
JP
Japan
Prior art keywords
gas
fuel
fuel cell
gas flow
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3092030A
Other languages
Japanese (ja)
Other versions
JPH04322062A (en
Inventor
昌治 伊藤
秀和 藤村
昭三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3092030A priority Critical patent/JPH081806B2/en
Publication of JPH04322062A publication Critical patent/JPH04322062A/en
Publication of JPH081806B2 publication Critical patent/JPH081806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池のセパレータ
およびそれを用いた燃料電池に係り、特に、電池内の燃
料ガス、酸化剤ガスの濃度分布を均一にし、かつ電池面
内の出力分布、温度分布を一様にするのに好適なセパレ
ータおよびそれを用いた燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell separator and a fuel cell using the same, and more particularly, to uniform concentration distribution of fuel gas and oxidant gas in the cell and output distribution in the cell surface. , A separator suitable for uniforming temperature distribution, and a fuel cell using the same.

【0002】[0002]

【従来の技術】従来の燃料電池は、特開昭60ー189
868号公報に記載のように燃料、酸化剤ガスが電池の
入り口部から出口部へ流れていく間に、電気化学反応に
よりそのガス濃度が変化し、出口部では反応ガスの濃度
が低下するため、出口部に行くに従い入り口部より反応
ガスの電極内への拡散抵抗が小さくなるように電極内の
ガス流路長さを短くした構造にしている。しかし、この
構造では電極内の拡散抵抗は反応ガス濃度が低下した割
合だけ小さくすることはできるが、電極表面の反応ガス
濃度に勾配ができる。すなわち、生成ガスが電極から反
応ガス中へ流出する場合には生成ガスと反応ガスとによ
る濃度成層が生じ、その影響により電極面に対する実質
的な反応ガス濃度が低下する。
2. Description of the Related Art A conventional fuel cell is disclosed in JP-A-60-189.
As described in Japanese Patent No. 868, while the fuel and the oxidant gas flow from the inlet to the outlet of the cell, the gas concentration changes due to the electrochemical reaction, and the concentration of the reaction gas decreases at the outlet. The gas passage length in the electrode is shortened so that the diffusion resistance of the reaction gas into the electrode from the inlet becomes smaller as it goes to the outlet. However, with this structure, the diffusion resistance in the electrode can be reduced by the rate at which the reaction gas concentration has decreased, but the reaction gas concentration on the electrode surface can have a gradient. That is, when the generated gas flows out of the electrode into the reaction gas, a concentration stratification of the generated gas and the reaction gas occurs, and due to the influence, the substantial reaction gas concentration on the electrode surface decreases.

【0003】また、特開平1−279573号公報に記
載のように、波幅方向に狭くかつ進波方向に長い形状の
波板を互いにその波形が相対的にずれるようにして複数
枚配列してセパレータを構成し電気化学反応と反応ガス
の均一性を高めるようにしたものも知られている。
Further, as described in JP-A-1-279573, a separator is formed by arranging a plurality of corrugated plates each having a shape narrow in the width direction and long in the direction of the forward wave so that their waveforms are relatively displaced from each other. It is also known that the above is configured to enhance the uniformity of the electrochemical reaction and the reaction gas.

【0004】[0004]

【発明が解決しようとする課題】上記したように、従来
の燃料電池においては、電極とセパレータとで構成され
るガス流路内の電極表面に生成ガスによる濃度成層が生
じ、それにより電極面に対する実質的な反応ガス濃度が
低下し、その結果ガス流路出口側における電池性能が低
下するという問題があった。また、それに伴い、ガス入
り口部と出口部とでは大きな温度差が生じ、結果として
積層体全体とついても電池内での温度分布が不均一とな
っいてる。
As described above, in the conventional fuel cell, a concentration stratification by the generated gas is generated on the electrode surface in the gas flow path composed of the electrode and the separator, which causes the electrode surface to be separated. There has been a problem that the concentration of the reaction gas is substantially reduced, and as a result, the battery performance on the outlet side of the gas flow channel is reduced. Along with this, a large temperature difference occurs between the gas inlet portion and the gas outlet portion, and as a result, the temperature distribution in the battery is non-uniform even with the entire laminate.

【0005】また、特開平1−279573号公報に記
載のものは、確かにそのセパレータの構造に起因して電
気化学反応と反応ガスの均一性を高めることができる
が、セパレータそのものの構成が複雑であり、燃料電池
の製造組立に多くの困難を伴っている。本発明の目的
は、簡単な構成であり従ってその組付けも容易なもので
ありながら、反応ガスと生成ガスの混合を充分に促進
し、電極表面での反応ガス濃度を実質的に高くし、電池
性能を向上させる燃料電池のセパレータを提供するとと
もに、そのようなセパレータを有効に用いた単位電池を
複数個積層した燃料電池を得ることを目的としている。
Further, the one described in JP-A-1-279573 can certainly improve the uniformity of the electrochemical reaction and the reaction gas due to the structure of the separator, but the structure of the separator itself is complicated. Therefore, there are many difficulties in manufacturing and assembling the fuel cell. The object of the present invention is a simple structure and therefore easy to assemble, while sufficiently promoting the mixing of the reaction gas and the product gas, substantially increasing the reaction gas concentration on the electrode surface, It is an object of the present invention to provide a fuel cell separator that improves cell performance and obtain a fuel cell in which a plurality of unit cells effectively using such a separator are stacked.

【0006】[0006]

【課題を解決するための手段】上記目的を解決するため
に、本発明は、燃料ガス流路と酸化剤ガス流路を有しか
つ燃料ガスと酸化剤ガスとの混合を防止する燃料電池の
セパレータであって、少なくとも燃料ガス流路を、多数
の穴を有する波板をその溝列方向をガスの流れ方向に対
して直交方向に位置させて構成したことを特徴とする燃
料電池のセバレータ、およびそのようなセパレータを用
いた燃料電池を開示し、提供する。
In order to solve the above-mentioned problems, the present invention provides a fuel cell having a fuel gas passage and an oxidant gas passage and preventing mixing of the fuel gas and the oxidant gas. In the separator, at least the fuel gas flow path , a fuel cell separator comprising a corrugated plate having a large number of holes, the groove array direction of which is positioned in a direction orthogonal to the gas flow direction, And a fuel cell using such a separator is disclosed and provided.

【0007】さらに本発明は、多数の穴を有する波板を
燃料ガス側と酸化剤ガス側のガス流路に設けるととも
に、各単位電池の酸化剤ガスのガス流れ方向を隣接する
単位電池毎に逆方向とし、それにより積層電池全体の温
度分布を一様にすることができることを特徴とするたこ
と燃料電池をも開示する。
Further, the present invention provides a corrugated plate having a large number of holes.
It is provided in the gas flow path on the fuel gas side and the oxidant gas side, and the gas flow direction of the oxidant gas of each unit cell is set to the opposite direction for each adjacent unit cell, thereby making the temperature distribution of the whole laminated cell uniform. Also disclosed is a fuel cell characterized by being able to:

【0008】[0008]

【作用】電池内のセパレータにおいて、多数の穴を有す
る波板のその溝列に対して直交方向にガスを流下させそ
こに乱流を生じさせることにより、生成ガスと反応ガス
の混合が促進される。それにより、従来の燃料電池おい
て生じていた、電気化学反応により電極内で発生した生
成ガスと反応ガスとの間での電極表面に形成される濃度
境界層による濃度成層化を防止することができる。その
ため、反応ガスは生成ガスと完全に混合され、電極表面
での反応ガス濃度が生成ガスによって低下するのを防ぐ
ことができ、燃料、酸化剤ガス出口部での発電性能の低
下を減らすことにより、電池の性能向上を達成すること
ができる。また、これに加え、酸化剤ガス流路について
もこのような波板を設けることにより、酸化剤ガスを均
一に分布させることが可能となり、積層する各単位電池
ごとに逆方向に酸化剤ガスを流す構成を積層電池全体に
ついて取ることがてき、それにより積層電池全体の温度
分布が不均一となるのを防止できる。
In the separator in the battery, the gas is flowed down in a direction orthogonal to the groove array of the corrugated plate having a large number of holes to generate a turbulent flow therein, thereby promoting the mixing of the product gas and the reaction gas. It As a result, it is possible to prevent the concentration stratification due to the concentration boundary layer formed on the electrode surface between the generated gas generated in the electrode by the electrochemical reaction and the reaction gas, which has occurred in the conventional fuel cell. it can. Therefore, the reaction gas is completely mixed with the generated gas, and it is possible to prevent the reaction gas concentration on the electrode surface from decreasing due to the generated gas, and to reduce the decrease in power generation performance at the fuel and oxidant gas outlets. It is possible to improve the performance of the battery. In addition to this, by providing such a corrugated plate for the oxidant gas flow channel, it becomes possible to evenly distribute the oxidant gas, and the oxidant gas is fed in the reverse direction for each unit battery to be stacked. The flow configuration can be taken for the entire laminated battery, which can prevent the temperature distribution of the entire laminated battery from becoming non-uniform.

【0009】[0009]

【実施例】以下、本発明を幾つかの実施例に基づきより
詳細に説明する。図1は、本発明によるセパレータに用
いられる多数の穴を有する波板1の構造を示す斜視図で
ある。図示されるように、この波板1は連続した凹凸を
形成した波形の形状をしており、その全面に多数の穴3
が形成されている。一例として、この波板は厚さ0.3 か
ら0.5mm 程度の金属板、例えばステンレス鋼、銅板ある
いはニッケル板などの穴開き材をギヤ成形やプレス成形
で作ることができる。この波板1は単位電池のセパレー
タ内において、そのガスの流れ方向に対して、その溝列
を直角方向にして設置される。すなわち、図1に示すよ
うに、ガス流れ方向4を波板1の溝列2に対して直交方
向とし、セパレータの穴3の部分をガス流路としてい
る。図2は、図1に示す多数の穴を有する波板1を燃料
ガス側に使用した溶融炭酸塩型燃料電池の単位電池断面
図を、波板1の溝部の方向と平行な方向に沿った断面に
より示したものである。この例において酸化剤側のセパ
レータには通常の波板5、すなわち無穴の波板をその溝
部がガスの流れ方向と平行となるように位置させて設け
ている。燃料ガス流路用の波板1、及び酸化剤ガス流路
用の波板5は底板6にニッケルロー付けなどにより接合
されている。そして、該波板の間に酸化剤電極8、電解
質板7、燃料電極9が挟まれている。なお、この単位電
池の構成は燃料ガス流路用の波板1の構成およびその装
着の方向を除き従来のものと同様な構成であり、詳細な
説明は省略する。
The present invention will now be described in more detail with reference to some examples. FIG. 1 is a perspective view showing the structure of a corrugated plate 1 having a large number of holes used in a separator according to the present invention. As shown in the figure, the corrugated plate 1 has a corrugated shape with continuous unevenness, and a large number of holes 3 are formed on the entire surface thereof.
Are formed. As an example, this corrugated plate can be formed by gear forming or press forming a perforated material such as a metal plate having a thickness of about 0.3 to 0.5 mm, for example, stainless steel, copper plate or nickel plate. The corrugated plate 1 is installed in the separator of the unit cell with the groove array perpendicular to the gas flow direction. That is, as shown in FIG. 1, the gas flow direction 4 is orthogonal to the groove rows 2 of the corrugated plate 1, and the holes 3 of the separator are gas passages. FIG. 2 is a unit cell cross-sectional view of a molten carbonate fuel cell in which the corrugated sheet 1 having a large number of holes shown in FIG. 1 is used on the fuel gas side, taken along a direction parallel to the groove direction of the corrugated sheet 1. It is shown by a cross section. In this example, the separator on the oxidizer side is provided with a normal corrugated plate 5, that is, a corrugated plate having no hole, with its groove portion positioned so as to be parallel to the gas flow direction. The corrugated sheet 1 for the fuel gas passage and the corrugated sheet 5 for the oxidant gas passage are joined to the bottom plate 6 by nickel brazing or the like. The oxidizer electrode 8, the electrolyte plate 7, and the fuel electrode 9 are sandwiched between the corrugated plates. The configuration of this unit cell is the same as that of the conventional one except for the configuration of the corrugated plate 1 for the fuel gas flow path and the mounting direction thereof, and detailed description thereof will be omitted.

【0010】次に、本発明におけるガス混合による反応
ガス濃度の増大作用について説明する。図3は、図2の
AーA断面図を示している。電池内の燃料電極9側に供
給される燃料ガス10(例えば、水素:炭酸ガス=80:
20)は、酸化剤電極8側に供給される酸化剤ガス11
(例えば、空気:炭酸ガス=70:30)が酸化剤電極8で
電気化学反応により生成した炭酸イオンと燃料電極9内
で電気化学反応により発電し、その際、炭酸ガスと水と
の生成ガス12を生じる。この生成ガス12は燃料電極
9から燃料ガス流路13に流出し、下流へ流れていく。
このように生成ガス12は電気化学反応による発電が進
むに従い多量となり、燃料ガスとの間に生成ガス層を形
成することになる。
Next, the function of increasing the concentration of the reaction gas by mixing the gases in the present invention will be described. FIG. 3 shows a sectional view taken along the line AA of FIG. Fuel gas 10 supplied to the fuel electrode 9 side in the cell (for example, hydrogen: carbon dioxide gas = 80:
20) is the oxidant gas 11 supplied to the oxidant electrode 8 side.
(For example, air: carbon dioxide gas = 70: 30) generates electricity by the electrochemical reaction in the fuel electrode 9 and the carbonate ions produced by the electrochemical reaction at the oxidizer electrode 8, and at that time, the produced gas of carbon dioxide gas and water Yields 12. The generated gas 12 flows out from the fuel electrode 9 into the fuel gas flow path 13 and flows downstream.
As described above, the generated gas 12 increases in amount as power generation by the electrochemical reaction progresses, and forms a generated gas layer with the fuel gas.

【0011】本発明においては例えば上記した実施例の
ように、燃料ガス10の流路に波板1に有する多数の穴
3を介在させたことにより、ガス流れに乱れが生じ、こ
の乱れにより生成ガス12と燃料ガス10とが混合し、
生成ガス層が消滅することになる。その結果、電極表面
には混合状態の燃料ガスが供給されることになり、この
ことはガス流の下流側において従来のものに比べ電極面
に対して実質的に高い濃度の燃料ガスが供給されること
となる。このように、多穴の流路によりガス流に乱れが
発生すれば、電池ガス流路出口についても燃料ガスを有
効に利用することが可能となる。
In the present invention, for example, as in the above-described embodiment, by interposing a large number of holes 3 in the corrugated plate 1 in the flow path of the fuel gas 10, turbulence occurs in the gas flow and is generated by this turbulence. The gas 12 and the fuel gas 10 are mixed,
The produced gas layer will disappear. As a result, the mixed fuel gas is supplied to the electrode surface, which means that the fuel gas of substantially higher concentration is supplied to the electrode surface on the downstream side of the gas flow than the conventional one. The Rukoto. In this way, if the gas flow is disturbed by the multi-hole flow passage, the fuel gas can be effectively used also at the cell gas flow passage outlet.

【0012】図4は燃料ガス流路内の電極表面からガス
流路高さ方向への反応ガス(水素)濃度分布を電池入り
口から出口へとして示した図である。図4の(a)は従
来例の場合で、電池入り口から出口へ燃料ガスが流れて
いく間に、反応ガス(水素)濃度が電極表面から高さ方
向へ大きく変化し、電極表面の反応ガス濃度はかなり低
くなる。したがって、燃料ガス出口部の発電性能が大幅
に低下する結果となる。一方、図4(b)の本発明の実
施例では、入り口部で反応ガス濃度はy軸(高さ方向)
に一様であり、発電により反応ガスが消費され、生成ガ
スが流入するため下流に行くにしたがって絶対的な濃度
は低下するが、電極表面から高さ方向への濃度変化はガ
ス混合効果により非常に小さくなっている。
FIG. 4 is a diagram showing the reaction gas (hydrogen) concentration distribution from the electrode surface in the fuel gas flow path to the height direction of the gas flow path from the cell inlet to the cell outlet. FIG. 4A shows the case of the conventional example, in which the reaction gas (hydrogen) concentration greatly changes from the electrode surface to the height direction while the fuel gas flows from the cell inlet to the outlet, and the reaction gas on the electrode surface is changed. The concentration will be much lower. As a result, the power generation performance at the fuel gas outlet is significantly reduced. On the other hand, in the embodiment of the present invention shown in FIG. 4B, the reaction gas concentration at the inlet is the y-axis (height direction).
Since the reaction gas is consumed by the power generation and the generated gas flows in, the absolute concentration decreases toward the downstream, but the concentration change from the electrode surface to the height direction is extremely high due to the gas mixing effect. It is getting smaller.

【0013】以上のように、本実施例によれば、燃料ガ
ス流路中の反応ガスと、発電に伴う生成ガスとの混合が
完全に行なわれるため、電極表面の反応ガス濃度が高く
なり、電池の燃料ガス出口部での発電性能向上が達成さ
れる。図5は本発明の他の実施例を示している。この実
施例においては、多数の穴を有する波板1を酸化剤ガス
側のガス流路にも用い、さらに、酸化剤ガスのガス流れ
方向を、隣接するすなわち上下に位置する各単位電池と
は互いに逆方向となるように各単位電池を積層してい
る。すなわち、図5(a)に示すように酸化剤ガスが図
において上方から下方に流れる構成のカソードA面を持
つ単位電池と、図5(b)に示すように下方から上方に
流れる構成のカソードB面を持つ単位電池とを交互に積
層して積層電池を形成する。そして、各セパレータに
は、前記の実施例と同様に、本発明による多数の穴を有
する波板1をそれぞれその溝列がガス流とは直交方向と
なるように位置させて設けるとともに波板1の周囲には
図示のようにガス流入用マニホールド15とガス排出用
マニホールド17とをそれぞれ対角線方向に位置させて
形成する。従来のセパレータにおいてはマニホールドを
このような位置関係に置くとガス流が均一に分布しない
ことから実用的でなく、結果としてこの実施例のよう
に、各単位電池ごとに酸化剤ガスの流れが逆方向となる
ように各単位電池を積層することができなかった。
As described above, according to this embodiment, the reaction gas in the fuel gas flow passage and the generated gas accompanying power generation are completely mixed, so that the reaction gas concentration on the electrode surface becomes high, Improved power generation performance at the fuel gas outlet of the cell is achieved. FIG. 5 shows another embodiment of the present invention. In this embodiment, the corrugated plate 1 having a large number of holes is also used in the gas flow path on the oxidant gas side, and the gas flow direction of the oxidant gas is different from that of the unit cells adjacent to each other, that is, above and below. The unit batteries are stacked so that the directions are opposite to each other. That is, as shown in FIG. 5 (a), a unit cell having a cathode A surface in which the oxidant gas flows from the upper side to the lower side in the figure, and a cathode in which the oxidant gas flows from the lower side to the upper side as shown in FIG. 5 (b). A unit battery having a B side is alternately laminated to form a laminated battery. Then, in the same manner as in the above-described embodiment, each separator is provided with corrugated plate 1 according to the present invention having a large number of holes, positioned so that the groove rows thereof are orthogonal to the gas flow, and the corrugated plate 1 is also provided. As shown in the drawing, a gas inflow manifold 15 and a gas exhaust manifold 17 are formed around the periphery of the slab so as to be diagonally positioned. In the conventional separator, placing the manifold in such a positional relationship is not practical because the gas flow is not evenly distributed. It was not possible to stack the unit batteries so as to be oriented.

【0014】この実施例におけるガスの流れ方向は、図
5(a)のカソードA面については、図において右上方
のガス流入用マニホールド15から流入した酸化剤ガス
は波板1を通過14して左下方に位置するガス排出用マ
ニホールド17へと流れ、図5(b)のカソードB面に
ついては右下に位置するガス流入用マニホールド15’
から流入した酸化剤ガスは波板1を通過14して右上方
に位置するガス排出用マニホールド17’へと流れる。
この場合に、この実施例においても、多数の穴を有する
波板1の多穴部3をガス流路としているので、ガス流入
用マニホールドが一側辺部に偏位しているにも係わらす
酸化剤ガスのセパレータ内への拡散が良好となり、セパ
レータ全面へガスが供給されるようになる。
In the flow direction of the gas in this embodiment, with respect to the cathode A surface of FIG. 5A, the oxidant gas flowing from the gas inflow manifold 15 at the upper right of the drawing passes through the corrugated plate 1 14 It flows to the gas exhaust manifold 17 located at the lower left, and the gas inflow manifold 15 ′ located at the lower right on the cathode B surface of FIG. 5B.
The oxidant gas flowing in from 14 passes through the corrugated plate 1 and flows to the gas discharge manifold 17 ′ located on the upper right side.
In this case, also in this embodiment, since the multi-hole portion 3 of the corrugated plate 1 having a large number of holes is used as the gas flow path, it does not matter even if the gas inflow manifold is deviated to one side portion. Diffusion of the oxidant gas into the separator is improved, and the gas is supplied to the entire surface of the separator.

【0015】このような構造にすることにより、前記実
施例で説明した燃料ガス側のガス混合による電池性能の
向上という効果の他に、後記するように積層電池全体の
温度分布を一様化するという効果がある。すなわち、例
えば、従来のガスフローパターンのようにガスの流れ方
向が一方向からの場合、ガスの入り口部と出口部では大
きな温度差がある。この温度差は積層電池全体について
もいえることであり、電池内の温度分布が不均一にな
る。電池内の温度分布が不均一になると、電池の性能、
寿命、信頼性を考えた場合、反応分布の不均一に伴う性
能低下や、熱応力の増大、材料腐食要因の増加などの種
々の問題が生じる。そこで、この温度分布を一様化する
手段として、本実施例の電池構造が有効となる。
With such a structure, in addition to the effect of improving the cell performance by the gas mixture on the fuel gas side described in the above embodiment, the temperature distribution of the entire laminated battery is made uniform as described later. There is an effect. That is, for example, when the gas flow direction is one direction as in the conventional gas flow pattern, there is a large temperature difference between the gas inlet portion and the gas outlet portion. This temperature difference can be applied to the entire laminated battery, and the temperature distribution in the battery becomes non-uniform. If the temperature distribution inside the battery becomes uneven, the battery performance,
In consideration of life and reliability, various problems such as performance degradation due to non-uniform reaction distribution, increase in thermal stress, and increase in material corrosion factor occur. Therefore, the battery structure of this embodiment is effective as a means for making this temperature distribution uniform.

【0016】図6は本実施例におけるカソード面のガス
流れ方向の温度と、積層電池の温度変化を示す図であ
る。図の破線(a)は図5(a)のカソードA面での温
度変化であり、上記したようにガスの入り口、出口間で
大きな温度差が生じ、この単位電池の温度分布は不均一
となる。一方図5(b)に示すようにカソードB面では
カソードA面とは逆方向にガスが流れているのでカソー
ドA面と隣合うカソードB面は破線(b)で示したよう
な温度変化となる。積層電池の各単位電池で、交互に逆
方向の流れとすることにより、図6に示すように、高温
領域と低温領域が重なり合うため、相互の熱移動によ
り、積層電池全体としては図の実線で示すように、入り
口、出口間で一様な温度変化となり、温度分布の一様な
燃料電池とすることができる。なお、この実施例におい
て、燃料ガス流路側に本発明による波板を位置させるこ
とは必ずしも必須でないことは容易に理解されよう。
FIG. 6 is a diagram showing the temperature change in the gas flow direction on the cathode surface and the temperature change of the laminated battery in this embodiment. The broken line (a) in the figure is the temperature change on the cathode A surface of FIG. 5 (a), and as described above, a large temperature difference occurs between the gas inlet and the gas outlet, and the temperature distribution of this unit cell is non-uniform. Become. On the other hand, as shown in FIG. 5B, since the gas flows in the opposite direction to the cathode A surface on the cathode B surface, the cathode B surface adjacent to the cathode A surface has a temperature change as shown by the broken line (b). Become. By alternately flowing in opposite directions in each unit cell of the laminated battery, the high temperature region and the low temperature region overlap as shown in FIG. 6, and due to mutual heat transfer, the entire laminated battery is indicated by the solid line in the figure. As shown, the temperature changes uniformly between the inlet and the outlet, so that the fuel cell can have a uniform temperature distribution. It should be easily understood that, in this embodiment, it is not always essential to position the corrugated sheet according to the present invention on the fuel gas channel side.

【0017】以上のように、本実施例によれば、前記実
施例の持つ効果に加え、積層電池全体の温度分布を一様
化することが可能となり、性能、寿命、信頼性の優れた
燃料電池を得ることができる。なお、上記の説明では、
波板としてその全面に円形の穴を開けそれを波板状に成
形したものを示したが、以上の説明から明らかなように
該穴はガス流路としての機能を奏するものであればその
穴の形状は方形、楕円形など任意の形状でよく、また、
穴を設ける位置は少なくともガス流に乱流を生じさせる
位置に形成されていれはよく、例えば図3において該波
板が酸化剤電極、燃料電極に接しているような部分には
必ずしも設ける必要がなく、また穴の数、大きさも適宜
選択しうるものである。
As described above, according to this embodiment, in addition to the effect of the above embodiment, it becomes possible to make the temperature distribution of the whole laminated battery uniform, and the fuel having excellent performance, life and reliability is obtained. You can get a battery. In the above explanation,
As the corrugated plate, a circular hole is formed on the entire surface of the corrugated plate, and the corrugated plate is formed. However, as is clear from the above description, if the hole has a function as a gas flow path, the hole is formed. The shape of may be any shape such as square or elliptical, and
The holes may be provided at least at positions where turbulence is generated in the gas flow. For example, in FIG. 3, the corrugated plate need not necessarily be provided in a portion in contact with the oxidizer electrode and the fuel electrode. In addition, the number and size of the holes can be appropriately selected.

【0018】[0018]

【発明の効果】本発明によれば、電池内の燃料、酸化剤
ガスと発電による生成ガスとが積極的に混合されること
により、電池のガス出口部においても電極表面の燃料、
酸化剤ガス濃度が実質的に高くなるため、発電性能の向
上が達成できる。また、積層電池の各単位電池のガス流
れ方向を逆方向とすることにより、積層電池全体の温度
分布一様化が図られ、性能、寿命、信頼性の優れた燃料
電池を得ることができる。
According to the present invention, the fuel in the cell, the oxidant gas, and the gas generated by power generation are positively mixed, so that the fuel on the surface of the electrode, even at the gas outlet of the cell,
Since the oxidant gas concentration is substantially increased, the improvement of power generation performance can be achieved. Further, by making the gas flow direction of each unit cell of the laminated battery to be the opposite direction, the temperature distribution of the entire laminated cell can be made uniform, and a fuel cell excellent in performance, life and reliability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による多数の穴を有する波板の一実施例
を示す斜視図。
FIG. 1 is a perspective view showing an embodiment of a corrugated plate having many holes according to the present invention.

【図2】本発明による波板を設けた単位電池の部分断面
図。
FIG. 2 is a partial cross-sectional view of a unit battery provided with a corrugated plate according to the present invention.

【図3】図2のA−A線による断面図。FIG. 3 is a sectional view taken along line AA of FIG. 2;

【図4】ガス流路内の反応ガス濃度分布を示す図。FIG. 4 is a view showing a reaction gas concentration distribution in a gas channel.

【図5】本発明の他の実施例におけるガス流れ方向を示
す説明図。
FIG. 5 is an explanatory view showing a gas flow direction in another embodiment of the present invention.

【図6】電池内ガス温度と積層電池の温度変化を示す
図。
FIG. 6 is a diagram showing changes in gas temperature in the battery and temperature of the laminated battery.

【符号の説明】[Explanation of symbols]

1:多数の穴を有する波板 3:流路としての穴 5:
波板 7:電界質板 8:酸化剤電極 9:燃料電極 10:
燃料ガス 11:酸化剤ガス 12:生成ガス
1: Corrugated plate having a large number of holes 3: Holes as a flow path 5:
Corrugated plate 7: Electrolyte plate 8: Oxidizer electrode 9: Fuel electrode 10:
Fuel gas 11: Oxidizer gas 12: Product gas

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 燃料ガス流路と酸化剤ガス流路を有しか
つ燃料ガスと酸化剤ガスとの混合を防止する燃料電池の
セパレータであって、少なくとも燃料ガス流路を、多数
の穴を有する波板の該溝列方向をガスの流れ方向に対し
て直交方向に位置させて構成したことを特徴とする燃料
電池のセパレータ
1. A separator of a fuel cell having a fuel gas flow passage and an oxidant gas flow passage and preventing mixing of the fuel gas and the oxidant gas, wherein at least the fuel gas flow passage is provided with a large number of holes. A separator for a fuel cell, characterized in that the groove array direction of the corrugated plate is arranged to be orthogonal to the gas flow direction.
【請求項2】 溶融炭酸塩を保持した電解質板、電解質
板を両側からはさむアノ−ドおよびカソ−ド、およびそ
の外側に位置し燃料ガスおよび酸化剤ガスの流路を有し
かつ燃料ガスと酸化剤ガスとの混合を防止するセパレ−
タとから構成される単位電池を複数個積層した燃料電池
において、該セパレータは少なくともその燃料ガス流路
を、多数の穴を有する波板の該溝列方向をガスの流れ方
向に対して直交方向に位置させて構成したことを特徴と
する燃料電池。
2. An electrolyte plate holding molten carbonate, an anode and a cathode sandwiching the electrolyte plate from both sides, and a fuel gas and an oxidant gas flow path located outside the anode and cathode, and having a fuel gas Separation to prevent mixing with oxidant gas
In a fuel cell in which a plurality of unit cells each including a separator are stacked, the separator has at least its fuel gas flow path , and the groove array direction of a corrugated plate having a large number of holes is in the gas flow direction. A fuel cell characterized in that it is arranged in a direction orthogonal to the fuel cell.
【請求項3】 多数の穴を有する波板を酸化剤ガス側の
ガス流路にも設けるとともに、各単位電池の酸化剤ガス
のガス流れ方向を隣接する単位電池ごとに逆方向とした
こと特徴とする、請求項2記載の燃料電池。
3. A corrugated plate having a large number of holes is provided on the oxidant gas side.
3. The fuel cell according to claim 2, wherein the fuel cell is also provided in the gas flow path, and the gas flow direction of the oxidant gas of each unit cell is opposite to that of each adjacent unit cell.
【請求項4】 各単位電池での酸化剤ガス側の供給用マ
ニホールドおよび排出用マニホールドとがセパレータの
対角線方向にそれぞれ位置して設けられていることを特
徴とする、請求項2記載の燃料電池。
4. The fuel cell according to claim 2, wherein the supply manifold and the discharge manifold on the oxidant gas side of each unit cell are provided respectively in a diagonal direction of the separator. .
JP3092030A 1991-04-23 1991-04-23 Fuel cell separator and fuel cell using the same Expired - Fee Related JPH081806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3092030A JPH081806B2 (en) 1991-04-23 1991-04-23 Fuel cell separator and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3092030A JPH081806B2 (en) 1991-04-23 1991-04-23 Fuel cell separator and fuel cell using the same

Publications (2)

Publication Number Publication Date
JPH04322062A JPH04322062A (en) 1992-11-12
JPH081806B2 true JPH081806B2 (en) 1996-01-10

Family

ID=14043139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3092030A Expired - Fee Related JPH081806B2 (en) 1991-04-23 1991-04-23 Fuel cell separator and fuel cell using the same

Country Status (1)

Country Link
JP (1) JPH081806B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806352B2 (en) * 2014-06-12 2017-10-31 Hyundai Motor Company Fuel cell

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4695978B2 (en) * 2005-12-26 2011-06-08 本田技研工業株式会社 Humidifier for reactive gas
JP5125275B2 (en) 2007-02-05 2013-01-23 トヨタ自動車株式会社 Fuel cell and vehicle equipped with fuel cell
JP5470232B2 (en) * 2010-12-08 2014-04-16 本田技研工業株式会社 Flat type solid electrolyte fuel cell
KR20150142797A (en) * 2014-06-11 2015-12-23 현대자동차주식회사 Fuel cell separator, and fuel cell comprising the same
DE102017130489A1 (en) * 2017-01-31 2018-08-02 Schaeffler Technologies AG & Co. KG Bipolar plate for a fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806352B2 (en) * 2014-06-12 2017-10-31 Hyundai Motor Company Fuel cell

Also Published As

Publication number Publication date
JPH04322062A (en) 1992-11-12

Similar Documents

Publication Publication Date Title
JP4700910B2 (en) Fuel cell flow field plate
US7820315B2 (en) Fuel cell stack having coolant passage whose lower area has larger flow resistance
KR101693993B1 (en) Bipolar plate for fuel cell
US8778553B2 (en) Fuel cell
US20110274999A1 (en) Fuel cell stack
JPH0831322B2 (en) Internal reforming fuel cell and power plant using the same
KR20040031697A (en) Fluid flow-fields for electrochemical devices
JP5241049B2 (en) Fuel cell
US8053125B2 (en) Fuel cell having buffer and seal for coolant
CN112909283A (en) Proton exchange membrane fuel cell bipolar plate
US20060003220A1 (en) Fuel cell
TWI474548B (en) Polar plate and polar plate unit using the same
JP2017208232A (en) Fuel cell
US7335438B2 (en) Bipolar plate and fuel cell including the same
US6833213B2 (en) Separator for a fuel cell
JPH03266365A (en) Separator of solid electrolytic type fuel cell
JPH081806B2 (en) Fuel cell separator and fuel cell using the same
JP2570771B2 (en) Fuel cell cooling method
JP2019179759A (en) Cell group for power adaptation of electrochemical reactor
CN210805927U (en) Bipolar plate of fuel cell
US7097931B2 (en) Fluid flow-fields for electrochemical devices
JPS5830074A (en) Fuel cell
JPH08339814A (en) Fuel cell
JPS6217959A (en) Molten carbonate type fuel cell
EP4354557A1 (en) Separator for fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees