JPH08180493A - Minute displacement measuring instrument - Google Patents

Minute displacement measuring instrument

Info

Publication number
JPH08180493A
JPH08180493A JP32889294A JP32889294A JPH08180493A JP H08180493 A JPH08180493 A JP H08180493A JP 32889294 A JP32889294 A JP 32889294A JP 32889294 A JP32889294 A JP 32889294A JP H08180493 A JPH08180493 A JP H08180493A
Authority
JP
Japan
Prior art keywords
diffraction grating
light
pitch
diffracted
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32889294A
Other languages
Japanese (ja)
Other versions
JP3573367B2 (en
Inventor
Hideo Maeda
英男 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP32889294A priority Critical patent/JP3573367B2/en
Publication of JPH08180493A publication Critical patent/JPH08180493A/en
Application granted granted Critical
Publication of JP3573367B2 publication Critical patent/JP3573367B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE: To improve detection sensitivity of a focus error signal by setting the grating shape of double diffraction gratings constituting an interference fringes generation means in a prescribed relation. CONSTITUTION: The recording surface of an optical disk 13 is irradiated with a beam emitted from a semiconductor laser (LD) 9 through a collimate lens 10, a beam splitter 11 and an objective lens 12, and the reflected light is made incident on a photodetector(PD) 14 through the objective lens 12, the beam splitter 11. The double diffraction grating 15 consisting of a first diffraction grating 15a generating a first diffracted beam k1 and a second diffraction grating 15b generating plural second diffracted beams k2 is arranged between the beam splitter 11 and the PD 14, and a movement amount in the axial direction of the optical disk 13 is measured from the phase change of the interference fringes of the second diffracted beams k2 . At this time, the grating shape is set so that the phase is shifted by 1/4 wavelength from the second diffracted beams k2 becoming the interference fringes. For instance, the relative phases of the first, second diffraction gratings 15a, (b) are made to have 1/8 pitch of the grating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】[Industrial applications]

【0002】[0002]

【従来の技術】従来、光磁気ディスク用の光学ヘッドに
使用されているフォーカスエラー信号を用いたフォーカ
スサーボ方式としては、非点収差法、臨界角法、ナイフ
エッジ法などが知られている。この中において、非点収
差法は光磁気ディスク用として用いられる他、コンパク
トディスク、レーザディスクを含む光ディスク全般に用
いられている。非点収差法に関する公知技術としては、
特公昭53−39123号公報に「自動焦点調整装
置」、特公昭57−12188号公報に「動いているデ
ータキャリア上に読取光ビームを集束させる装置」、特
公昭60−48949号公報に「光ビームで情報を読み
取る装置」、特公昭61−61178号公報に「自動焦
点調節法」としてそれぞれ開示されている。
2. Description of the Related Art Conventionally, astigmatism method, critical angle method, knife edge method and the like are known as focus servo methods using a focus error signal used in optical heads for magneto-optical disks. Among them, the astigmatism method is used not only for magneto-optical discs but also for general optical discs including compact discs and laser discs. Known techniques relating to the astigmatism method include:
Japanese Patent Publication No. 53-39123 discloses an "automatic focus adjustment device", Japanese Patent Publication No. 57-12188 discloses "a device for focusing a reading light beam on a moving data carrier", and Japanese Patent Publication No. 60-48949 discloses "optical". An apparatus for reading information with a beam "and Japanese Patent Publication No. 61-61178 disclose" automatic focusing method ".

【0003】図10は、光ピックアップ装置における非
点収差法の動作原理を示したものである。半導体レーザ
(図示せず)から出射した光は、コリメートレンズ(図
示せず)によりコリメートされ、ビームスプリッタ1を
透過して対物レンズ2により集光されて光ディスク3の
面上に照射され、これにより情報の記録等が行われる。
また、光ディスク3からの反射光は、対物レンズ2を透
過し、ビームスプリッタ1により今度は反射され、集光
レンズ4、円筒レンズ5を順次透過して非点収差が発生
したビーム6となり、このビーム6は4分割受光面a,
b,c,dをもつ受光素子7に導かれる。そして、その
受光素子7の出力がアンプ8に送られることによりフォ
ーカスエラー信号Feが検出される。
FIG. 10 shows the operating principle of the astigmatism method in an optical pickup device. Light emitted from a semiconductor laser (not shown) is collimated by a collimator lens (not shown), transmitted through the beam splitter 1, condensed by the objective lens 2 and irradiated onto the surface of the optical disc 3. Information is recorded.
Further, the reflected light from the optical disk 3 passes through the objective lens 2, is reflected by the beam splitter 1 this time, and is sequentially transmitted through the condenser lens 4 and the cylindrical lens 5 to become a beam 6 having astigmatism. The beam 6 is a 4-division light receiving surface a,
It is guided to the light receiving element 7 having b, c and d. Then, the output of the light receiving element 7 is sent to the amplifier 8 to detect the focus error signal Fe.

【0004】この場合、光ディスク3の合焦時には、そ
の光ディスク3からの反射光のビーム6の形状は、受光
素子7の4分割受光面a,b,c,dにおいて円形とな
る。この時、差動出力{(a+c)−(b+d)}の値
は零となり、フォーカスエラー信号Feの値は0となり
検出されない。また、光ディスク3が対物レンズ2から
遠くなったり近くなったりすると、ビーム6の形状は円
形から長円形状となり、差動出力は零とならず、これに
よりフォーカスエラー信号の値は正(遠い)或いは負
(近い)となって、対物レンズの位置調整が行われる。
In this case, when the optical disc 3 is focused, the beam 6 of the reflected light from the optical disc 3 has a circular shape on the four-divided light receiving surfaces a, b, c, d of the light receiving element 7. At this time, the value of the differential output {(a + c)-(b + d)} becomes zero and the value of the focus error signal Fe becomes 0, which is not detected. Further, when the optical disk 3 becomes far from or near the objective lens 2, the shape of the beam 6 changes from a circular shape to an elliptical shape, and the differential output does not become zero, so that the value of the focus error signal is positive (far). Alternatively, the position of the objective lens is adjusted to be negative (close).

【0005】[0005]

【発明が解決しようとする課題】近年、この種の光ディ
スク装置においては、アクセスタイムの高速化が要求さ
れており、このような目的を達成するためには、光ピッ
クアップ部の小型化、軽量化が必要不可欠となる。しか
し、前述したような非点収差法を用いたフォーカスサー
ボ方式では、ビームの形状変化を検出するために、受光
素子7までの距離(検出長)をある程度大きく(数c
m)しなければ十分な検出感度を得ることができない。
従って、従来の光ディスク装置においては小型化におの
ずと限界がある。また、受光素子7上のスポット径は数
ミクロンから数十ミクロンとかなり小さいため、調整が
難しく、環境によってはオフセットが生じることになる
ので、検出された信号が不安定となる。
In recent years, there has been a demand for faster access times in this type of optical disk device, and in order to achieve such an object, the optical pickup unit is made smaller and lighter. Is essential. However, in the focus servo method using the astigmatism method as described above, the distance (detection length) to the light receiving element 7 is increased to some extent (a few c
If m) is not satisfied, sufficient detection sensitivity cannot be obtained.
Therefore, there is a limit to miniaturization in the conventional optical disk device. Further, since the spot diameter on the light receiving element 7 is as small as several microns to several tens of microns, it is difficult to adjust, and an offset occurs depending on the environment, so that the detected signal becomes unstable.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明で
は、n1 次光とn2 次光との第一回折光を発生する第一
回折格子と、前記第一回折光が入射することにより複数
の回折された第二回折光を発生する第二回折格子とから
なり、互いに干渉し合う前記第二回折光の位相が1/4
波長だけずれるような形状に各回折格子が形成された干
渉縞発生手段を設け、この干渉縞発生手段により生じた
前記第二回折光の間での干渉により干渉縞の位相の変化
を受光素子に検知することによって前記測定物の光軸方
向への移動量を測定するようにした。
According to a first aspect of the invention, a first diffraction grating for generating first diffracted light of n 1 -order light and n 2 -order light, and the first diffracted light are incident. And a second diffraction grating that generates a plurality of diffracted second diffracted light beams, and the phases of the second diffracted light beams that interfere with each other are 1/4.
An interference fringe generating means is provided in which each diffraction grating is formed in a shape that is shifted by the wavelength, and a change in the phase of the interference fringe is caused in the light receiving element by the interference between the second diffracted light generated by the interference fringe generating means. The amount of movement of the measurement object in the optical axis direction is measured by detecting the amount.

【0007】請求項2記載の発明では、請求項1記載の
発明において、第一回折格子と第二回折格子との相対的
な位相を、回折格子の4分の1ピッチを(n1 −n2
で割った値、又は、その値にさらに1ピッチを(n1
2 )で割った値を1個ないしは複数個加算又は減算し
た値に設定した。
According to a second aspect of the present invention, in the first aspect of the invention, the relative phase between the first diffraction grating and the second diffraction grating is set to a quarter pitch of the diffraction grating (n 1 -n 2 )
Divided by, or 1 pitch is added to that value (n 1
The value divided by n 2 ) is set to a value obtained by adding or subtracting one or a plurality of values.

【0008】請求項3記載の発明では、請求項1記載の
発明において、第一回折格子と第二回折格子とを等ピッ
チとし、±1次光の第二回折光を用いて干渉縞を発生さ
せる場合、第一回折格子と第二回折格子との相対的な位
相を、回折格子の8分の1ピッチ、又は、8分の5ピッ
チの値に設定した。
According to a third aspect of the present invention, in the first aspect of the present invention, the first diffraction grating and the second diffraction grating have an equal pitch, and interference fringes are generated by using the second diffracted light of ± first-order light. In this case, the relative phase between the first diffraction grating and the second diffraction grating was set to a value of 1/8 pitch or 5/8 pitch of the diffraction grating.

【0009】請求項4記載の発明では、請求項1記載の
発明において、ピッチがΛ1 の第一回折格子により得ら
れる第一回折光をn1 次光とn2 次光とし、ピッチがΛ
2 の第二回折格子により得られる第二回折光をm1 次光
とm2 次光としたとき、各回折格子のピッチと回折光の
次数とを、 Λ21 +Λ11 =Λ22 +Λ12 の関係式を満たすように設定した。
According to a fourth aspect of the invention, in the first aspect of the invention, the first diffracted light obtained by the first diffraction grating having a pitch of Λ 1 is n 1 -order light and n 2 -order light, and the pitch is Λ.
When the second diffracted light obtained by the second diffractive grating of 2 is m 1 -order light and m 2 -order light, the pitch of each diffraction grating and the order of diffracted light are Λ 2 n 1 + Λ 1 m 1 = Λ It was set so as to satisfy the relational expression of 2 n 2 + Λ 1 m 2 .

【0010】[0010]

【作用】請求項1記載の発明においては、第二回折光の
位相が1/4波長だけずれるような形状に干渉縞発生手
段の各回折格子を形成したことによって、第二回折光の
干渉縞分布から求められるフォーカスエラー信号のS字
曲線を最大にすることができ、この最大とされたS字曲
線からデフォーカス量を容易に求めることができる。
According to the first aspect of the invention, the diffraction fringes of the second diffracted light are formed by forming the diffraction gratings of the interference fringe generating means in a shape such that the phase of the second diffracted light is shifted by ¼ wavelength. The S-shaped curve of the focus error signal obtained from the distribution can be maximized, and the defocus amount can be easily obtained from this maximized S-shaped curve.

【0011】請求項2記載の発明においては、4分の1
ピッチを(n1 −n2 )で割った値か、又は、その4分
の1ピッチを(n1 −n2 )で割った値に、1ピッチを
(n1 −n2 )で割った値を1個ないしは複数個加算又
は減算した値に設定することによって、互いに干渉し合
う第二回折光の位相を1/4波長だけ正確にずらすこと
ができる。
According to the second aspect of the invention, a quarter
The value obtained by dividing the pitch by (n 1 −n 2 ), or the value obtained by dividing the quarter pitch by (n 1 −n 2 ) by 1 pitch divided by (n 1 −n 2 ). By setting the value to one or to a value obtained by adding or subtracting a plurality of values, the phases of the second diffracted lights that interfere with each other can be accurately shifted by ¼ wavelength.

【0012】請求項3記載の発明においては、第一回折
格子と第二回折格子との相対的な位相を、8分の1ピッ
チ、又は、8分の5ピッチの値に設定したことによっ
て、互いに干渉し合う第二回折光の位相を1/4波長だ
け正確にしかも容易にずらすことができる。また、第一
回折格子と第二回折格子とを等ピッチすなわち同一の格
子ピッチとし、±1次光の第二回折光を用いて干渉縞を
発生させることによって、回折格子の作成を容易に行う
ことができ、しかも、これにより干渉縞を受光する受光
素子側の形状も簡易化させることができる。
According to the third aspect of the present invention, the relative phase between the first diffraction grating and the second diffraction grating is set to a value of 1/8 pitch or 5/8 pitch. The phases of the second diffracted lights that interfere with each other can be accurately and easily shifted by a quarter wavelength. Further, the first diffraction grating and the second diffraction grating have an equal pitch, that is, the same grating pitch, and the interference fringes are generated by using the second diffraction light of the ± first-order light, thereby facilitating the creation of the diffraction grating. In addition, the shape on the side of the light receiving element that receives the interference fringes can be simplified.

【0013】請求項4記載の発明においては、第一回折
格子と第二回折格子とのピッチを異ならせ、各回折格子
のピッチと回折光の次数との間で一定の条件式を満足さ
せることによって、干渉縞となる第二回折光の位相を1
/4波長だけずらすことができる。
In the invention of claim 4, the pitches of the first diffraction grating and the second diffraction grating are made different, and a constant conditional expression is satisfied between the pitch of each diffraction grating and the order of the diffracted light. To set the phase of the second diffracted light that becomes the interference fringe to 1
It can be shifted by / 4 wavelength.

【0014】[0014]

【実施例】本発明の第一の実施例を図1〜図3に基づい
て説明する(請求項1記載の発明に対応する)。まず、
微小変位測定装置の全体構成を図2に基づいて述べる。
光源としての半導体レーザ9(以下、LDという)から
の出射光はコリメートレンズ10により平行光とされた
後、ビームスプリッタ11により反射され、対物レンズ
12により集光されたビームとなって測定物としての光
ディスク13の面上に照射される。そして、その光ディ
スク13からの反射光は、再び対物レンズ12を通過し
た後、今度はビームスプリッタ11を透過し受光素子1
4(以下、PDという)に向かう。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. 1 to 3 (corresponding to the invention described in claim 1). First,
The overall configuration of the micro displacement measuring device will be described with reference to FIG.
Light emitted from a semiconductor laser 9 (hereinafter, referred to as LD) as a light source is collimated by a collimator lens 10 and then reflected by a beam splitter 11 to be a beam condensed by an objective lens 12 to be a measurement object. The surface of the optical disk 13 is irradiated. Then, the reflected light from the optical disc 13 passes through the objective lens 12 again, and then passes through the beam splitter 11 to receive the light receiving element 1.
Go to 4 (hereinafter referred to as PD).

【0015】そのビームスプリッタ11とPD14との
間の光路上には、干渉縞発生手段としての二重回折格子
15が配置されている。この二重回折格子15は、n1
次光とn2 次光との第一回折光K1 を発生する第一回折
格子15aと、第一回折光K1 が入射することにより複
数の回折された第二回折光K2 を発生する第二回折格子
15bとからなっている。そして、光ディスク13から
の反射光がそのような二重回折格子15を通過すること
によって第二回折光K2 の干渉縞が発生し、この干渉縞
の位相の変化がPD14に検出され、光ディスク13の
光軸方向への移動量の測定が行われる。
On the optical path between the beam splitter 11 and the PD 14, a double diffraction grating 15 as an interference fringe generating means is arranged. This double diffraction grating 15 has n 1
The first diffraction grating 15a that generates the first diffracted light K 1 of the second light and the n 2 -order light and the plurality of diffracted second diffracted lights K 2 are generated by the incidence of the first diffracted light K 1. It is composed of the second diffraction grating 15b. Then, the reflected light from the optical disc 13 passes through such a double diffraction grating 15 to generate an interference fringe of the second diffracted light K 2 , and a change in the phase of this interference fringe is detected by the PD 14, and the optical disc is detected. The amount of movement of 13 in the optical axis direction is measured.

【0016】本実施例では、二重回折格子15を構成す
る第一回折格子15aと第二回折格子15bとが、干渉
縞となる第二回折光K2 の位相が1/4波長(λ)だけ
ずれるような格子形状に形成されている。以下、これら
2つの回折光K1 ,K2 の位相がλ/4だけずれる理由
について述べる。図1は、PD14面上の中心を座標O
とした座標軸x,y,zを示す。今、PD14面に対し
て2つの点光源P1 ,P2 からの距離をL1 ,L2
し、これら点光源間のx方向の距離をl1 とし、点光源
1 ,P2 の中心の(y,z)座標を(y0 ,z0 )と
する。このとき、L1 2,L2 2の値は、 L1 2=( l1 /2+x)2+y0 2+z2 …(1) L2 2=(−l1 /2+x)2+y0 2+z2 …(2) として表わされる。これにより、二重回折格子15によ
る位相差を付与していないときの光路長差dLは、 dL=L1 −L2 =(L1 2−L2 2)/(L1 −L2 ) ≒〔(l1 /2+x)2−(−l1 /2+x)2〕/2y0 =l1 x/y0 …(3) となる。ここで、二重回折格子15による位相差を位相
差をπ/2+δ0 としたとき、光路長の位相差δは、 δ=2πdL/λ+π/2+δ0 =2πl1 x/λy0+π/2+δ0 …(4) として表わされる。そして、2つの点光源P1 ,P2
よる干渉縞の強度Iは、 I∝cos2(δ/2) …(5) として表わされる。さらに、(4)式を(5)式に代入
すると、干渉縞強度分布I(x)は、 I(x)∝cos2(πl1 x/λy0+π/4+δ0/2) =〔−sin(2πl1 x/λy0+δ0)+1〕/2 …(6) として表わされる。
In the present embodiment, the first diffraction grating 15a and the second diffraction grating 15b constituting the double diffraction grating 15 have the phase of the second diffracted light K 2 which becomes interference fringes of ¼ wavelength (λ ) It is formed in a grid shape that is displaced. The reason why the phases of these two diffracted lights K 1 and K 2 deviate by λ / 4 will be described below. In FIG. 1, the center on the PD14 surface is coordinate O.
The coordinate axes x, y, and z are shown. Now, let L 1 and L 2 be the distances from the two point light sources P 1 and P 2 with respect to the PD 14 surface, and let the distance in the x direction between these point light sources be l 1 and define the centers of the point light sources P 1 and P 2 . Let (y, z) coordinates of (y 0 , z 0 ). At this time, L 1 2, L 2 2 values, L 1 2 = (l 1 /2 + x) 2 + y 0 2 + z 2 ... (1) L 2 2 = (- l 1/2 + x) 2 + y 0 2 + z 2 is represented as (2). Accordingly, the optical path length difference dL when the phase difference is not given by the double diffraction grating 15 is dL = L 1 −L 2 = (L 1 2 −L 2 2 ) / (L 1 −L 2 ). ≒ becomes [(l 1/2 + x) 2 - - (l 1/2 + x) 2 ] / 2y 0 = l 1 x / y 0 ... (3). Here, when the phase difference due to the double diffraction grating 15 is π / 2 + δ 0 , the phase difference δ of the optical path length is δ = 2πdL / λ + π / 2 + δ 0 = 2πl 1 x / λy 0 + π / 2 + δ It is represented as 0 (4). The intensity I of the interference fringe due to the two point light sources P 1 and P 2 is expressed as I∝cos 2 (δ / 2) (5). Further, (4) Substituting equation in the equation (5), the interference fringe intensity distribution I (x) is, I (x) αcos 2 ( πl 1 x / λy 0 + π / 4 + δ 0/2) = [- sin (2πl 1 x / λy 0 + δ 0 ) +1] / 2 (6)

【0017】次に、光ディスク13にデフォーカスが生
じた場合におけるy0 の値を求める。今、対物レンズ1
2の焦点距離をf0 とし、対物レンズ12からの反射光
の検出光路側の焦点位置をy1 とすると、 1/(f0 +d)+1/y1 =1/f0 …(7) の関係が成立する。これにより、y1 は、 y1 ≒f0 2/d …(8) として表わされる。そして、y0 =y1 −y2 とし、
(8)式を(6)式に代入すると、 I(x,d)∝−sin〔2πl1 x/λ(f0 2/d−y2)+δ0〕 +1 …(9) を得る。このI(x,d)が干渉縞分布を示す基本式で
ある。そして、(9)式中、y2 が小さいとし、y2
0を(9)式に代入すると、 I(x,d)∝−sin〔2πl1 xd/λf0 2+δ0〕+1 …(10) となる。これにより、干渉縞分布I(x,d)は、x,
dに対して対称であり、二重回折格子15に位相差をも
たせた効果を得ることができ、波長変動の影響によりそ
の干渉縞分布も対称的に変化する。なお、デフォーカス
がないときは波長に拘らず干渉縞分布は平坦になり、ジ
ャストオンフォーカス時には影響がない。
Next, the value of y 0 when the optical disk 13 is defocused is obtained. Now the objective lens 1
When the focal length of 2 is f 0 and the focal position of the reflected light from the objective lens 12 on the detection optical path side is y 1 , 1 / (f 0 + d) + 1 / y 1 = 1 / f 0 (7) The relationship is established. Accordingly, y 1 is expressed as y 1 ≈f 0 2 / d (8) Then, y 0 = y 1 −y 2, and
By substituting the equation (8) into the equation (6), I (x, d) ∝-sin [2πl 1 x / λ (f 0 2 / d−y 2 ) + δ 0 ] +1 (9) is obtained. This I (x, d) is a basic equation showing the interference fringe distribution. Then, in the equation (9), y 2 is small, and y 2 =
Substituting 0 into equation (9) yields I (x, d) ∝-sin [2πl 1 xd / λf 0 2 + δ 0 ] +1 (10). As a result, the interference fringe distribution I (x, d) becomes x,
It is symmetric with respect to d, and the effect of giving a phase difference to the double diffraction grating 15 can be obtained, and its interference fringe distribution also changes symmetrically due to the influence of wavelength fluctuation. When there is no defocus, the interference fringe distribution becomes flat regardless of the wavelength, and there is no influence during just-on-focus.

【0018】図3は、その干渉縞分布I(x,d)をx
方向に積分することにより得られるデフォーカス量に対
するフォーカスエラー信号FeのS字曲線S(d)を示
す。S字曲線S(d)の波形A(実線)は実験値を示
し、波形B(破線)は理論的な計算値を示す。この場
合、PD14の面をx座標にして、−aから0、そし
て、0からaの2つの領域に分けられるため、その場の
干渉縞分布I(x,d)を平坦な光量分布を仮定してそ
れぞれを積分してその差をとると、S(d)は、 S(d)∝λf0 2・ cosδ0〔−1+cos(2πl1 xd/λf0 2〕/πl1 d …(11) として表わすことができる。この(11)式中には、c
osδ0の項があり、δ0=0のときには、cosδ0
1となり、δ0 =πのときにはcosδ0=−1とな
り、これによりS(d)の絶対値は最大となる。
FIG. 3 shows the interference fringe distribution I (x, d) as x.
The S-shaped curve S (d) of the focus error signal Fe with respect to the defocus amount obtained by integrating in the direction is shown. A waveform A (solid line) of the S-shaped curve S (d) shows an experimental value, and a waveform B (broken line) shows a theoretical calculated value. In this case, since the surface of the PD 14 is set to the x-coordinate, it can be divided into two regions from −a to 0 and 0 to a. Therefore, the interference fringe distribution I (x, d) at that place is assumed to be a flat light amount distribution. Then, integrating each and taking the difference, S (d) ∝λf 0 2 · cos δ 0 [−1 + cos (2πl 1 xd / λf 0 2 ] / πl 1 d (11) In this equation (11), c can be expressed as
some sections of osδ 0, when [delta] 0 = 0 is, cos [delta] 0 =
1 becomes, δ 0 = π cosδ 0 = -1 becomes when the, thereby an absolute value of S (d) is maximized.

【0019】従って、δ0 =0のとき、すなわち、干渉
する2つの第二回折光K2 の位相がλ/4だけずれるよ
うに、第一回折格子15aと第二回折格子15bとの格
子形状を形成することによって、フォーカスエラー信号
FeのS字曲線を最大にすることができ、これにより、
デフォーカス量を容易に求めることができ、信号の検出
感度を向上させることができる。
Therefore, when δ 0 = 0, that is, the phases of the two interfering second diffracted lights K 2 are shifted by λ / 4, the grating shapes of the first diffraction grating 15a and the second diffraction grating 15b. The S-shaped curve of the focus error signal Fe can be maximized by forming
The defocus amount can be easily obtained, and the signal detection sensitivity can be improved.

【0020】次に、本発明の第二の実施例を図4〜図6
に基づいて説明する(請求項2,3記載の発明に対応す
る)。なお、前述した第一の実施例と同一部分について
の説明は省略し、その同一部分については同一符号を用
いる。
Next, a second embodiment of the present invention will be described with reference to FIGS.
(Corresponding to the invention described in claims 2 and 3). The description of the same parts as those in the first embodiment described above will be omitted, and the same reference numerals will be used for the same parts.

【0021】本実施例では、第一回折格子15aと第二
回折格子15bとの相対的な位相は、その回折格子の1
/4ピッチを(n1 −n2 )で割った値、又は、その値
にさらに1ピッチを(n1 −n2 )で割った値を1個な
いしは複数個加算又は減算した値に設定されている。こ
の場合、特に、第一回折格子15aと第二回折格子15
bとの相対的な位相を、その回折格子の1/8ピッチ、
又は、5/8ピッチの値に設定するようにしてもよい。
In this embodiment, the relative phase between the first diffraction grating 15a and the second diffraction grating 15b is 1 of that diffraction grating.
/ 4 pitch divided by (n 1 −n 2 ), or 1 pitch divided by (n 1 −n 2 ), or 1 or more added or subtracted. ing. In this case, in particular, the first diffraction grating 15a and the second diffraction grating 15a
The relative phase with b is 1/8 pitch of the diffraction grating,
Alternatively, it may be set to a value of 5/8 pitch.

【0022】以下、回折格子15a,15bの相対的な
位相関係を、上記条件に設定することにより、フォーカ
スエラー信号FeのS字曲線を最大にすることができる
理由について述べる。図4は、単一の回折格子16に光
を入射させ、その回折格子16が移動するときに回折光
の波面も移動することを示す例である。今、回折格子1
6が1ピッチ移動し、その移動方向に回折する光をn1
次光とし、反対方向に回折する光をn2 次光とする。こ
の場合、回折格子16の移動方向に対して同一方向に進
む光は波面17aも同一方向に進み、次数のn1 に対し
て1ピッチ当たり波長のn1 倍進む。一方、回折格子1
6の移動方向に対して反対方向に進む光は波面17bが
後退し、次数のn2 に対して1ピッチ当たり波長のn2
倍後退する(n2 が負の数とすると、−n2 倍進む)。
また、図5に示すように、2枚の回折格子、例えば第
一、第二回折格子15a,15bからなる二重回折格子
15の場合、一方の第一回折格子15aを1ピッチ移動
させ、他方の第二回折格子15bを固定したとすると、
1 次光の波面17aとn2 次光の波面17bとの進行
が逆になるため、(n1 −n2 )倍×2πの位相変化と
なり、この変化分だけ波面17a,17bが重なること
になる。例として、n1 =1、n2 =−1とすると、
(n1 −(−n2 ))×2π=(1−(−1))×2π
=2×2πなる位相変化を生じる。
The reason why the S-shaped curve of the focus error signal Fe can be maximized by setting the relative phase relationship between the diffraction gratings 15a and 15b under the above conditions will be described below. FIG. 4 is an example showing that light is incident on a single diffraction grating 16 and the wavefront of the diffracted light also moves when the diffraction grating 16 moves. Now diffraction grating 1
6 moves 1 pitch and the light diffracted in the moving direction is n 1
The second light and the light diffracted in the opposite direction are the n 2 -order light. In this case, light traveling in the same direction to the moving direction of the diffraction grating 16 is wavefront 17a also proceeds in the same direction, the process proceeds 1 times n of one pitch per wavelength with respect to n 1 in order. On the other hand, the diffraction grating 1
6 light wavefront 17b is retracted traveling in the opposite direction to the moving direction of, n 2 of one pitch per wavelength with respect to n 2 orders
Double backwards (advance −n 2 times when n 2 is a negative number).
Further, as shown in FIG. 5, in the case of a double diffraction grating 15 including two diffraction gratings, for example, first and second diffraction gratings 15a and 15b, one first diffraction grating 15a is moved by one pitch, If the other second diffraction grating 15b is fixed,
Since the wavefront 17a of the n 1st- order light and the wavefront 17b of the n 2nd- order light are in opposite directions, the phase change is (n 1 −n 2 ) times × 2π, and the wavefronts 17a and 17b overlap by this change. become. As an example, if n 1 = 1 and n 2 = -1,
(N 1 − (− n 2 )) × 2π = (1 − (− 1)) × 2π
A phase change of 2 × 2π occurs.

【0023】また、図6に示すように、第一、第二回折
格子15a,15bの相対的な位相がピッタリ合ってい
ると波面17a,17bも揃う。このような状態から、
一方の第一回折格子15aが移動して、波面17aを波
面17bに対してλ/4だけ異ならせるためには、回折
格子の4分の1ピッチを(n1 −n2 )で割った距離だ
け移動させることによってその目的を達成できる。例と
して、n1 =1、n2=−1の場合は、4分の1ピッチ
を(1−(−1))=2で割った1/8ピッチだけ回折
格子を相対的に移動させることによって、λ/4だけ波
面の位相を異ならせることができる。なお、回折格子を
移動させる方向は左右どちらでもよい。
Further, as shown in FIG. 6, if the relative phases of the first and second diffraction gratings 15a and 15b are exactly matched, the wavefronts 17a and 17b are also aligned. From this state,
To move the first diffraction grating 15a on one side to make the wavefront 17a different from the wavefront 17b by λ / 4, a distance obtained by dividing a quarter pitch of the diffraction grating by (n 1 −n 2 ). You can achieve the purpose by moving only. As an example, in the case of n 1 = 1 and n 2 = -1, the diffraction grating is relatively moved by a 1/8 pitch obtained by dividing a quarter pitch by (1-(-1)) = 2. The phase of the wavefront can be changed by λ / 4. The diffraction grating may be moved in either the left or right direction.

【0024】さらに、第一、第二回折格子15a,15
bのうちの一方を1ピッチ移動させると、(n1 −n
2 )倍×2πの位相変化となることから、2つの波面1
7a,17bの位相差は回折格子の1ピッチの移動の間
に(n1 −n2 )回の同じ位相となり、これにより1ピ
ッチを(n1 −n2 )で割った位相分だけ回折格子を移
動させることで同一の位相となる。例として、n1
1、n2 =−1の場合は、1ピッチを(1−(−1))
=2で割った値、すなわち、1/2ピッチの移動で2つ
の波面17a,17bの位相関係が同一となる。従っ
て、波面17aを波面17bに対してλ/4だけ異なら
せるためには、1ピッチを(n1 −n2 )で割った値
に、回折格子の4分の1ピッチを(n1 −n2 )で割っ
た距離(n1 −n2 )で割った値を加算又は減算させる
ようにすればよい。この例では、1/2ピッチと1/8
ピッチとを加算して5/8ピッチだけ移動させることに
よって、λ/4だけ波面の位相を異ならせることができ
る。
Furthermore, the first and second diffraction gratings 15a, 15
When one of b is moved by one pitch, (n 1 −n
2 ) x 2π phase change, so two wavefronts 1
The phase difference between 7a and 17b becomes the same phase of (n 1 −n 2 ) times during the movement of 1 pitch of the diffraction grating, and thus the pitch of 1 pitch divided by (n 1 −n 2 ) It becomes the same phase by moving. As an example, n 1 =
When 1, n 2 = -1, 1 pitch is (1-(-1))
= 2, that is, the phase relationship between the two wavefronts 17a and 17b becomes the same by moving by 1/2 pitch. Therefore, in order to vary the wavefront 17a only lambda / 4 with respect to the wavefront 17b is 1 divided by the pitch (n 1 -n 2), a ¼ pitch of the diffraction grating (n 1 -n The value divided by the distance (n 1 −n 2 ) divided by 2 ) may be added or subtracted. In this example, 1/2 pitch and 1/8
By adding the pitch and moving by 5/8 pitch, the phase of the wavefront can be changed by λ / 4.

【0025】この他の高次数を例にとると、n1 =2、
2 =−3の場合は、1/4ピッチを(2−(−3))
=5で割って、1/20ピッチの分だけ回折格子の位相
変化をもたせることによって、λ/4だけ波面の位相を
異ならせることができる。さらにこのことは、1ピッチ
を(2−(−3))=5で割った1/5ピッチの値と、
1/20ピッチとを加算した1/4ピッチだけ移動させ
ることによって、λ/4だけ波面の位相を異ならせるこ
とができる。
Taking another high order as an example, n 1 = 2,
In the case of n 2 = -3, the 1/4 pitch is (2-(-3))
It is possible to change the phase of the wavefront by λ / 4 by dividing by 5 and giving the phase change of the diffraction grating by 1/20 pitch. Furthermore, this means that a value of 1/5 pitch obtained by dividing 1 pitch by (2-(-3)) = 5,
The phase of the wavefront can be changed by λ / 4 by moving by 1/4 pitch, which is the sum of 1/20 pitch.

【0026】上述したように、第一回折格子15aと第
二回折格子15bとの相対的な位相を、1/4ピッチを
(n1 −n2 )で割った値か、又は、その1/4ピッチ
を(n1 −n2 )で割った値に、1ピッチを(n1 −n
2 )で割った値を1個ないしは複数個加算又は減算した
値に設定したので、干渉縞となる第二回折光の位相を1
/4波長だけ正確にしかも容易にずらすことができ、こ
れにより、フォーカスエラー信号FeのS字曲線を最大
にして、デフォーカス量を正確に求めることができる。
特に、±1次光を用い、1/8ピッチ、5/8ピッチの
値に設定することによって、第一,第二回折格子15
a,15bや受光素子14の形状が単純化されて作成が
容易となり、生産コストを低減することができる。
As described above, the relative phase between the first diffraction grating 15a and the second diffraction grating 15b is a value obtained by dividing the quarter pitch by (n 1 -n 2 ), or 1 / pitch thereof. The value obtained by dividing 4 pitches by (n 1 −n 2 ) is 1 pitch (n 1 −n 2
Since the value divided by 2 ) is set to one or a value obtained by adding or subtracting a plurality of values, the phase of the second diffracted light that becomes the interference fringe is set to 1
It can be accurately and easily shifted by / 4 wavelength, whereby the defocus amount can be accurately obtained by maximizing the S-shaped curve of the focus error signal Fe.
In particular, by using ± 1st order light and setting the values of 1/8 pitch and 5/8 pitch, the first and second diffraction gratings 15
The shapes of a and 15b and the light-receiving element 14 are simplified to facilitate the production, and the production cost can be reduced.

【0027】次に、本発明の第三の実施例を図7〜図9
に基づいて説明する(請求項4記載の発明に対応す
る)。なお、前記各実施例と同一部分についての説明は
省略し、その同一部分については同一符号を用いる。
Next, a third embodiment of the present invention will be described with reference to FIGS.
(Corresponding to the invention of claim 4). It should be noted that the description of the same parts as those in the above-mentioned respective embodiments is omitted, and the same reference numerals are used for the same parts.

【0028】本実施例では、二重回折格子15における
第一回折格子15aのピッチはΛ1とされ、第二回折格
子15bのピッチはΛ2 とされている。そして、第一回
折格子15aにより回折される第一回折光K1 はn1
光とn2 次光とされ、また、第二回折格子15bにより
得られる第二回折光K2 はm1 次光とm2 次光とされて
いる。この場合、各回折格子のピッチと回折光の次数と
の間は、 Λ21 +Λ11 =Λ22 +Λ12 …(12) の関係式に設定されている。
In this embodiment, the pitch of the first diffraction grating 15a in the double diffraction grating 15 is Λ 1 and the pitch of the second diffraction grating 15b is Λ 2 . The first diffracted light K 1 diffracted by the first diffraction grating 15a is an n 1 -order light and an n 2 -order light, and the second diffracted light K 2 obtained by the second diffraction grating 15b is an m 1 -order light. Light and m 2 light. In this case, the relation between the pitch of each diffraction grating and the order of the diffracted light is set to a relational expression of Λ 2 n 1 + Λ 1 m 1 = Λ 2 n 2 + Λ 1 m 2 (12).

【0029】以下、回折格子15a,15bの相対的な
位相関係を、上記(12)式の条件に設定することによ
り、フォーカスエラー信号FeのS字曲線を最大にする
ことができる理由について述べる。図7は、ピッチΛ1
の第一回折格子15aとピッチΛ2 の第二回折格子15
bとが形成された二重回折格子15での回折条件を示
す。今、光ディスク13からの反射光が入射角θ0 で二
重回折格子15に入射し、第一回折格子15a側で出射
角θ1 のn1 次光,出射角θ3 のn2 次光が発生し、第
二回折格子15b側で出射角θ2 のm1 次光,出射角θ
4 のm2 次光が発生するものとする。この場合、第一回
折格子15a側では、 sinθ0 +sinθ1 =n1 λ/Λ1 …(13) sinθ0 +sinθ3 =n2 λ/Λ1 …(14) が成り立つ。一方、第二回折格子15b側では、 sinθ1 +sinθ2 =−m1 λ/Λ2 …(15) sinθ3 +sinθ4 =−m2 λ/Λ2 …(16) が成り立つ。これにより、二重回折格子15から出射し
たm1 次光、m2 次光の2つの回折光を平行にするため
に、θ2 =θ4 とすると、 Λ21 +Λ11 =Λ22 +Λ12 …(17) の関係が得られる。
The reason why the S-shaped curve of the focus error signal Fe can be maximized by setting the relative phase relationship of the diffraction gratings 15a and 15b to the condition of the above expression (12) will be described below. FIG. 7 shows the pitch Λ 1
Of the first diffraction grating 15a and the second diffraction grating 15 of the pitch Λ 2
The diffraction condition in the double diffraction grating 15 in which b and b are formed is shown. Now, the reflected light incident on the incident angle theta 0 double diffraction grating 15 from the optical disk 13, the emission angle theta 1 of n 1-order light in the first diffraction grating 15a side, n 2 order light emission angle theta 3 Occurs, and the m 1 -order light with the emission angle θ 2 and the emission angle θ are generated on the second diffraction grating 15b side.
It is assumed that 4 m 2 order light is generated. In this case, on the first diffraction grating 15a side, sin θ 0 + sin θ 1 = n 1 λ / Λ 1 (13) sin θ 0 + sin θ 3 = n 2 λ / Λ 1 (14) holds. On the other hand, on the second diffraction grating 15b side, sin θ 1 + sin θ 2 = −m 1 λ / Λ 2 (15) sin θ 3 + sin θ 4 = −m 2 λ / Λ 2 (16) holds. Accordingly, in order to make the two diffracted lights of the m 1 -order light and the m 2 -order light emitted from the double diffraction grating 15 parallel to each other, if θ 2 = θ 4 , then Λ 2 n 1 + Λ 1 m 1 = The relationship of Λ 2 n 2 + Λ 1 m 2 (17) is obtained.

【0030】例として、図8に示すように、第一回折格
子15aのΛ1 =1μm、第二回折格子15bのΛ2
2μm、n1 =2、n2 =−1として、(17)式に代
入すると、 2・2+1・m1 =2・(−1)+1・m2 すなわち、 m1 −m2 =−6 …(18) の関係式を得る。この(18)式から、例えば、図9に
示すように、m1 =−2、m2 =4とすると、第一回折
格子15aにより2次光と−1次光が発生し、第二回折
格子15bにより−2次光と4次光が発生する。これに
より、回折されたm1 ,m2 次光の位相をλ/4だけず
らすことが可能となる。
[0030] As an example, as shown in FIG. 8, lambda 1 = 1 [mu] m of the first diffraction grating 15a, the second diffraction grating 15b lambda 2 =
Substituting into equation (17) assuming 2 μm, n 1 = 2, n 2 = −1, 2 · 2 + 1 · m 1 = 2 · (−1) + 1 · m 2, that is, m 1 −m 2 = −6 ... The relational expression of (18) is obtained. From Equation (18), for example, if m 1 = -2 and m 2 = 4 as shown in FIG. 9, the first diffraction grating 15a generates second-order light and -1st-order light, and the second diffraction The grating 15b generates −2nd order light and 4th order light. This makes it possible to shift the phases of the diffracted m 1 and m 2 -order lights by λ / 4.

【0031】上述したように、(12)式の関係を満た
すように設定することによって、干渉縞となる第二回折
光K2 の位相をλ/4だけずらすことができ、これによ
り、フォーカスエラー信号FeのS字曲線を最大にし
て、デフォーカス量を正確に求めることができる。な
お、ここでは、回折格子に入射する光が垂直であること
を前提としているが、垂直に入射しない場合にも、2つ
の回折光の位相がλ/4だけずれるように調整すればよ
い。
As described above, the phase of the second diffracted light K 2 which becomes interference fringes can be shifted by λ / 4 by setting so as to satisfy the relationship of the expression (12). The defocus amount can be accurately obtained by maximizing the S-shaped curve of the signal Fe. Although it is assumed here that the light incident on the diffraction grating is vertical, it may be adjusted so that the phases of the two diffracted lights are shifted by λ / 4 even when the light does not enter vertically.

【0032】[0032]

【発明の効果】請求項1記載の発明は、互いに干渉し合
う第二回折光の位相が1/4波長だけずれるように、干
渉縞発生手段の各回折格子を形成したので、フォーカス
エラー信号のS字曲線を最大にしてデフォーカス量を容
易に求めることができ、これにより、従来のナイフエッ
ジ法や非点収差法に比べて、信号の検出感度を格段に向
上させて微小変位の測定を正確に行うことができる。ま
た、このような干渉縞を用いた測定方式においては、検
出光路長を従来よりも短くとることができるため、光ピ
ックアップ部の小型化を図ることができる。さらに、こ
のような干渉縞による検出においてはビーム形状を比較
的大きくとれるため、光学素子の位置調整を極めてラフ
に行うことができ、耐環境性を向上させ、常に安定した
信号検出を行うことができる。
According to the first aspect of the present invention, since the diffraction gratings of the interference fringe generating means are formed so that the phases of the second diffracted lights that interfere with each other are shifted by ¼ wavelength, the focus error signal The defocus amount can be easily obtained by maximizing the S-curve, which significantly improves the signal detection sensitivity as compared with the conventional knife edge method and astigmatism method, and can measure minute displacements. Can be done accurately. Further, in the measurement method using such interference fringes, the detection optical path length can be made shorter than before, so that the optical pickup unit can be downsized. Further, since the beam shape can be made relatively large in the detection by such interference fringes, the position of the optical element can be adjusted extremely roughly, the environment resistance can be improved, and stable signal detection can always be performed. it can.

【0033】請求項2記載の発明は、第一回折格子と第
二回折格子との相対的な位相を、4分の1ピッチを(n
1 −n2 )で割った値か、又は、その4分の1ピッチを
(n1 −n2 )で割った値に、1ピッチを(n1 −n
2 )で割った値を1個ないしは複数個加算又は減算した
値に設定したので、干渉縞となる第二回折光の位相を1
/4波長だけ正確にずらすことができ、これにより、フ
ォーカスエラー信号のS字曲線を最大にして、デフォー
カス量を正確に求めることができる。
According to a second aspect of the present invention, the relative phase of the first diffraction grating and the second diffraction grating is set to a quarter pitch (n
1 -n 2) at or divided by, or divided by the one pitch of the quarter (n 1 -n 2), and 1 pitch (n 1 -n
Since the value divided by 2 ) is set to one or a value obtained by adding or subtracting a plurality of values, the phase of the second diffracted light that becomes the interference fringe is set to 1
It can be accurately shifted by / 4 wavelength, and by doing so, the defocus amount can be accurately obtained by maximizing the S-shaped curve of the focus error signal.

【0034】請求項3記載の発明は、第一回折格子と第
二回折格子との相対的な位相を、8分の1ピッチ、又
は、8分の5ピッチの値に設定したので、干渉縞となる
第二回折光の位相を1/4波長だけ正確にしかも容易に
ずらすことができ、これにより、フォーカスエラー信号
のS字曲線を最大にして、デフォーカス量を一段と正確
に求めることができる。また、第一回折格子と第二回折
格子とを等ピッチすなわち同一の格子ピッチとし、±1
次光の第二回折光を用いて干渉縞を発生させるようにし
たので、回折格子や受光素子の作成が容易となり、生産
コストを一段と削減することができる。
According to the third aspect of the present invention, the relative phase between the first diffraction grating and the second diffraction grating is set to a value of 1/8 pitch or 5/8 pitch. It is possible to accurately and easily shift the phase of the second diffracted light by 1/4 wavelength, thereby maximizing the S-shaped curve of the focus error signal and more accurately obtaining the defocus amount. . Further, the first diffraction grating and the second diffraction grating have an equal pitch, that is, the same grating pitch, and ± 1
Since the interference fringes are generated by using the second diffracted light of the next light, the diffraction grating and the light receiving element can be easily manufactured, and the production cost can be further reduced.

【0035】請求項4記載の発明は、ピッチがΛ1 の第
一回折格子により得られる第一回折光をn1 次光とn2
次光とし、ピッチがΛ2 の第二回折格子により得られる
第二回折光をm1 次光とm2 次光としたとき、各回折格
子のピッチと回折光の次数とを、 Λ21 +Λ11 =Λ22 +Λ12 の関係式を満たすように設定したので、干渉縞となる第
二回折光の位相を1/4波長だけずらし、フォーカスエ
ラー信号のS字曲線を最大にしてデフォーカス量を一段
と正確に求めることができる。
According to a fourth aspect of the present invention, the first diffracted light obtained by the first diffraction grating having a pitch of Λ 1 is converted into n 1 -order light and n 2
When the second diffracted light obtained by the second diffraction grating having a pitch of Λ 2 is the m 1 -order light and the m 2 -order light, the pitch of each diffraction grating and the order of the diffracted light are Λ 2 n Since the relational expression of 1 + Λ 1 m 1 = Λ 2 n 2 + Λ 1 m 2 is set, the phase of the second diffracted light that becomes the interference fringes is shifted by ¼ wavelength, and the S-shaped curve of the focus error signal is obtained. Can be maximized to more accurately obtain the defocus amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例として2つの回折光によ
り1/4波長の位相差が生じた場合の理論的解析の等価
光学系を示す模式図である。
FIG. 1 is a schematic diagram showing an equivalent optical system for theoretical analysis in the case where a phase difference of ¼ wavelength is generated by two diffracted lights as a first embodiment of the present invention.

【図2】微小変位測定装置の全体構成を示す光路図であ
る。
FIG. 2 is an optical path diagram showing an overall configuration of a micro displacement measuring device.

【図3】デフォーカス量に対するフォーカスエラー信号
のS字曲線を示す波形図である。
FIG. 3 is a waveform diagram showing an S-shaped curve of a focus error signal with respect to a defocus amount.

【図4】本発明の第二の実施例として回折格子の移動に
より回折光の波面も移動することを示す側面図である。
FIG. 4 is a side view showing that, as a second embodiment of the present invention, the wavefront of diffracted light also moves due to the movement of the diffraction grating.

【図5】回折格子を2枚重ねて構成し、回折格子を1ピ
ッチだけ移動した場合における回折光に位相差が生じて
いる様子を示す側面図である。
FIG. 5 is a side view showing a state in which a phase difference is generated in diffracted light when two diffraction gratings are stacked and the diffraction grating is moved by one pitch.

【図6】回折格子の相対的な位相が一致している場合に
回折光の波面も一致する場合の様子を示す側面図であ
る。
FIG. 6 is a side view showing a state where the wavefronts of diffracted light also match when the relative phases of the diffraction grating match.

【図7】本発明の第三の実施例である回折格子のピッチ
が異なっている場合の回折光の発生の様子を示す側面図
である。
FIG. 7 is a side view showing how the diffracted light is generated when the pitch of the diffraction grating according to the third embodiment of the present invention is different.

【図8】ピッチが異なっている回折格子を用いた場合に
回折光に位相差が生じている様子を示す側面図である。
FIG. 8 is a side view showing how a phase difference occurs in diffracted light when diffraction gratings having different pitches are used.

【図9】高次の回折光が発生した場合の様子を示す側面
図である。
FIG. 9 is a side view showing a state where high-order diffracted light is generated.

【図10】従来の装置におけるフォーカスエラー信号の
検出方式を示す光路図である。
FIG. 10 is an optical path diagram showing a detection method of a focus error signal in a conventional device.

【符号の説明】[Explanation of symbols]

9 光源 12 対物レンズ 13 測定物 14 受光素子 15 干渉縞発生手段 15a 第一回折格子 15b 第二回折格子 K1 第一回折光 K2 第二回折光9 light sources 12 objective lens 13 measured 14 receiving element 15 interference fringe generating means 15a first diffraction grating 15b second diffraction grating K 1 first diffracted beam K 2 second diffracted light

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光を対物レンズにより集光し
て測定物に照射しその測定物により反射され前記対物レ
ンズを再び通過した光が入射することによりn1 次光と
2 次光との第一回折光を発生する第一回折格子と、前
記第一回折光が入射することにより複数の回折された第
二回折光を発生する第二回折格子とからなり、互いに干
渉し合う前記第二回折光の位相が1/4波長だけずれる
ような形状に各回折格子が形成された干渉縞発生手段を
設け、この干渉縞発生手段により生じた前記第二回折光
の間での干渉により干渉縞の位相の変化を受光素子で検
知することによって前記測定物の光軸方向への移動量を
測定するようにしたことを特徴とする微小変位測定装
置。
1. An n 1st- order light and an n 2nd- order light are obtained by collecting light from a light source with an objective lens, irradiating the object to be measured, and reflecting light reflected by the object and passing through the objective lens again. And a first diffraction grating that generates a first diffracted light, and a second diffraction grating that generates a plurality of diffracted second diffracted lights by the incidence of the first diffracted light, and the two interfere with each other. By providing interference fringe generating means in which each diffraction grating is formed in a shape such that the phase of the second diffracted light is shifted by ¼ wavelength, the interference between the second diffracted light caused by the interference fringe generating means A micro-displacement measuring device characterized in that the amount of movement of the measured object in the optical axis direction is measured by detecting a change in the phase of the interference fringes with a light receiving element.
【請求項2】 第一回折格子と第二回折格子との相対的
な位相を、回折格子の4分の1ピッチを(n1 −n2
で割った値、又は、その値にさらに1ピッチを(n1
2 )で割った値を1個ないしは複数個加算又は減算し
た値に設定したことを特徴とする請求項1記載の微小変
位測定装置。
2. The relative phase between the first diffraction grating and the second diffraction grating is set to a quarter pitch of the diffraction grating (n 1 −n 2 ).
Divided by, or 1 pitch is added to that value (n 1
The small displacement measuring device according to claim 1, wherein the value divided by n 2 ) is set to one or a plurality of values added or subtracted.
【請求項3】 ±1次光の干渉縞を発生させる第一回折
格子と第二回折格子とを等ピッチとし、第一回折格子と
第二回折格子との相対的な位相を、回折格子の8分の1
ピッチ、又は、8分の5ピッチの値に設定したことを特
徴とする請求項1記載の微小変位測定装置。
3. A first diffraction grating and a second diffraction grating for generating interference fringes of ± first-order light are arranged at an equal pitch, and a relative phase between the first diffraction grating and the second diffraction grating 1 / 8th
The minute displacement measuring device according to claim 1, wherein the value is set to a pitch or a value of 5/8 pitch.
【請求項4】 ピッチがΛ1 の第一回折格子により得ら
れる第一回折光をn1 次光とn2 次光とし、ピッチがΛ
2 の第二回折格子により得られる第二回折光をm1 次光
とm2 次光としたとき、各回折格子のピッチと回折光の
次数とを、 Λ21 +Λ11 =Λ22 +Λ12 の関係式を満たすように設定したことを特徴とする請求
項1記載の微小変位測定装置。
4. The first diffracted light obtained by the first diffraction grating having a pitch of Λ 1 is n 1 -order light and n 2 -order light, and the pitch is Λ
When the second diffracted light obtained by the second diffractive grating of 2 is m 1 -order light and m 2 -order light, the pitch of each diffraction grating and the order of diffracted light are Λ 2 n 1 + Λ 1 m 1 = Λ The micro displacement measuring device according to claim 1, wherein the micro displacement measuring device is set so as to satisfy the relational expression of 2 n 2 + Λ 1 m 2 .
JP32889294A 1994-12-28 1994-12-28 Micro displacement measuring device Expired - Lifetime JP3573367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32889294A JP3573367B2 (en) 1994-12-28 1994-12-28 Micro displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32889294A JP3573367B2 (en) 1994-12-28 1994-12-28 Micro displacement measuring device

Publications (2)

Publication Number Publication Date
JPH08180493A true JPH08180493A (en) 1996-07-12
JP3573367B2 JP3573367B2 (en) 2004-10-06

Family

ID=18215266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32889294A Expired - Lifetime JP3573367B2 (en) 1994-12-28 1994-12-28 Micro displacement measuring device

Country Status (1)

Country Link
JP (1) JP3573367B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11328713A (en) * 1998-05-14 1999-11-30 Hideo Maeda Directional diffraction grating
US6733939B2 (en) * 2000-09-28 2004-05-11 Ricoh Company, Ltd. Toner, developer and container for the developer, and method of and apparatus for forming an image
KR100444913B1 (en) * 2002-01-28 2004-08-21 한국과학기술원 Displacement Measurement Sensor
CN103759656A (en) * 2014-01-23 2014-04-30 清华大学 Two-degree-of-freedom heterodyne grating interferometer displacement measurement system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11328713A (en) * 1998-05-14 1999-11-30 Hideo Maeda Directional diffraction grating
US6733939B2 (en) * 2000-09-28 2004-05-11 Ricoh Company, Ltd. Toner, developer and container for the developer, and method of and apparatus for forming an image
KR100444913B1 (en) * 2002-01-28 2004-08-21 한국과학기술원 Displacement Measurement Sensor
CN103759656A (en) * 2014-01-23 2014-04-30 清华大学 Two-degree-of-freedom heterodyne grating interferometer displacement measurement system
CN103759656B (en) * 2014-01-23 2017-01-18 清华大学 Two-degree-of-freedom heterodyne grating interferometer displacement measurement system

Also Published As

Publication number Publication date
JP3573367B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
AU602646B2 (en) Apparatus for optically scanning an information plane
JPH0981942A (en) Tracking error detector of optical head
JPH04364231A (en) Optical head device
JP3563210B2 (en) Optical device for optical disk device and optical disk device
JPH11219529A (en) Optical pickup device
JPWO2007116631A1 (en) Optical disk device
US5572323A (en) Infinitesimal displacement measuring apparatus and optical pick-up unit
JP3573367B2 (en) Micro displacement measuring device
KR960011790B1 (en) Optical head device
JP2761180B2 (en) Micro displacement measuring device and optical pickup device
JPH0370859B2 (en)
JP3303250B2 (en) Displacement measuring device and optical pickup
JPH03189932A (en) Optical pickup device
JPH08212566A (en) Focusing detection means, optical head and optical storage
JP3415938B2 (en) Displacement measuring device and optical pickup
JP3300536B2 (en) Displacement measuring device and optical pickup
JP2683293B2 (en) Optical head device
JP3423991B2 (en) Displacement measuring device and optical pickup
JP2648140B2 (en) Optical head device
JP2556906B2 (en) Optical pickup device
JP2004014039A (en) Optical head and optical disk system
JP3371305B2 (en) Optical pickup
JPH10134377A (en) Optical head device
JP2561253B2 (en) Track error detector
JP2946998B2 (en) Optical head device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Effective date: 20040524

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040624

A61 First payment of annual fees (during grant procedure)

Effective date: 20040625

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20070709

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080709

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090709

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090709

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100709