JPH08179590A - Electrifier and its manufacture - Google Patents

Electrifier and its manufacture

Info

Publication number
JPH08179590A
JPH08179590A JP32503594A JP32503594A JPH08179590A JP H08179590 A JPH08179590 A JP H08179590A JP 32503594 A JP32503594 A JP 32503594A JP 32503594 A JP32503594 A JP 32503594A JP H08179590 A JPH08179590 A JP H08179590A
Authority
JP
Japan
Prior art keywords
electrode
common electrode
discharge
resistor
resistance resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32503594A
Other languages
Japanese (ja)
Inventor
Kiyoko Uwakawa
聖子 宇和川
Katsuhiro Nagayama
勝浩 永山
Eisaku Hatanaka
英作 畑中
Hideyuki Nishimura
英幸 西村
Shigeaki Tasaka
滋章 田坂
Yuichiro Takei
雄一郎 武居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP32503594A priority Critical patent/JPH08179590A/en
Publication of JPH08179590A publication Critical patent/JPH08179590A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/02Arrangements for laying down a uniform charge
    • G03G2215/026Arrangements for laying down a uniform charge by coronas
    • G03G2215/028Arrangements for laying down a uniform charge by coronas using pointed electrodes

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PURPOSE: To obtain an electrifier capable of obtaining a stable discharge for a long period and simplifying a manufacturing process by making a resistor electrically connecting a discharge elestrode and a common electrode a resistance resin layer directly connected to the discharge electrode and the common electrode. CONSTITUTION: The discharge electrode 21 having plural tips of teeth, the common electrode 23 disposed at a constant interval from the discarge electrode 21 cnnected to a voltage source and the resistor 25 electrically connecting the discharge electrode 21 and the common electrode 23 are arranged on an insulating substrate 24 and the resistor 25 is of the resistance resin layer directly connected to the discharge electrode 21 and the common electrode 23. Since the resistor 25 as the resistance resin layer is directly connected to the discharge electrode 21 and the common electrode 23, the generation of foams, the variance of adhesive strength, etc., on a stuck part which tend to occur when the resistor 25 is stuck on the discharge electrode 21 and the common electrode 23 by an adhesive tape material having conductivity, etc., are prevented and the adhesion of the resistor 25 and the electrodes 21 and 23 is improved. Therefore, the variance of a resistance value is suppressed and performance can be stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複写機やレーザープリ
ンタ等の電子写真方式の画像形成装置に用いられ、被帯
電物を均一に帯電させる帯電装置およびその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device used in an electrophotographic image forming apparatus such as a copying machine or a laser printer, which uniformly charges an object to be charged, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】電子写真法により画像形成を行なう複写
機やレーザープリンタ等の画像形成装置においては、画
像形成体(感光体)の表面に所定の帯電電位を供給する
帯電装置として、直径50〜100μmのタングステン
ワイヤに5〜10kvの高電圧を印加し、該ワイヤ上の
放電によって発生したイオンを感光体の表面に移動させ
て帯電を行なうコロナ放電装置が知られている。
2. Description of the Related Art In an image forming apparatus such as a copying machine or a laser printer which forms an image by electrophotography, a diameter of 50 to 50 is used as a charging device for supplying a predetermined charging potential to the surface of an image forming body (photoreceptor). A corona discharge device is known in which a high voltage of 5 to 10 kv is applied to a 100 μm tungsten wire, and the ions generated by the discharge on the wire are moved to the surface of the photoconductor to perform charging.

【0003】この方式は負放電に用いた場合、ワイヤ表
面の状態により放電点がワイヤ上にランダムに位置し、
不安定で感光体の被帯電面に対して不均一な放電となる
ので、被帯電面を均一に帯電するために補助電極として
のシールドケースや電位制御のためのグリッドが必要と
なる。しかしながら、この方式は放電の安定化や帯電の
均一化のため、多くの放電電流を流す必要があり、その
結果オゾンの発生量が多く、画質の劣化を招いたり、人
体に悪影響を及ぼす問題がある。
When this method is used for negative discharge, the discharge points are randomly located on the wire depending on the state of the wire surface,
Since it is unstable and causes non-uniform discharge on the surface to be charged of the photoconductor, a shield case as an auxiliary electrode and a grid for potential control are required to uniformly charge the surface to be charged. However, this method requires a large amount of discharge current in order to stabilize discharge and uniform charge, and as a result, a large amount of ozone is generated, leading to deterioration of image quality and adverse effects on the human body. is there.

【0004】このため、近年では、例えば特開昭63−
15272号公報に開示されているように、タングステ
ンワイヤの代わりに鋸歯状に形成した放電電極を用いた
コロナ放電装置が提案されている。この形式のコロナ放
電装置は、ワイヤ形式のものに比べて比較的機械的強度
が高くかつ必要印加電圧が低いといった顕著な構造的お
よび作動的利点を有している。
Therefore, in recent years, for example, Japanese Patent Laid-Open No. 63-
As disclosed in Japanese Patent No. 15272, there is proposed a corona discharge device using a sawtooth discharge electrode instead of a tungsten wire. This type of corona discharge device has the significant structural and operational advantages of relatively higher mechanical strength and lower required applied voltage than the wire type.

【0005】しかしながら、このようなコロナ放電装置
においても、放電電極の歯先形状のばらつき、破損、汚
染等により各歯における放電が不均一であり、均一な帯
電を得るためには、必要以上に放電電流を流さねばなら
ず、ワイヤ方式の1/5程度ではあるが依然としてオゾ
ンの発生量が多い。
However, even in such a corona discharge device, the discharge at each tooth is non-uniform due to variations in the shape of the tip of the discharge electrode, damage, contamination, etc., and more than necessary to obtain uniform charging. A discharge current must be supplied, and although it is about 1/5 of that of the wire system, the amount of ozone generated is still large.

【0006】この問題の解決方法の1つとして、鋸歯状
の放電電極の夫々の歯を別個の抵抗体を介してコモン電
極に接続し、この複数の抵抗体により電源からコモン電
極に印加された電圧を一定電圧降下させて、放電電極の
各歯に流れる放電電流を安定化させることが知られてい
る。
As one of the solutions to this problem, each tooth of the sawtooth discharge electrode is connected to the common electrode through a separate resistor, and the plurality of resistors apply a voltage to the common electrode from the power source. It is known to stabilize the discharge current flowing through each tooth of the discharge electrode by decreasing the voltage by a constant voltage.

【0007】しかしながら、この種の抵抗体を用いたコ
ロナ放電装置では、多数の抵抗体を必要とするため、コ
ロナ放電装置の製造に要する材料費がアップするだけで
なく、装置が大型化、複雑化して製造が困難になってし
まうという問題点があった。
However, since a corona discharge device using this type of resistor requires a large number of resistors, not only the material cost required for manufacturing the corona discharge device increases, but also the device becomes large and complicated. However, there is a problem that it becomes difficult to manufacture.

【0008】そこで、本出願人は、特願平5−2137
52号において、放電電極とコモン電極とを電気的に接
続する抵抗体を櫛形の一体的なものとすることにより、
複数の抵抗体を用いるときと比べて部品点数を削減し、
小型で安価なコロナ放電装置を提案している。このコロ
ナ放電装置は、図17に示すように、絶縁基板Z上に、
複数の歯を有する放電電極Hとコモン電極Kを一定間隔
を隔てて対向配置し、放電電極Hおよびコモン電極K上
に異方導電性膜や導電性を有する接着性テープ材Sによ
って櫛形の抵抗体Tを接着し、絶縁基板Z上にモールド
Mをすることにより構成されている。
Therefore, the present applicant has filed Japanese Patent Application No. 5-2137.
In No. 52, a comb-shaped integral resistor is used to electrically connect the discharge electrode and the common electrode.
The number of parts is reduced compared to when using multiple resistors,
We have proposed a small and inexpensive corona discharge device. This corona discharge device, as shown in FIG.
A discharge electrode H having a plurality of teeth and a common electrode K are arranged so as to face each other with a constant interval, and a comb-shaped resistance is formed on the discharge electrode H and the common electrode K by an anisotropic conductive film or an adhesive tape material S having conductivity. It is configured by bonding the body T and forming a mold M on the insulating substrate Z.

【0009】[0009]

【発明が解決しようする課題】しかしながら、特願平5
−213752号の提案例においては、抵抗体を櫛形に
形成し、この抵抗体を放電電極に合わせて接着している
ため、製造工程が複雑でコストアップにつながってい
た。
[Patent Document 1] Japanese Patent Application No. Hei 5
In the proposed example of No. 213752, the resistor is formed in a comb shape, and the resistor is bonded to the discharge electrode so that the manufacturing process is complicated and the cost is increased.

【0010】また、抵抗体が異方導電性膜や導電性を有
する接着性テープ材により放電電極およびコモン電極上
に接着されているため、図18に示すように接着部分に
気泡が入ったり、異方導電性膜や接着性テープ材の接着
強度のばらつき等により、接着部分の密着度にばらつき
が生じ、これにより抵抗値がばらつき、放電が不均一と
なって帯電ムラが生じるという問題があった。
Further, since the resistor is adhered on the discharge electrode and the common electrode by an anisotropic conductive film or an adhesive tape material having conductivity, air bubbles may enter the adhered portion as shown in FIG. Due to variations in the adhesive strength of the anisotropic conductive film or the adhesive tape material, the degree of adhesion of the adhered parts may vary, resulting in variations in the resistance value and uneven discharge, resulting in uneven charging. It was

【0011】さらに、放電電極の先端部に放電電流が流
れたときには、放電電極の温度が無視できない程度(例
えば、コモン電極と放電電極との間の抵抗値300M
Ω、コモン電極と放電電極との間の電流値100μA、
抵抗体の長さ240mm、幅15mm、厚さ2mm、3
Wの電力消費が存在するとき、80〜100℃の温度上
昇)となるため、樹脂製の抵抗体であれば金属製の放電
電極との熱線膨張率の違いにより、抵抗体と放電電極と
の接着部分が剥がれて、密着性が低下することがある。
また、テープ状の抵抗体であればテープが放電電極から
浮いた状態となって、相互の密着性が低下することがあ
る。これにより、安定した放電が行えず、また寿命も短
くなっていた。
Furthermore, when a discharge current flows through the tip of the discharge electrode, the temperature of the discharge electrode cannot be ignored (for example, the resistance value between the common electrode and the discharge electrode is 300 M).
Ω, current value between common electrode and discharge electrode 100 μA,
Resistor length 240mm, width 15mm, thickness 2mm, 3
When the electric power consumption of W is present, the temperature rises by 80 to 100 ° C.). Therefore, in the case of a resistor made of resin, the difference in the coefficient of linear thermal expansion from the discharge electrode made of metal causes the difference between the resistor and the discharge electrode. The adhesive portion may be peeled off and the adhesiveness may be reduced.
Further, in the case of a tape-shaped resistor, the tape may float from the discharge electrode, and the mutual adhesion may deteriorate. As a result, stable discharge cannot be performed and the life is shortened.

【0012】しかも、通電時の発熱による抵抗体内部の
熱膨張により抵抗値が経時変化をおこし徐々に大きくな
る傾向があり、また周囲の環境条件により抵抗体は微妙
に変化し、高温になるほど抵抗値は上昇する傾向にある
ため、長期にわたって安定した放電を得ることが困難で
あった。
Moreover, the resistance value tends to change with time due to thermal expansion inside the resistor due to heat generation during energization, and the resistor may change subtly depending on the surrounding environmental conditions. Since the value tends to increase, it has been difficult to obtain stable discharge over a long period of time.

【0013】本発明は、上記に鑑み、長期間安定した放
電を得ることができ、しかも製造工程の簡略化を可能に
する帯電装置およびその製造方法の提供を目的とする。
In view of the above, it is an object of the present invention to provide a charging device and a method of manufacturing the same, which can obtain stable discharge for a long period of time and which can simplify the manufacturing process.

【0014】[0014]

【課題を解決するための手段】請求項1の発明による課
題解決手段は、図1の如く、複数の歯先を有する放電電
極21と、電圧源22に接続され放電電極21と一定間
隔を隔てて配設されたコモン電極23と、放電電極21
とコモン電極23とを電気的に接続する抵抗体25とが
絶縁基板24上に配され、抵抗体25は、放電電極21
およびコモン電極23に直接接続された抵抗樹脂層とさ
れたものである。
As shown in FIG. 1, a discharge electrode 21 having a plurality of tooth tips and a discharge electrode 21 connected to a voltage source 22 are spaced apart from the discharge electrode 21 by a constant distance. Common electrode 23 and discharge electrode 21
And a resistor 25 that electrically connects the common electrode 23 with the common electrode 23 are disposed on the insulating substrate 24.
And a resistance resin layer directly connected to the common electrode 23.

【0015】請求項2の発明による課題解決手段は、図
12,14,15の如く、抵抗体60が放電電極21お
よびコモン電極23に接触する部分の少なくとも一方が
熱硬化性の低抵抗樹脂層60Aとされたものである。
According to the second aspect of the present invention, as shown in FIGS. 12, 14 and 15, at least one of the portions where the resistor 60 contacts the discharge electrode 21 and the common electrode 23 is a thermosetting low resistance resin layer. It is set to 60A.

【0016】請求項3の発明による課題解決手段は、抵
抗体25の体積抵抗値が300MΩ以上1500MΩ以
下の範囲に設定されたものである。
According to the third aspect of the present invention, the volume resistance value of the resistor 25 is set in the range of 300 MΩ or more and 1500 MΩ or less.

【0017】請求項4の発明による課題解決手段は、図
8の如く、絶縁基板24上に複数の歯先を有する放電電
極21とコモン電極23とを一定間隔を隔てて配置し、
放電電極21とコモン電極23との間に抵抗樹脂を供給
しながら放電電極21とコモン電極23との間の抵抗値
を測定し、測定された抵抗値に応じて抵抗樹脂の供給量
を制御して放電電極21およびコモン電極23に直接接
続する所定の抵抗値の抵抗樹脂層を形成するものであ
る。
According to a fourth aspect of the present invention, as shown in FIG. 8, a discharge electrode 21 having a plurality of tooth tips and a common electrode 23 are arranged on an insulating substrate 24 at regular intervals.
The resistance value between the discharge electrode 21 and the common electrode 23 is measured while supplying the resistance resin between the discharge electrode 21 and the common electrode 23, and the supply amount of the resistance resin is controlled according to the measured resistance value. To form a resistance resin layer having a predetermined resistance value, which is directly connected to the discharge electrode 21 and the common electrode 23.

【0018】請求項5の発明による課題解決手段は、図
9の如く、絶縁基板24上に複数の歯先を有する放電電
極21とコモン電極23とを一定間隔を隔てて配置し、
放電電極21とコモン電極23との間に熱可塑性の抵抗
樹脂を供給して放電電極21およびコモン電極23に直
接接続する抵抗樹脂層を形成し、放電電極21とコモン
電極23との間に通常の放電電流よりも大きい電流を一
時的に通電し、電極21,23の周囲の抵抗樹脂を溶融
させて電極21,23と抵抗樹脂層との接触部分を再形
成するものである。
According to a fifth aspect of the present invention, as shown in FIG. 9, a discharge electrode 21 having a plurality of tooth tips and a common electrode 23 are arranged on an insulating substrate 24 at regular intervals.
A thermoplastic resistance resin is supplied between the discharge electrode 21 and the common electrode 23 to form a resistance resin layer which is directly connected to the discharge electrode 21 and the common electrode 23, and is usually provided between the discharge electrode 21 and the common electrode 23. A current larger than the discharge current is temporarily applied to melt the resistance resin around the electrodes 21 and 23 to re-form the contact portion between the electrodes 21 and 23 and the resistance resin layer.

【0019】請求項6の発明による課題解決手段は、図
10の如く、軟化または溶融している状態の抵抗樹脂層
に電界または磁界を与え、抵抗樹脂中の導電性物質に方
向性を付与して抵抗樹脂層に異方性を与えるものであ
る。
According to a sixth aspect of the present invention, as shown in FIG. 10, an electric field or a magnetic field is applied to a resistance resin layer in a softened or melted state to give directionality to a conductive substance in the resistance resin. To give anisotropy to the resistance resin layer.

【0020】[0020]

【作用】請求項1の発明による課題解決手段において、
放電電極21およびコモン電極23に抵抗樹脂層である
抵抗体25が直接接続されているので、抵抗体を導電性
を有する接着性テープ材等により放電電極およびコモン
電極上に接着するような場合にありがちな接着部分の気
泡の発生や接着強度のばらつき等がなく、抵抗体25と
電極21,23との密着性が向上する。
In the means for solving the problem according to the invention of claim 1,
Since the resistor 25, which is a resistance resin layer, is directly connected to the discharge electrode 21 and the common electrode 23, when the resistor is adhered to the discharge electrode and the common electrode with an adhesive tape material having conductivity, etc. There is no occurrence of bubbles in the adhesive portion that tends to occur and variations in the adhesive strength, and the adhesion between the resistor 25 and the electrodes 21 and 23 is improved.

【0021】請求項2の発明による課題解決手段におい
て、低抵抗樹脂層60Aと電極との接触部分周辺では発
熱を抑えることができる。また、熱硬化性の低抵抗樹脂
層60Aは、熱可塑性樹脂に比べて熱線膨張率が小さ
く、しかも一般的な電極として使用される金属の熱線膨
張率との差も小さい。したがって、通電中に放電電極2
1に放電電流が流れたときの発熱による抵抗体60と電
極との接触部分の剥がれや浮きを防止できる。
In the means for solving the problem according to the second aspect of the present invention, heat generation can be suppressed around the contact portion between the low resistance resin layer 60A and the electrode. Further, the thermosetting low-resistance resin layer 60A has a smaller coefficient of linear thermal expansion than a thermoplastic resin, and has a small difference from the coefficient of linear thermal expansion of a metal used as a general electrode. Therefore, the discharge electrode 2 is
It is possible to prevent peeling or floating of the contact portion between the resistor 60 and the electrode due to heat generation when the discharge current flows through the electrode 1.

【0022】請求項3の発明による課題解決手段におい
て、放電電極21とコモン電極23との間の挿入抵抗の
平均抵抗値が300MΩより小さいときには、抵抗挿入
による効果が少なくオゾン発生量が増加して人体に悪影
響を及ぼす恐れがあり、また平均抵抗値が1500MΩ
より大きいときには、抵抗ばらつきが大きくなって放電
が不均一になり帯電ムラが生じる。したがって、抵抗体
25の体積抵抗値を300MΩ以上1500MΩ以下の
範囲とすることにより、オゾン発生量および帯電ムラを
最少限に抑えることができる。
In the problem solving means according to the third aspect of the present invention, when the average resistance value of the insertion resistance between the discharge electrode 21 and the common electrode 23 is less than 300 MΩ, the effect of resistance insertion is small and the ozone generation amount increases. The human body may be adversely affected, and the average resistance value is 1500 MΩ.
When it is larger than the above range, the resistance variation becomes large and the discharge becomes non-uniform, resulting in uneven charging. Therefore, by setting the volume resistance value of the resistor 25 to be in the range of 300 MΩ or more and 1500 MΩ or less, it is possible to minimize the ozone generation amount and charging unevenness.

【0023】請求項4の発明による課題解決手段におい
て、絶縁基板24上に、放電電極21およびコモン電極
23を一定距離を隔てて配置する。そして、放電電極2
1とコモン電極23との間に供給される抵抗樹脂の供給
量を放電電極21とコモン電極23との間の抵抗値に応
じて制御する。抵抗値が予め設定された抵抗値に達する
と抵抗樹脂の供給を停止し、供給された抵抗樹脂により
絶縁基板24上には放電電極21およびコモン電極23
に直接接続した所定の抵抗値の抵抗樹脂層が形成され
る。
In the problem solving means according to the fourth aspect of the present invention, the discharge electrode 21 and the common electrode 23 are arranged on the insulating substrate 24 with a constant distance therebetween. And the discharge electrode 2
The supply amount of the resistance resin supplied between 1 and the common electrode 23 is controlled according to the resistance value between the discharge electrode 21 and the common electrode 23. When the resistance value reaches a preset resistance value, the supply of the resistance resin is stopped, and the supplied resistance resin causes the discharge electrode 21 and the common electrode 23 on the insulating substrate 24.
A resistance resin layer having a predetermined resistance value is formed directly connected to.

【0024】請求項5の発明による課題解決手段におい
て、放電電極21とコモン電極23との間に供給された
抵抗樹脂層を冷却する際には、電極21,23からの放
熱により電極21,23の周囲の抵抗樹脂が他の部分の
抵抗樹脂より先に固まるので、他の部分が固まるとき
に、固化の時間差による応力の発生等により電極21,
23の周囲と他の部分との間に歪みが生じ、電極21,
23と抵抗樹脂層との接続に支障をきたしたり、抵抗値
のばらつきが生じるといった恐れがある。そこで、抵抗
樹脂として通常の放電電流が流れたときには溶融しない
が、通常の放電電流よりも大きな電流が流れたとき溶融
する熱可塑性の抵抗樹脂を使用して、抵抗樹脂層の形成
後に通常の使用状態の放電電流よりも大きい電流を一時
的に通電し、電極21,23の周囲の抵抗樹脂を再溶融
させて電極21,23と抵抗樹脂層との接続部分を再形
成することにより、再形成前の抵抗樹脂の固化の時間差
による応力の発生等における歪み等を解消する。
In the means for solving the problems according to the fifth aspect of the invention, when the resistance resin layer supplied between the discharge electrode 21 and the common electrode 23 is cooled, heat is radiated from the electrodes 21 and 23 to cause the electrodes 21 and 23 to cool. Since the resistance resin around the electrode solidifies earlier than the resistance resin in other portions, when the other portions are solidified, the stress due to the difference in solidification time causes the electrode 21,
Strain is generated between the periphery of 23 and other parts,
There is a risk that the connection between 23 and the resistance resin layer may be hindered, or the resistance value may vary. Therefore, a thermoplastic resistance resin that does not melt when a normal discharge current flows as the resistance resin, but melts when a current larger than the normal discharge current flows is used. By temporarily applying a current larger than the discharge current in the state to re-melt the resistance resin around the electrodes 21 and 23 and re-forming the connection portion between the electrodes 21 and 23 and the resistance resin layer, reforming is performed. Distortion and the like due to generation of stress due to the difference in solidification time of the previous resistance resin is eliminated.

【0025】請求項6の発明による課題解決手段におい
て、抵抗樹脂の軟化時や再溶融時に、電源を介して抵抗
樹脂層に電界もしくは磁界を与えることにより、抵抗樹
脂の導電性物質に方向性を付与した後、抵抗樹脂層を冷
却する。これにより、抵抗樹脂層に異方性を与える。
In the means for solving the problem according to the sixth aspect of the present invention, when the resistance resin is softened or remelted, an electric field or a magnetic field is applied to the resistance resin layer through a power source so that the conductive material of the resistance resin is oriented. After the application, the resistance resin layer is cooled. This imparts anisotropy to the resistance resin layer.

【0026】[0026]

【実施例】本発明の一実施例の帯電装置(特に、コロナ
放電を発生するコロナ放電装置)を備えた複写機やレー
ザープリンタ等の要部構成を図2に示す。図2におい
て、1は感光体、2はコロナ放電装置である帯電器、3
は現像器、4は転写材(用紙)、5はコロナ放電装置で
ある転写器、6は定着器、7はクリーナ、8は除電ラン
プである。そして、感光体1のA方向の回転に伴って、
帯電器2により感光体1の表面を所定の電位に帯電させ
た後、露光9により感光体1の表面に静電潜像を形成
し、その静電潜像を現像器3で現像する。このトナー像
が転写器5と感光体1とが対向する転写部位に至ると、
これにタイミングを合わせて用紙4を転写部位(B方
向)に供給する。転写部位では、転写器5により用紙4
の裏面を帯電させ、感光体1上のトナー像を用紙4に転
写する。その後、トナー像を担持した用紙4を定着器6
に搬送し、定着器6でトナー像を用紙4上に溶着した
後、用紙4を排紙する。一方、感光体1上に残ったトナ
ーをクリーナ7で回収した後、感光体1上の残留電荷を
除電ランプ8により除電して次の工程に入るといったプ
ロセスとされている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows the essential configuration of a copying machine, a laser printer, etc. equipped with a charging device according to an embodiment of the present invention (particularly, a corona discharge device for generating corona discharge). In FIG. 2, 1 is a photoconductor, 2 is a charger which is a corona discharge device, 3
Is a developing device, 4 is a transfer material (paper), 5 is a transfer device which is a corona discharge device, 6 is a fixing device, 7 is a cleaner, and 8 is a discharge lamp. Then, as the photoreceptor 1 rotates in the A direction,
After the surface of the photoconductor 1 is charged to a predetermined potential by the charger 2, an electrostatic latent image is formed on the surface of the photoconductor 1 by exposure 9 and the electrostatic latent image is developed by the developing device 3. When this toner image reaches the transfer portion where the transfer device 5 and the photoconductor 1 face each other,
The paper 4 is supplied to the transfer portion (direction B) at the same timing. At the transfer site, the transfer device 5 causes the paper 4
The rear surface of the sheet is charged and the toner image on the photoconductor 1 is transferred to the sheet 4. After that, the sheet 4 carrying the toner image is fixed to the fixing device 6
After the toner image is fused onto the sheet 4 by the fixing device 6, the sheet 4 is discharged. On the other hand, the process is such that after the toner remaining on the photoconductor 1 is collected by the cleaner 7, the residual charge on the photoconductor 1 is removed by the charge removal lamp 8 to proceed to the next step.

【0027】前記コロナ放電装置2,5は、図1,2,
3に示すように、感光体1の表面に対向した開口を有す
る断面コ字形のシールドケース20に、コロナ放電を発
生する放電電極21および高圧電源22に接続されたコ
モン電極23を保持する絶縁基板24が内装され、放電
電極21とコモン電極23とは一定間隔を隔てて対向配
置されており、放電電極21とコモン電極23とが抵抗
体25により電気的に接続されている。そして、高圧電
源22の高電圧をコモン電極23から抵抗体25を介し
て放電電極21に印加することで、放電電極21の先端
部からコロナ放電を発生させて感光体1の表面を帯電さ
せる構造となっており、放電電極21の先端部からの放
電が火花放電やアーク放電に移行せずにコロナ放電に維
持される範囲内で、放電電極21の先端部と感光体1の
表面との距離が最小になるように設定されている。な
お、帯電器側においては、感光体1の表面と放電電極2
1との間に、高圧電源26により所定の電圧が印加され
たグリッド電極27が配設されており、このグリッド電
極27により感光体1の表面の帯電電位が所定電位にな
るように制御される。
The corona discharge devices 2 and 5 are shown in FIGS.
As shown in FIG. 3, an insulating substrate holding a discharge electrode 21 for generating a corona discharge and a common electrode 23 connected to a high voltage power source 22 in a shield case 20 having a U-shaped cross section having an opening facing the surface of the photoreceptor 1. 24, the discharge electrode 21 and the common electrode 23 are opposed to each other with a constant space therebetween, and the discharge electrode 21 and the common electrode 23 are electrically connected by the resistor 25. Then, by applying a high voltage of the high voltage power source 22 to the discharge electrode 21 from the common electrode 23 through the resistor 25, corona discharge is generated from the tip of the discharge electrode 21 to charge the surface of the photoconductor 1. The distance between the tip of the discharge electrode 21 and the surface of the photoconductor 1 is within a range in which the discharge from the tip of the discharge electrode 21 is maintained as corona discharge without shifting to spark discharge or arc discharge. Is set to be minimum. On the charger side, the surface of the photoreceptor 1 and the discharge electrode 2 are
1, a grid electrode 27 to which a predetermined voltage is applied by a high voltage power supply 26 is arranged, and the grid electrode 27 controls the charging potential of the surface of the photoconductor 1 to a predetermined potential. .

【0028】前記放電電極21は、図1に示すように、
厚さ0.1mmの平板状で長さ4mm、幅2mm程度の
金属製の独立した複数の歯30からなる。この放電電極
21の各歯30は、一定のピッチ(2mm)で長板状の
絶縁基板24の長手方向に沿って配列され、絶縁基板2
4の端部からシールドケース20の開口側すなわち感光
体1側に僅かに突出した状態で、絶縁基板24上に固定
されている。
The discharge electrode 21 is, as shown in FIG.
It is composed of a plurality of independent metal teeth 30 each having a thickness of 0.1 mm and a plate shape of 4 mm and a width of 2 mm. The teeth 30 of the discharge electrode 21 are arranged at a constant pitch (2 mm) along the longitudinal direction of the long plate-shaped insulating substrate 24.
It is fixed on the insulating substrate 24 in a state of slightly protruding from the end portion of 4 toward the opening side of the shield case 20, that is, the side of the photoconductor 1.

【0029】前記抵抗体25は、放電電極21の各歯3
0の根元部分とコモン電極23との間を高抵抗樹脂でモ
ールドすることにより形成された長さ240mm、幅1
5mm程度の高抵抗樹脂層からなり、各歯30の根元部
およびコモン電極23に直接接続されている。高抵抗樹
脂は、例えばポリエチレン、ポリエステル、ポリウレタ
ン、ナイロン、ポリアミド、ポリイミド、ポリカーボネ
ート等の有機材料からなる基材に、カーボンブラックや
金属粉からなり廉価な抵抗体を形成する無機材料、ある
いは酸化亜鉛、酸化ルテニウム等の温湿度変化に安定し
た性能を示す高抵抗体を形成する金属酸化物、あるいは
ハロゲン酸素酸塩、過ハロゲン酸素酸塩、過塩素酸リチ
ウム等の局部的な抵抗値変化の少ない均一な抵抗体を形
成するイオン伝導を示すアルカリ金属塩等の添加物が混
練された材料からなる。
The resistor 25 is provided for each tooth 3 of the discharge electrode 21.
A length of 240 mm and a width of 1 formed by molding a space between the base portion of 0 and the common electrode 23 with a high resistance resin.
It is made of a high resistance resin layer of about 5 mm and is directly connected to the roots of the teeth 30 and the common electrode 23. High-resistivity resin is, for example, a base material made of an organic material such as polyethylene, polyester, polyurethane, nylon, polyamide, polyimide, polycarbonate, etc., an inorganic material made of carbon black or metal powder to form an inexpensive resistor, or zinc oxide, Metal oxide that forms a high resistance material that shows stable performance with respect to temperature and humidity changes such as ruthenium oxide, or uniform with small local resistance value changes such as halogen oxyacid salts, perhalogen oxyacid salts, and lithium perchlorate. It is made of a material in which an additive such as an alkali metal salt showing ionic conduction that forms a different resistor is kneaded.

【0030】ここで、放電電極21とコモン電極23と
の間の抵抗値(挿入抵抗値)すなわち抵抗体25におけ
る体積抵抗値について説明する。図4に示すようにシー
ルドケース20とコモン電極23との間に高圧電源31
を接続して電圧を印加したときに、挿入抵抗の平均抵抗
値をパラメータとした場合のトータル電流と帯電ムラと
の関係を図5に示す。なお、挿入抵抗の平均抵抗値のば
らつきは、100MΩのものが約±33%、300MΩ
のものが約±30%であり、抵抗ナシは従来の鋸歯状を
なす放電電極のみを用いたときに相当し、各歯30を短
絡することにより挿入抵抗値を0Ωとした。図5におい
ては、挿入抵抗の平均抵抗値が100MΩのときにはト
ータル電流100μAで抵抗ナシのときと帯電ムラが同
程度となり、オゾン発生量が増加して抵抗挿入による効
果が少なく、抵抗300MΩのときほど大きな効果は期
待できないことがわかる。300MΩ以上になると、空
隙のインピーダンスのばらつきに左右されなくなり、帯
電ムラを抑えることができる。したがって、挿入抵抗の
平均抵抗値すなわち抵抗体25における体積抵抗値は3
00MΩ以上が望ましい。
The resistance value (insertion resistance value) between the discharge electrode 21 and the common electrode 23, that is, the volume resistance value of the resistor 25 will be described. As shown in FIG. 4, a high voltage power supply 31 is provided between the shield case 20 and the common electrode 23.
FIG. 5 shows the relationship between the total current and the charging non-uniformity when the average resistance value of the insertion resistance is used as a parameter when a voltage is applied by connecting. The variation in the average resistance value of the insertion resistance is about ± 33% for 100 MΩ and 300 MΩ.
The resistance resistance corresponds to the case where only the conventional saw-toothed discharge electrode is used, and the insertion resistance value is set to 0Ω by short-circuiting each tooth 30. In FIG. 5, when the average resistance value of the insertion resistance is 100 MΩ, the charging unevenness is about the same as when the total current is 100 μA and there is no resistance, and the ozone generation amount increases and the effect of resistance insertion is small. It turns out that a big effect cannot be expected. When it is 300 MΩ or more, it is not affected by the variation in the impedance of the air gap, and the charging unevenness can be suppressed. Therefore, the average resistance value of the insertion resistance, that is, the volume resistance value of the resistor 25 is 3
00 MΩ or more is desirable.

【0031】また、新品時の抵抗体25の平均抵抗値と
印加電圧の関係を図6に示す。なお、印加電圧はトータ
ル電流が140μAとなるように定電流制御したときの
値であり、環境条件は25℃/60%に設定されてい
る。図6においては、新品時の抵抗体25の平均抵抗値
は1500MΩまで正常に使用できることが確認でき
た。抵抗体25の平均抵抗値がこれ以上大きくなると、
抵抗のばらつきが大きくなって放電が不均一になり帯電
ムラが生じる。その結果印加電圧が大きくなり、さらに
はH/H環境下でリークする恐れがある。したがって、
抵抗体25における体積抵抗値は1500MΩ以下が望
ましい。
FIG. 6 shows the relationship between the average resistance value of the resistor 25 and the applied voltage when it is new. The applied voltage is a value when constant current control is performed so that the total current is 140 μA, and the environmental condition is set to 25 ° C./60%. In FIG. 6, it was confirmed that the resistor 25 can be normally used up to an average resistance value of 1500 MΩ when it is new. When the average resistance value of the resistor 25 becomes larger than this,
The variation in resistance becomes large, the discharge becomes non-uniform, and uneven charging occurs. As a result, the applied voltage increases, and there is a risk of leakage under H / H environment. Therefore,
The volume resistance value of the resistor 25 is preferably 1500 MΩ or less.

【0032】上記構成において、コロナ放電装置2,5
の製造方法について説明する。まず、ガラスエポキシ樹
脂等からなる絶縁基板24上に、プリント配線によりコ
モン電極23を形成する。次に、絶縁基板24上におい
てコモン電極23から一定距離を隔てた位置に放電電極
21の各歯30を配置する。
In the above structure, the corona discharge device 2, 5
The manufacturing method of will be described. First, the common electrode 23 is formed by printed wiring on the insulating substrate 24 made of glass epoxy resin or the like. Next, the teeth 30 of the discharge electrode 21 are arranged on the insulating substrate 24 at positions separated from the common electrode 23 by a certain distance.

【0033】各歯30の配置方法は、図7に示すよう
に、金属製の平板をエッチング加工により根元が一体的
につながった櫛形に形成し、絶縁基板24の長手方向に
等間隔で配された複数の支持突起24aに対応して前記
櫛形の平板に複数の位置決め穴21aを穿設し、位置決
め穴21aを絶縁基板24の支持突起24aに係合する
とともに両面接着性テープ材31等により絶縁基板24
上に接着固定し、櫛形の平板をハーフエッチング加工に
より形成された根元部分の折り目21bに沿って折曲し
て切り離すことにより、各歯30を絶縁基板24上に配
置する。これにより、各歯30の取付精度が向上する。
なお、櫛形の平板を切り離しても、平板が絶縁基板24
上に接着固定されているので、各歯30はずれることが
ない。
As shown in FIG. 7, the teeth 30 are arranged by forming a flat plate made of metal into a comb shape whose roots are integrally connected by etching and arranged at equal intervals in the longitudinal direction of the insulating substrate 24. A plurality of positioning holes 21a are formed in the comb-shaped flat plate corresponding to the plurality of supporting projections 24a, and the positioning holes 21a are engaged with the supporting projections 24a of the insulating substrate 24 and insulated by the double-sided adhesive tape material 31 or the like. Board 24
The teeth 30 are arranged on the insulating substrate 24 by being bonded and fixed to the upper side, and by bending and separating the comb-shaped flat plate along the fold line 21b of the root portion formed by the half etching process. This improves the mounting accuracy of each tooth 30.
Even if the comb-shaped flat plate is cut off, the flat plate still remains the insulating substrate 24.
Since each tooth 30 is fixedly adhered to the upper side, each tooth 30 does not come off.

【0034】そして、放電電極21の各歯30の根元部
分とコモン電極23との間を高抵抗樹脂でモールドす
る。このモールド加工は、図8に示すように、放電電極
21の各歯30およびコモン電極23が配された状態の
絶縁基板24をベルトコンベア40で樹脂流入装置41
の下方位置まで移動して行われる。樹脂流入装置41で
は、タンク42内に収容された高抵抗樹脂を空気圧ポン
プ43により一定の圧力で加圧し、タンク42に連結さ
れた流量調整弁44を介して噴出口45に連結された金
型46に高抵抗樹脂を流し込み、このとき金型46の真
下に位置決めされた各歯30の根元部分とコモン電極2
3との間に高抵抗樹脂が流れ込み、圧接板47により金
型46の高抵抗樹脂を圧接するといった作業を行なう。
Then, a space between the root of each tooth 30 of the discharge electrode 21 and the common electrode 23 is molded with a high resistance resin. In this molding process, as shown in FIG. 8, the insulating substrate 24 on which the teeth 30 of the discharge electrode 21 and the common electrode 23 are arranged is moved by the belt conveyer 40 to the resin inflow device 41.
It is performed by moving to the position below. In the resin inflow device 41, the high resistance resin contained in the tank 42 is pressurized by the pneumatic pump 43 at a constant pressure, and the mold connected to the ejection port 45 via the flow rate adjusting valve 44 connected to the tank 42. High-resistivity resin is poured into 46, and at this time, the root portions of the teeth 30 positioned directly below the mold 46 and the common electrode 2 are positioned.
The high-resistivity resin flows into the gap 3 and the high-resistivity resin of the mold 46 is pressure-contacted by the pressure-contact plate 47.

【0035】樹脂流入装置41で使用される高抵抗樹脂
の粘度は、20cp〜100cpのものが適しており、
これ以上高粘度では空気圧ポンプ43による噴出が難し
く、低粘度ではタレを生じる。なお、高粘度であればト
ルエン、メチルエチルケトン等の溶材で希釈して使用し
ても良い。また、空気圧ポンプ43により送られる気体
は、N2ガス等の不活性ガス、もしくは乾燥空気が望ま
しい。
The viscosity of the high resistance resin used in the resin inflow device 41 is preferably 20 cp to 100 cp,
If the viscosity is higher than this, jetting by the pneumatic pump 43 is difficult, and if the viscosity is lower, sagging occurs. If it has a high viscosity, it may be diluted with a solvent such as toluene or methyl ethyl ketone before use. The gas sent by the pneumatic pump 43 is preferably an inert gas such as N 2 gas or dry air.

【0036】樹脂流入装置41における高抵抗樹脂の流
量は、各歯30とコモン電極23との間の抵抗値を測定
する電極間抵抗検出器50の出力信号に応じて樹脂流入
装置41の空気圧ポンプ43および流量調整弁44を駆
動する樹脂流量制御装置51によって制御され、樹脂流
量制御装置51は、電極間抵抗検出器50により測定さ
れた抵抗値が抵抗体25の体積抵抗値(300MΩ以上
1500MΩ以下の範囲)に相当する予め設定された基
準抵抗値に達すると、空気圧ポンプ43および流量調整
弁44の駆動を停止する機能を有している。
The flow rate of the high-resistive resin in the resin inflow device 41 depends on the output signal of the interelectrode resistance detector 50 which measures the resistance value between each tooth 30 and the common electrode 23. The resin flow rate control device 51 that drives 43 and the flow rate adjusting valve 44 controls the resin flow rate control device 51 so that the resistance value measured by the interelectrode resistance detector 50 is the volume resistance value of the resistor 25 (300 MΩ or more and 1500 MΩ or less). When the preset reference resistance value corresponding to the range (1) is reached, it has a function of stopping the driving of the pneumatic pump 43 and the flow rate adjusting valve 44.

【0037】これにより、各歯30の根元部分とコモン
電極23との間に高抵抗樹脂が流れ込んでいるときに、
電極間抵抗検出器50により各歯30とコモン電極23
との間の抵抗値を測定し、測定された抵抗値が基準抵抗
値に達すると、樹脂流量制御装置51により空気圧ポン
プ43および流量調整弁44の駆動を停止し、これに伴
って高抵抗樹脂の流れ込みが停止し、流れ込んだ高抵抗
樹脂層を冷却することにより絶縁基板24上には各歯3
0の根元部分およびコモン電極23に直接接続した所定
の抵抗値の高抵抗樹脂層からなる抵抗体25が形成され
る。
As a result, when the high resistance resin is flowing between the root portion of each tooth 30 and the common electrode 23,
Each electrode 30 and the common electrode 23 by the interelectrode resistance detector 50.
When the measured resistance value reaches the reference resistance value, the resin flow rate control device 51 stops driving the pneumatic pump 43 and the flow rate adjustment valve 44, and accordingly, the high resistance resin Of the teeth 3 are stopped on the insulating substrate 24 by cooling the flowing high resistance resin layer.
A resistor 25 is formed of a high resistance resin layer having a predetermined resistance value, which is directly connected to the root portion of 0 and the common electrode 23.

【0038】しかしながら、高抵抗樹脂層を冷却する際
に、各歯30からの放熱により各歯30の周囲の高抵抗
樹脂が他の部分の高抵抗樹脂より先に固まるので、他の
部分が固まるときに、固化の時間差による応力の発生等
により各歯30の周囲と他の部分との間に歪みが生じ、
各歯30と抵抗体25との接続に支障をきたしたり、抵
抗体25の抵抗値が安定しない(高抵抗樹脂組成の不均
一に起因して抵抗値のばらつきが生じる)といった恐れ
がある。
However, when the high resistance resin layer is cooled, the high resistance resin around each tooth 30 is solidified before the high resistance resin of the other portion due to the heat radiation from each tooth 30, so that the other portion is solidified. At times, distortion occurs between the periphery of each tooth 30 and other parts due to the generation of stress due to the difference in solidification time,
There is a risk that the connection between each tooth 30 and the resistor 25 will be hindered, or the resistance value of the resistor 25 will not be stable (the resistance value will vary due to the non-uniformity of the high-resistive resin composition).

【0039】そこで、モールドに使用される高抵抗樹脂
として通常の使用状態における放電電流が流れたときに
は溶融しないが、通常の放電電流よりも大きな電流が流
れたとき溶融する熱可塑性の高抵抗樹脂(例えば、アク
リル、ポリエチレン、ポリプロピレン、ポリカーボネー
ト、アセタール樹脂等)を使用する。この場合は、上述
のモールド加工を行った後、図9に示すように、高抵抗
樹脂層の各歯30との接触部分付近とコモン電極23と
の間に接続された電源電圧52により、通常の使用状態
の放電電流よりも大きい電流を一時的に通電し、各歯3
0の周囲の高抵抗樹脂を再溶融させて各歯30と高抵抗
樹脂層との接触部分を再形成することにより、残留応力
を減少し、接触部分の密着性を高めて、通常の通電時に
おける抵抗値を安定させることができる。なお、通電す
る電流の大きさやコモン電極23の材質によっては、コ
モン電極23の周囲の高抵抗樹脂を再溶融させて、コモ
ン電極23と高抵抗樹脂層との接続部分を再形成するこ
とも可能である。
Therefore, as a high resistance resin used in a mold, a thermoplastic high resistance resin (which does not melt when a discharge current flows in a normal use state, but melts when a current larger than the normal discharge current flows ( For example, acrylic, polyethylene, polypropylene, polycarbonate, acetal resin, etc.) is used. In this case, after performing the above-described molding process, as shown in FIG. 9, the power supply voltage 52 connected between the common electrode 23 and the vicinity of the contact portion with each tooth 30 of the high resistance resin layer is normally used. A current larger than the discharge current in the operating state of
By re-melting the high resistance resin around 0 to re-form the contact portion between each tooth 30 and the high resistance resin layer, the residual stress is reduced and the adhesion of the contact portion is improved, and at the time of normal energization The resistance value at can be stabilized. Depending on the magnitude of the current to be applied and the material of the common electrode 23, the high resistance resin around the common electrode 23 can be remelted to re-form the connection portion between the common electrode 23 and the high resistance resin layer. Is.

【0040】さらに、高抵抗樹脂の軟化時や再溶融時
に、図10に示すように、各歯30とコモン電極23と
の間に接続された電源電圧53から高抵抗樹脂層に電圧
を印加して、高抵抗樹脂層に電界もしくは磁界を与える
ことにより、高抵抗樹脂の導電性物質に方向性を付与し
た後、高抵抗樹脂層を冷却する。これにより、高抵抗樹
脂層に異方性を与えることができる。そして、このよう
に構成された組品をシールドケース20に内装して、コ
ロナ放電装置2,5が作製される。
Further, when the high resistance resin is softened or remelted, as shown in FIG. 10, a voltage is applied to the high resistance resin layer from the power supply voltage 53 connected between each tooth 30 and the common electrode 23. Then, an electric field or a magnetic field is applied to the high resistance resin layer to impart directionality to the conductive material of the high resistance resin, and then the high resistance resin layer is cooled. Thereby, anisotropy can be given to the high resistance resin layer. Then, the assembly thus constructed is housed in the shield case 20, and the corona discharge devices 2 and 5 are manufactured.

【0041】このように、放電電極21の各歯30とコ
モン電極23とを電気的に接続する抵抗体25が各歯3
0およびコモン電極23に直接接続された高抵抗樹脂層
とされているため、従来のような異方導電性膜や導電性
を有する接着性テープ材により抵抗体を放電電極および
コモン電極上に接着するときと比べて、接触部分の密着
性が向上し、抵抗値のばらつきを抑え、性能の安定化を
図ることができる。
In this way, the resistor 25 that electrically connects each tooth 30 of the discharge electrode 21 and the common electrode 23 is provided with each tooth 3.
0 and the common electrode 23 are directly connected to the high resistance resin layer, so that the resistor is bonded to the discharge electrode and the common electrode by the conventional anisotropic conductive film or the conductive adhesive tape material. Compared with the case of, the adhesion of the contact portion is improved, the variation of the resistance value can be suppressed, and the performance can be stabilized.

【0042】また、抵抗体25における体積抵抗値が3
00MΩ以上1500MΩ以下の範囲とされており、帯
電ムラとオゾン発生量を最小限に抑えることができ、し
かも環境条件に関係なく均一な帯電を得ることができ
る。
The volume resistance value of the resistor 25 is 3
It is in the range of 00 MΩ or more and 1500 MΩ or less, and it is possible to minimize uneven charging and the amount of ozone generated, and to obtain uniform charging regardless of environmental conditions.

【0043】さらに、放電電極21の各歯30とコモン
電極23との間を高抵抗樹脂でモールドするだけの簡単
な工程で抵抗体25を形成するとともに絶縁基板24上
に配置することができ、従来のように櫛形に形成した抵
抗体を放電電極に合わせて接着するときと比べて、製造
工程を簡略化してコストダウンが可能であり、大量生産
に適している。しかも、モールド加工時に放電電極21
の各歯30とコモン電極23との間に流入される高抵抗
樹脂の流量を各歯30とコモン電極23との間の抵抗値
に応じて制御しているので、抵抗値の精度ばらつきのな
い安定したコロナ放電装置を得ることができる。
Further, the resistor 25 can be formed and arranged on the insulating substrate 24 by a simple process of molding between the teeth 30 of the discharge electrode 21 and the common electrode 23 with a high resistance resin. Compared to the conventional case where a comb-shaped resistor is bonded to the discharge electrode, the manufacturing process can be simplified and the cost can be reduced, which is suitable for mass production. Moreover, during the molding process, the discharge electrode 21
Since the flow rate of the high-resistivity resin flowing between each tooth 30 and the common electrode 23 is controlled according to the resistance value between each tooth 30 and the common electrode 23, there is no variation in resistance value accuracy. A stable corona discharge device can be obtained.

【0044】また、通常の使用状態における放電電流が
流れたときには溶融しないが、通常の放電電流よりも大
きな電流が流れたとき溶融する熱可塑性の高抵抗樹脂を
使用して抵抗体25を形成したときには、モールド加工
を行った後、通常の使用状態の放電電流よりも大きい電
流を一時的に通電し、各歯30の周囲の高抵抗樹脂を再
溶融させて各歯30と高抵抗樹脂層との接触部分を再形
成することにより、再形成前の高抵抗樹脂の固化の時間
差による応力の発生等における歪み等を解消して、接触
部分の密着性をさらに向上することができる。
Further, the resistor 25 is formed by using a thermoplastic high resistance resin which does not melt when a discharge current flows in a normal use state but melts when a current larger than the normal discharge current flows. Occasionally, after the molding process is performed, a current larger than the discharge current in a normal use state is temporarily applied to remelt the high resistance resin around each tooth 30 so that each tooth 30 and the high resistance resin layer are separated from each other. By re-forming the contact portion, the distortion or the like due to the generation of stress due to the time difference of the solidification of the high resistance resin before the reforming can be eliminated, and the adhesion of the contact portion can be further improved.

【0045】さらにまた、高抵抗樹脂層に異方性を与え
ると、抵抗体25における面方向の抵抗ムラ、抵抗ムラ
による発熱を防止することができ、長期にわたって安定
した放電を得ることができ、長寿命化を図ることができ
る。
Furthermore, by giving anisotropy to the high resistance resin layer, it is possible to prevent uneven resistance in the surface direction of the resistor 25 and heat generation due to uneven resistance, and to obtain stable discharge for a long period of time. The life can be extended.

【0046】(第二実施例)第二実施例のコロナ放電装
置は、図11,12に示すように、抵抗体60が低抵抗
樹脂層60Aと高抵抗樹脂層60Bとからなる2層構造
とされており、低抵抗樹脂層60Aは放電電極21の各
歯30の根元部分を夫々独立して低抵抗樹脂でモールド
することにより厚さ1mm程度に形成されており、高抵
抗樹脂層60Bは低抵抗樹脂層60Aおよびコモン電極
23を高抵抗樹脂でモールドすることにより厚さ2mm
程度に形成されている。
(Second Embodiment) As shown in FIGS. 11 and 12, the corona discharge device of the second embodiment has a resistor 60 having a two-layer structure composed of a low resistance resin layer 60A and a high resistance resin layer 60B. The low resistance resin layer 60A is formed to have a thickness of about 1 mm by independently molding the root portions of the teeth 30 of the discharge electrode 21 with a low resistance resin, and the high resistance resin layer 60B has a low resistance. The resistance resin layer 60A and the common electrode 23 are molded with a high resistance resin to have a thickness of 2 mm.
It is formed to a degree.

【0047】また、低抵抗樹脂は、例えばポリエチレ
ン、ポリエステル、ポリウレタン、ナイロン、ポリアミ
ド、ポリイミド、ポリカーボネート等の有機材料からな
る基材に、カーボンブラックや金属粉からなり廉価な抵
抗体を形成する無機材料等の添加物が混練された材料か
らなり、カーボンブラックや金属粉の量を少なくするこ
とによって低抵抗とされている。なお、その他の構成
は、第一実施例と同様である。
The low-resistivity resin is an inorganic material that forms an inexpensive resistor made of carbon black or metal powder on a base material made of an organic material such as polyethylene, polyester, polyurethane, nylon, polyamide, polyimide, or polycarbonate. It is made of a material in which additives such as is kneaded, and has a low resistance by reducing the amounts of carbon black and metal powder. The other configurations are the same as those in the first embodiment.

【0048】このコロナ放電装置の製造方法を図13に
基づいて説明する。まず、第一実施例のように放電電極
21の各歯30およびコモン電極23が配された状態の
絶縁基板24をベルトコンベア40で樹脂流入装置41
の下方位置まで移動して、樹脂流入装置41により各歯
30の根元部分に低抵抗樹脂を流し込んで低抵抗樹脂層
60Aを形成する(図13(a)参照)。その後、低抵
抗樹脂層60Aとコモン電極23との間に高抵抗樹脂を
流し込んで高抵抗樹脂層60Bを形成する(図13
(b)参照)。なお、樹脂流量の制御や異方性の付与は
第一実施例と同様の動作であるため省略する。
A method of manufacturing this corona discharge device will be described with reference to FIG. First, the resin inflow device 41 is installed on the insulating substrate 24 in which the teeth 30 of the discharge electrode 21 and the common electrode 23 are arranged as in the first embodiment by the belt conveyor 40.
And the low-resistance resin layer 60A is formed by pouring the low-resistance resin into the root portion of each tooth 30 by the resin inflow device 41 (see FIG. 13A). Then, a high resistance resin layer 60B is formed by pouring a high resistance resin between the low resistance resin layer 60A and the common electrode 23 (FIG. 13).
(B)). Note that the control of the resin flow rate and the imparting of anisotropy are the same operations as in the first embodiment, and will not be described.

【0049】このように、抵抗体25を低抵抗樹脂層6
0Aと高抵抗樹脂層60Bとからなる2層構造とし、放
電電極21の各歯30に低抵抗樹脂層60Aを直接接続
することにより、通電中に放電電極21の各歯30に放
電電流が流れたときの各歯30と抵抗体60との接触部
分周辺の発熱を抑え、各歯30および抵抗体60の熱膨
張を軽減することにより、従来のような接触部分の剥が
れや浮きを防止して密着性を維持し、抵抗ばらつきのな
い安定した放電を得ることができる。また、低抵抗樹脂
層60Aは各歯30の根元部分に直接接続するだけに限
らず、図14に示すように、コモン電極23に直接接続
してもよい。さらには、図15に示すように、各歯30
の根元部分およびコモン電極23の両方に直接接続して
よい。この場合には、両方の低抵抗樹脂層60Aに高抵
抗樹脂層60Bを直接接続させており、各歯30および
コモン電極23と抵抗体60との接触部分周辺の発熱を
抑え、これらの熱膨張をさらに軽減することができ、よ
り安定した放電を得ることができる。
In this way, the resistor 25 is connected to the low resistance resin layer 6
0A and a high resistance resin layer 60B, and a low resistance resin layer 60A is directly connected to each tooth 30 of the discharge electrode 21 so that a discharge current flows through each tooth 30 of the discharge electrode 21 during energization. By suppressing heat generation around the contact portion between each tooth 30 and the resistor 60 at the time of contact and reducing the thermal expansion of each tooth 30 and the resistor 60, peeling or floating of the contact portion as in the conventional case is prevented. Adhesiveness can be maintained and stable discharge without resistance variation can be obtained. The low resistance resin layer 60A is not limited to being directly connected to the root portion of each tooth 30, but may be directly connected to the common electrode 23 as shown in FIG. Furthermore, as shown in FIG.
It may be directly connected to both the root portion of and the common electrode 23. In this case, the high resistance resin layer 60B is directly connected to both the low resistance resin layers 60A to suppress heat generation around the contact portions between the teeth 30 and the common electrode 23 and the resistor 60, and thermal expansion of these. Can be further reduced, and more stable discharge can be obtained.

【0050】その上、図16に示すように、放電電極2
1の各歯30に高さ2mm程度の熱伝導部材(フィン)
70を設ける等して、各歯30に放熱機能を持たせるこ
とにより抵抗体60と各歯30との接触部分に生じた熱
の放散が行われ、さらに熱膨張を軽減することができ
る。
In addition, as shown in FIG.
A heat-conducting member (fin) having a height of about 2 mm on each tooth 30 of 1.
70 is provided to give each tooth 30 a heat radiation function, so that heat generated in the contact portion between the resistor 60 and each tooth 30 is dissipated, and thermal expansion can be further reduced.

【0051】(第三実施例)第三実施例のコロナ放電装
置は、第二実施例の抵抗体60における低抵抗樹脂層6
0Aが熱硬化性の低抵抗樹脂(例えば、フェノール樹
脂)により形成されている。この場合、フェノール樹脂
の熱線膨張率(木粉充填3〜4.5×10-5、石綿充填
0.8〜4×10-5)は、熱可塑性を有する例えばポリ
エチレンの熱線膨張率(11〜13×10-5)、ポリプ
ロピレンの熱線膨張率(5.8〜10.2×10-5)、
ポリカーボネートの熱線膨張率(6.6×10-5)、ポ
リアセタールの熱線膨張率(8.1×10-5)よりも小
さく、さらに電極に用いられる一般的な金属の熱線膨張
率(40×10-6以下)との差も小さくなるため、通電
中に放電電極21の各歯30に放電電流が流れたときの
各歯30と抵抗体60との接触部分周辺の発熱を抑える
とともに、抵抗体60と各歯30やコモン電極23との
熱線膨張率の違いによる接続部分の剥がれや浮きをより
一層防止して密着性を高め、長期にわたって安定した放
電を得ることができ、長寿命化を図ることができる。
(Third Embodiment) The corona discharge device of the third embodiment is the low resistance resin layer 6 in the resistor 60 of the second embodiment.
0A is formed of a thermosetting low resistance resin (for example, phenol resin). In this case, the coefficient of linear thermal expansion of the phenol resin (wood powder filling 3 to 4.5 × 10 −5 , asbestos filling 0.8 to 4 × 10 −5 ) is, for example, that of thermoplastic polyethylene (11 to 11). 13 × 10 −5 ), the coefficient of linear thermal expansion of polypropylene (5.8 to 10.2 × 10 −5 ),
It is smaller than the coefficient of linear thermal expansion of polycarbonate (6.6 × 10 −5 ) and the coefficient of linear thermal expansion of polyacetal (8.1 × 10 −5 ), and the coefficient of linear thermal expansion of general metals used for electrodes (40 × 10 5 -6 or less), the heat generation around the contact portion between each tooth 30 and the resistor 60 when a discharge current flows to each tooth 30 of the discharge electrode 21 during energization is suppressed, and the resistor is 60, each tooth 30 and the common electrode 23 are further prevented from peeling or floating at the connection portion due to the difference in the coefficient of linear thermal expansion, the adhesion is improved, stable discharge can be obtained for a long time, and the life is extended. be able to.

【0052】なお、本発明は、上記実施例に限定される
ものではなく、本発明の範囲内で上記実施例に多くの修
正および変更を加え得ることは勿論である。例えば、抵
抗体を形成する方法として、モールド加工に限らず成型
や印刷等により形成してもよい。
The present invention is not limited to the above embodiments, and it goes without saying that many modifications and changes can be made to the above embodiments within the scope of the present invention. For example, the method of forming the resistor is not limited to the molding process, and may be formed by molding or printing.

【0053】[0053]

【発明の効果】以上の説明から明らかな通り、請求項1
の発明によると、放電電極とコモン電極とを電気的に接
続する抵抗体が放電電極およびコモン電極に直接接続さ
れた抵抗樹脂層とされているため、従来のような導電性
を有する接着性テープ材等により抵抗体を放電電極およ
びコモン電極上に接着するときと比べて、接触部分の密
着性が向上し、抵抗値のばらつきを抑え、性能の安定化
を図ることができる。しかも、放電電極とコモン電極と
の間を抵抗樹脂でモールドあるいは印刷等を行なうだけ
の簡単な工程で抵抗体を形成できかつ絶縁基板上に配置
することができ、製造工程が簡略化してコストダウンが
可能であり、大量生産に適している。
As is apparent from the above description, claim 1
According to the invention, since the resistor for electrically connecting the discharge electrode and the common electrode is the resistance resin layer directly connected to the discharge electrode and the common electrode, the conventional adhesive tape having conductivity. Compared with the case where the resistor is adhered to the discharge electrode and the common electrode with a material or the like, the adhesion at the contact portion is improved, the variation in the resistance value is suppressed, and the performance can be stabilized. In addition, the resistor can be formed and placed on the insulating substrate by a simple process such as molding or printing with a resistance resin between the discharge electrode and the common electrode, which simplifies the manufacturing process and reduces the cost. And is suitable for mass production.

【0054】請求項2の発明によると、抵抗体と電極と
の接続部分を熱硬化性の低抵抗樹脂層とすることによ
り、抵抗体と電極との熱線膨張率の差を小さくし、また
通電時における接触部分周辺の発熱を抑えて、抵抗体お
よび電極の熱膨張を軽減することにより、従来のような
接続部分の剥がれや浮きを防止して密着性を維持し、抵
抗ばらつきのない長期にわたって安定した放電を得るこ
とができ、長寿命化を図ることができる。
According to the invention of claim 2, the connecting portion between the resistor and the electrode is formed of a thermosetting low resistance resin layer to reduce the difference in the coefficient of linear thermal expansion between the resistor and the electrode and to conduct electricity. By suppressing the heat generation around the contact area and reducing the thermal expansion of the resistor and the electrode, the conventional peeling and floating of the connection area is prevented and the adhesiveness is maintained for a long period without resistance variation. Stable discharge can be obtained and the life can be extended.

【0055】請求項3の発明によると、抵抗体における
体積抵抗値を300MΩ以上1500MΩ以下の範囲と
することにより、帯電ムラとオゾン発生量を最小限に抑
えることができ、しかも環境条件に関係なく均一な帯電
を得ることができる。
According to the third aspect of the present invention, by setting the volume resistance value of the resistor within the range of 300 MΩ or more and 1500 MΩ or less, it is possible to minimize charging unevenness and ozone generation amount, and further, regardless of environmental conditions. A uniform charge can be obtained.

【0056】請求項4の発明によると、放電電極および
コモン電極に直接接続する所定の抵抗値の抵抗樹脂層を
形成する際に、放電電極とコモン電極との間に供給され
る抵抗樹脂の供給量を放電電極とコモン電極との間の抵
抗値に応じて制御しているので、抵抗値の精度ばらつき
のない安定した帯電装置を得ることができる。
According to the fourth aspect of the invention, when the resistance resin layer having a predetermined resistance value is directly connected to the discharge electrode and the common electrode, the resistance resin supplied between the discharge electrode and the common electrode is supplied. Since the amount is controlled according to the resistance value between the discharge electrode and the common electrode, it is possible to obtain a stable charging device without variation in resistance value accuracy.

【0057】請求項5の発明によると、放電電極および
コモン電極に直接接続する抵抗樹脂層を形成した後、通
常の放電電流よりも大きい電流を一時的に通電し、電極
の周囲の抵抗樹脂を溶融させて電極と抵抗樹脂層との接
触部分を再形成することにより、再形成前の抵抗樹脂の
固化の時間差による応力の発生等における歪み等を解消
して、接触部分の密着性をさらに向上することができ、
安定した放電を得ることができる。
According to the invention of claim 5, after forming the resistance resin layer directly connected to the discharge electrode and the common electrode, a current larger than the normal discharge current is temporarily applied to remove the resistance resin around the electrodes. By melting and re-forming the contact part between the electrode and the resistance resin layer, distortion due to stress generation due to the time difference of solidification of the resistance resin before re-formation is eliminated, and the adhesion of the contact part is further improved. You can
A stable discharge can be obtained.

【0058】請求項6の発明によると、抵抗樹脂層に異
方性を与えて、抵抗樹脂層(抵抗体)における面方向の
抵抗ムラ、抵抗ムラによる発熱を防止することができ、
長期にわたって安定した放電を得ることができ、長寿命
化を図ることができる。
According to the sixth aspect of the present invention, the resistance resin layer can be provided with anisotropy to prevent resistance unevenness in the surface direction of the resistance resin layer (resistor) and heat generation due to resistance unevenness.
Stable discharge can be obtained over a long period of time, and the life can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】第一実施例のコロナ放電装置の要部斜視図FIG. 1 is a perspective view of a main part of a corona discharge device according to a first embodiment.

【図2】複写機やレーザープリンタの要部構成図[Fig. 2] Main part configuration diagram of copier and laser printer

【図3】コロナ放電装置の要部側断面図FIG. 3 is a side sectional view of a main part of a corona discharge device.

【図4】シールドケースとコモン電極との間に電圧を印
加する回路を示す図
FIG. 4 is a diagram showing a circuit for applying a voltage between a shield case and a common electrode.

【図5】挿入抵抗の平均抵抗値をパラメータとしたとき
のトータル電流と帯電ムラとの関係を示す図
FIG. 5 is a diagram showing the relationship between the total current and charging unevenness when the average resistance value of the insertion resistance is used as a parameter.

【図6】新品時の抵抗体の平均抵抗値と印加電圧との関
係を示す図
FIG. 6 is a diagram showing a relationship between an average resistance value of a new resistor and an applied voltage.

【図7】放電電極の各歯を基板上に配置する工程を示す
FIG. 7 is a diagram showing a process of disposing each tooth of the discharge electrode on the substrate.

【図8】モールド工程を示す図FIG. 8 is a diagram showing a molding process.

【図9】再溶融工程を示す図FIG. 9 is a diagram showing a remelting process.

【図10】異方性付与工程を示す図FIG. 10 is a diagram showing an anisotropy imparting step.

【図11】第二実施例のコロナ放電装置の要部斜視図FIG. 11 is a perspective view of a main part of a corona discharge device according to a second embodiment.

【図12】コロナ放電装置の要部側断面図FIG. 12 is a side sectional view of a main part of a corona discharge device.

【図13】モールド工程を示す図で、(a)は低抵抗樹
脂層を形成するとき、(b)は高抵抗樹脂層を形成する
とき
FIG. 13 is a diagram showing a molding process, (a) when forming a low resistance resin layer, (b) when forming a high resistance resin layer.

【図14】低抵抗樹脂層をコモン電極に接続したコロナ
放電装置の要部側断面図
FIG. 14 is a side sectional view of a main part of a corona discharge device in which a low resistance resin layer is connected to a common electrode.

【図15】低抵抗樹脂層を放電電極およびコモン電極に
接続したコロナ放電装置の要部側断面図
FIG. 15 is a side sectional view of a main part of a corona discharge device in which a low resistance resin layer is connected to a discharge electrode and a common electrode.

【図16】放電電極に熱伝導部材を設けたコロナ放電装
置の要部側断面図
FIG. 16 is a side sectional view of a main part of a corona discharge device in which a heat conductive member is provided on a discharge electrode.

【図17】従来のコロナ放電装置の要部側断面図FIG. 17 is a side sectional view of a main part of a conventional corona discharge device.

【図18】テープ接着面に気泡が入った状態を示す図FIG. 18 is a diagram showing a state in which air bubbles are contained in the adhesive surface of the tape.

【符号の説明】[Explanation of symbols]

21 放電電極 22 電圧源 23 コモン電極 24 絶縁基板 25,60 抵抗体 60A 低抵抗樹脂層 21 Discharge Electrode 22 Voltage Source 23 Common Electrode 24 Insulating Substrate 25, 60 Resistor 60A Low Resistance Resin Layer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年4月18日[Submission date] April 18, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図18[Name of item to be corrected] Fig. 18

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図18】テープ接着面に気泡が入った状態を示す顕微
鏡写真
FIG. 18: Microscope showing a state in which air bubbles are contained in the adhesive surface of the tape
Mirror photo

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 英幸 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 田坂 滋章 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 武居 雄一郎 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Hideyuki Nishimura 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Within Sharp Corporation (72) Inventor Shigeaki Tasaka 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka (72) Inventor Yuichiro Takei 22-22 Nagaike-cho, Abeno-ku, Osaka City, Osaka Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の歯先を有する放電電極と、電圧源
に接続され前記放電電極と一定間隔を隔てて配設された
コモン電極と、前記放電電極とコモン電極とを電気的に
接続する抵抗体とが絶縁基板上に配された帯電装置にお
いて、前記抵抗体は、前記放電電極およびコモン電極に
直接接続された抵抗樹脂層とされたことを特徴とする帯
電装置。
1. A discharge electrode having a plurality of tooth tips, a common electrode connected to a voltage source and spaced apart from the discharge electrode by a constant distance, and the discharge electrode and the common electrode are electrically connected. A charging device in which a resistor and an insulating substrate are arranged, wherein the resistor is a resistance resin layer directly connected to the discharge electrode and the common electrode.
【請求項2】 抵抗体は、放電電極およびコモン電極に
接触する部分の少なくとも一方が熱硬化性の低抵抗樹脂
層とされたことを特徴とする請求項1記載の帯電装置。
2. The charging device according to claim 1, wherein at least one of the portions of the resistor that is in contact with the discharge electrode and the common electrode is a thermosetting low resistance resin layer.
【請求項3】 抵抗体の体積抵抗値は、300MΩ以上
1500MΩ以下の範囲に設定されたことを特徴とする
請求項1記載の帯電装置。
3. The charging device according to claim 1, wherein the volume resistance value of the resistor is set in a range of 300 MΩ or more and 1500 MΩ or less.
【請求項4】 絶縁基板上に複数の歯先を有する放電電
極とコモン電極とを一定間隔を隔てて配置し、前記放電
電極とコモン電極との間に抵抗樹脂を供給しながら前記
放電電極とコモン電極との間の抵抗値を測定し、測定さ
れた抵抗値に応じて抵抗樹脂の供給量を制御して前記放
電電極およびコモン電極に直接接続する所定の抵抗値の
抵抗樹脂層を形成することを特徴とする帯電装置の製造
方法。
4. A discharge electrode having a plurality of tooth tips and a common electrode are arranged on an insulating substrate at a constant interval, and a resistance resin is supplied between the discharge electrode and the common electrode. The resistance value between the common electrode and the common electrode is measured, and the supply amount of the resistance resin is controlled according to the measured resistance value to form a resistance resin layer having a predetermined resistance value that is directly connected to the discharge electrode and the common electrode. A method of manufacturing a charging device, comprising:
【請求項5】 絶縁基板上に複数の歯先を有する放電電
極とコモン電極とを一定間隔を隔てて配置し、前記放電
電極とコモン電極との間に熱可塑性の抵抗樹脂を供給し
て前記放電電極およびコモン電極に直接接続する抵抗樹
脂層を形成し、前記放電電極とコモン電極との間に通常
の放電電流よりも大きい電流を一時的に通電し、前記電
極の周囲の抵抗樹脂を溶融させて前記電極と抵抗樹脂層
との接触部分を再形成することを特徴とする帯電装置の
製造方法。
5. A discharge electrode having a plurality of tooth tips and a common electrode are arranged on an insulating substrate at a constant interval, and a thermoplastic resistance resin is supplied between the discharge electrode and the common electrode. A resistance resin layer that is directly connected to the discharge electrode and the common electrode is formed, and a current larger than the normal discharge current is temporarily applied between the discharge electrode and the common electrode to melt the resistance resin around the electrode. Then, the contact portion between the electrode and the resistance resin layer is re-formed to thereby form a charging device.
【請求項6】 軟化または溶融している状態の抵抗樹脂
層に電界または磁界を与え、抵抗樹脂中の導電性物質に
方向性を付与して抵抗樹脂層に異方性を与えることを特
徴とする請求項4または5記載の帯電装置の製造方法。
6. An electric field or a magnetic field is applied to the resistance resin layer in a softened or melted state to impart directionality to a conductive substance in the resistance resin to impart anisotropy to the resistance resin layer. The method for manufacturing a charging device according to claim 4, wherein
JP32503594A 1994-12-27 1994-12-27 Electrifier and its manufacture Pending JPH08179590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32503594A JPH08179590A (en) 1994-12-27 1994-12-27 Electrifier and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32503594A JPH08179590A (en) 1994-12-27 1994-12-27 Electrifier and its manufacture

Publications (1)

Publication Number Publication Date
JPH08179590A true JPH08179590A (en) 1996-07-12

Family

ID=18172427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32503594A Pending JPH08179590A (en) 1994-12-27 1994-12-27 Electrifier and its manufacture

Country Status (1)

Country Link
JP (1) JPH08179590A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069460A1 (en) * 2004-01-13 2005-07-28 Daikin Industries, Ltd. Discharge device and air cleaning device
EP1941949A1 (en) * 2005-10-27 2008-07-09 Kawasaki Plant Systems Kabushiki Kaisha Electrostatic separation method and electrostatic separator
WO2008114330A1 (en) * 2007-02-19 2008-09-25 Fujitsu Limited Mems device and optical switch

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069460A1 (en) * 2004-01-13 2005-07-28 Daikin Industries, Ltd. Discharge device and air cleaning device
KR100812030B1 (en) * 2004-01-13 2008-03-10 다이킨 고교 가부시키가이샤 Discharge device and air cleaning device
US7753994B2 (en) 2004-01-13 2010-07-13 Daikin Industries, Ltd. Discharge device and air purifier
EP1941949A1 (en) * 2005-10-27 2008-07-09 Kawasaki Plant Systems Kabushiki Kaisha Electrostatic separation method and electrostatic separator
EP1941949A4 (en) * 2005-10-27 2011-04-27 Kawasaki Plant Systems Kabushiki Kaisha Electrostatic separation method and electrostatic separator
US8071904B2 (en) 2005-10-27 2011-12-06 Kawasaki Jukogyo Kabushiki Kaisha Electrostatic separation method and electrostatic separation device
US8653394B2 (en) 2005-10-27 2014-02-18 Kawasaki Jukogyo Kabushiki Kaisha Electrostatic separation method and electrostatic separation device
WO2008114330A1 (en) * 2007-02-19 2008-09-25 Fujitsu Limited Mems device and optical switch
US7847995B2 (en) 2007-02-19 2010-12-07 Fujitsu Limited MEMS device and optical switch

Similar Documents

Publication Publication Date Title
US10268145B2 (en) Image heating apparatus having a plate-like heater and a heat conduction plate
US6323460B1 (en) Image heating apparatus in which first and second heating resistors are within a width of a nip through which a recording material passes
US8073365B2 (en) Ion generating device, charging device, and image forming apparatus
JPH08179590A (en) Electrifier and its manufacture
US7007943B2 (en) Absorption belt, image forming apparatus with absorption belt and method for producing absorption belt
US11640130B2 (en) Heating unit, fixing unit, and image forming apparatus for heat generation performance and miniaturization
JPH05281834A (en) Solid electrifying device
JP3074095B2 (en) Corona discharge device
JPH11194581A (en) Ion generator and electrophotographic recorder
JPH08171256A (en) Corona discharging device
JP2987030B2 (en) Corona discharger and method of manufacturing the same
JP3176943B2 (en) Solid ion generator
JP2997386B2 (en) Corona discharge device
JP2000348847A (en) Ion generating device, electrifying device, transferring device, static eliminating device and image forming device
JP3149300B2 (en) Developing device
JP2578281Y2 (en) Charger
JP3680930B2 (en) Transfer belt and manufacturing method thereof
JPH10315525A (en) Image forming apparatus
JPH05278258A (en) Ion generator
JPH10144449A (en) Method for mounting terminal on corona wire
JP2007003696A (en) Fixing heater, heating device, and image forming apparatus
JP3327647B2 (en) Image forming device
JPH08197767A (en) Electrostatic type thermal printing head
JPH0412233B2 (en)
JPH05188811A (en) Fixing roller and its production