JPH08176764A - Production of aluminum alloy sheet for forming - Google Patents

Production of aluminum alloy sheet for forming

Info

Publication number
JPH08176764A
JPH08176764A JP6338753A JP33875394A JPH08176764A JP H08176764 A JPH08176764 A JP H08176764A JP 6338753 A JP6338753 A JP 6338753A JP 33875394 A JP33875394 A JP 33875394A JP H08176764 A JPH08176764 A JP H08176764A
Authority
JP
Japan
Prior art keywords
alloy
temperature
less
range
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6338753A
Other languages
Japanese (ja)
Inventor
Iwao Shu
岩 朱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP6338753A priority Critical patent/JPH08176764A/en
Publication of JPH08176764A publication Critical patent/JPH08176764A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE: To produce an Al alloy having excellent workability and baking hardenability by forming an Al alloy blank having specific components as a rolled sheet and subjecting this rolled sheet to a specific solution heat treatment then to a stabilizing treatment. CONSTITUTION: Mg is incorporated at 0.3 to 1.5% by weight and Si at 0.3 to 2.5% into the Al alloy blank and specific ratios of Be, Ag, Sn, In, Cd, Zn, Mn, Cr, Zr, V, Fe, Ti and Cu are incorporated therein. This blank is made onto the rolled material of a required sheet thickness. The rolled material is subjected to the solution heat treatment at >=480 deg.C and is cooled down to 50 to 80 deg.C at >=100 deg.C/min. The blank is held for >=5 seconds and the upper limit of the holding time is regulated in such a manner that the yield strength σ0.2 of the allay attains <=100N/mm<2> . In succession, the rolled material is subjected to the stabilizing treatment by heating to 80 deg.C or over to <=150 deg.C and holding for 0.5 to 50 hours. As a result, the aluminum alloy for forming which is less changed with lapse of time at room temp. and is less degraded in formability is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自動車ボディシート
や部品、各種機械器具、家電部品等の素材として、成形
加工および塗装焼付を施して使用されるアルミニウム合
金板の製造方法に関するものであり、特に成形性が良好
であるとともに、塗装焼付後の強度が高く、かつ室温で
の経時変化が少ない成形加工用アルミニウム合金板の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum alloy sheet, which is used as a raw material for automobile body sheets, parts, various machines and appliances, home electric appliances, etc. after being subjected to molding and baking. In particular, the present invention relates to a method for producing an aluminum alloy sheet for forming, which has good formability, high strength after coating baking, and little change with time at room temperature.

【0002】[0002]

【従来の技術】自動車のボディシートには、従来は主と
して冷延鋼板を使用することが多かったが、最近では車
体軽量化の観点から、アルミニウム合金圧延板を使用す
ることが進められている。自動車のボディシートはプレ
ス加工を施して使用するところから、成形加工性が優れ
ていること、また成形加工時におけるリューダースマー
クが発生しないことが要求され、また高強度を有するこ
とも必須であって、特に塗装焼付を施すことから、塗装
焼付後に高強度が得られることが要求される。
2. Description of the Related Art Conventionally, cold rolled steel sheets have been mainly used for body sheets of automobiles, but recently, rolled aluminum alloy sheets have been used from the viewpoint of reducing the weight of a vehicle body. Because the body sheet of an automobile is used after being pressed, it must have excellent moldability and not have any Rudermark during molding, and it must have high strength. In particular, since paint baking is performed, it is required that high strength be obtained after paint baking.

【0003】従来このような自動車用ボディシート向け
のアルミニウム合金としては、時効性を有するJIS
6000番系合金、すなわちAl−Mg−Si系合金が
主として使用されている。この時効性Al−Mg−Si
系合金では、塗装焼付前の成形加工時においては比較的
強度が低く、成形性が優れており、一方塗装焼付時の加
熱によって時効されて塗装焼付後の強度が高くなる利点
を有するほか、リューダースマークが発生しない等の利
点を有する。
Conventionally, as such an aluminum alloy for an automobile body sheet, JIS having aging properties is used.
No. 6000 series alloy, that is, Al-Mg-Si based alloy is mainly used. This aging Al-Mg-Si
Based alloys have relatively low strength during molding before baking, and have excellent formability.On the other hand, they have the advantage of being aged by heating during baking to increase strength after baking. It has advantages such as the generation of dozen marks.

【0004】ところで塗装焼付時における時効硬化を期
待したAl−Mg−Si系合金板の製造方法としては、
鋳塊を均質化熱処理した後、熱間圧延および冷間圧延を
行なって所定の板厚とし、かつ必要に応じて熱間圧延と
冷間圧延との間あるいは冷間圧延の中途において中間焼
鈍を行ない、冷間圧延後に溶体化処理を行なって焼入れ
るのが通常である。しかしながらこのような従来の一般
的な製造方法では、最近の自動車用ボディシートに要求
される特性を充分に満足させることは困難である。
By the way, as a method for producing an Al--Mg--Si alloy plate, which is expected to age harden during baking,
After homogenizing and heat-treating the ingot, hot rolling and cold rolling are performed to a predetermined plate thickness, and if necessary, intermediate annealing is performed between hot rolling and cold rolling or in the middle of cold rolling. It is usual to carry out a solution treatment after cold rolling and quenching. However, it is difficult for such a conventional general manufacturing method to sufficiently satisfy the characteristics required for recent automobile body sheets.

【0005】すなわち、最近ではコストの一層の低減の
ためにさらに薄肉化することが強く要求されており、そ
のため薄肉でも充分な強度が得られるように、一層の高
強度化が求められているが、この点で従来の一般的な製
造方法によって得られたAl−Mg−Si系合金板では
不充分であった。
That is, recently, there has been a strong demand for a further reduction in thickness in order to further reduce the cost. For this reason, a further increase in strength has been required so that sufficient strength can be obtained even with a thin wall. In this respect, the Al-Mg-Si alloy plate obtained by the conventional general manufacturing method is insufficient.

【0006】また塗装焼付については、省エネルギおよ
び生産性の向上、さらには高温に曝されることが好まし
くない樹脂等の材料との併用などの点から、従来よりも
焼付温度を低温化し、また焼付時間も短時間化する傾向
が強まっている。そのため従来の一般的な製法により得
られたAl−Mg−Si系合金板では、塗装焼付時の硬
化(焼付硬化)が不足し、塗装焼付後に充分な高強度が
得難くなる問題が生じていた。また従来のAl−Mg−
Si系合金板では、塗装焼付後に高強度を得るために焼
付硬化性を高めようとすれば、板製造後に室温に放置し
た場合に自然時効により硬化が生じやすくなり、そのた
め成形性が阻害され勝ちであるという問題もある。
Regarding coating baking, in order to save energy and improve productivity, and in combination with a material such as a resin which is not preferably exposed to a high temperature, the baking temperature is made lower than before, and There is an increasing tendency to shorten the baking time. Therefore, in the Al-Mg-Si alloy plate obtained by the conventional general manufacturing method, there is a problem that curing (baking hardening) at the time of coating baking is insufficient, and it is difficult to obtain sufficiently high strength after coating baking. . In addition, conventional Al-Mg-
In Si-based alloy sheets, if the bake hardenability is to be increased in order to obtain high strength after painting and baking, hardening tends to occur due to natural aging when left at room temperature after the sheet is manufactured, which tends to hinder the formability. There is also the problem that

【0007】この発明は以上の事情を背景としてなされ
たもので、良好な成形加工性を有すると同時に、焼付硬
化性、特に低温焼付硬化性が優れていて、塗装焼付時に
おける強度上昇が高く、しかも板製造後の室温での経時
的な変化が少なく、長期間放置した場合でも自然時効に
よる硬化に起因する成形性の低下が少ない成形加工用ア
ルミニウム合金板の製造方法を提供することを目的とす
るものである。
The present invention has been made in view of the above circumstances, and at the same time has good molding workability, is excellent in bake hardenability, particularly low temperature bake hardenability, and has a high strength increase during paint baking. Moreover, there is little change over time at room temperature after plate production, and it is an object of the present invention to provide a method for producing an aluminum alloy plate for forming process in which there is little deterioration in formability due to hardening due to natural aging even when left for a long period of time. To do.

【0008】[0008]

【課題を解決するための手段】前述のような課題を解決
するべく本発明者等が実験・検討を重ねた結果、Al−
Mg−Si系合金の成分組成を適切に選択すると同時
に、板製造プロセス中において、溶体化処理後に適切な
熱処理を行なうことによって、前述の課題を解決し得る
ことを見出し、この発明をなすに至った。
Means for Solving the Problems As a result of repeated experiments and studies by the present inventors in order to solve the above problems, Al-
The inventors have found that the above-mentioned problems can be solved by appropriately selecting the component composition of the Mg-Si alloy and at the same time performing an appropriate heat treatment after the solution treatment during the plate manufacturing process, and have completed the present invention. It was

【0009】具体的には、この発明のアルミニウム合金
板の製造方法は、Mg0.3〜1.5%、Si0.3〜
2.5%を含有し、かつBe0.01%を越え0.5%
以下、Ag0.005〜0.5%、Sn0.005〜
0.5%、In0.005〜0.5%、Cd0.005
〜0.5%のうちから選ばれた1種または2種以上を含
有し、さらにZn0.03〜2.5%、Mn0.03〜
0.4%、Cr0.03〜0.4%、Zr0.03〜
0.4%、V0.03〜0.4%、Fe0.03〜0.
5%、Ti0.005〜0.2%のうちから選ばれた1
種または2種以上を含有し、しかもCuが0.3%以下
に規制され、残部がAlおよび不可避的不純物よりなる
合金を素材とし、鋳塊に均質化処理、熱間圧延および冷
間圧延を行なって所要の板厚の圧延板とし、その圧延板
に対し、480℃以上の温度で溶体化処理を行なってか
ら100℃/min以上の冷却速度で50〜80℃の温
度域まで冷却して、この温度域内で5秒以上の保持を行
ない、かつその保持時間の上限を、合金の耐力
(σ0.2 )が100N/mm2 以下になるように規制
し、続いて80℃を越え150℃以下の範囲内の温度に
加熱して、この温度範囲で0.5〜50時間保持する安
定化処理を行なうことを特徴とするものである。
Specifically, the method for producing an aluminum alloy sheet according to the present invention uses Mg 0.3 to 1.5% and Si 0.3 to
Containing 2.5% and Be exceeding 0.01% and 0.5%
Below, Ag 0.005-0.5%, Sn 0.005-
0.5%, In 0.005-0.5%, Cd 0.005
To one or more selected from 0.5% to 0.5%, Zn0.03 to 2.5%, Mn0.03 to
0.4%, Cr 0.03 to 0.4%, Zr 0.03 to
0.4%, V0.03 to 0.4%, Fe0.03 to 0.
1 selected from 5% and Ti 0.005 to 0.2%
Alloy containing at least one kind or more, Cu regulated to 0.3% or less, and the balance consisting of Al and unavoidable impurities. The ingot is subjected to homogenization treatment, hot rolling and cold rolling. The rolled plate having a required plate thickness is formed, and the rolled plate is subjected to solution treatment at a temperature of 480 ° C. or higher and then cooled to a temperature range of 50 to 80 ° C. at a cooling rate of 100 ° C./min or higher. , Hold for 5 seconds or more within this temperature range, and limit the upper limit of the holding time so that the yield strength (σ 0.2 ) of the alloy is 100 N / mm 2 or less, and then exceeds 80 ° C and 150 ° C or less It is characterized in that a stabilizing treatment is carried out by heating to a temperature within the above range and holding in this temperature range for 0.5 to 50 hours.

【0010】[0010]

【作用】先ずこの発明の製造方法で用いる合金の成分組
成限定理由について説明する。
First, the reasons for limiting the composition of the alloy used in the manufacturing method of the present invention will be described.

【0011】Mg:Mgはこの発明で対象としている系
の合金で基本となる合金元素であって、Siと共同して
強度向上に寄与する。Mg量が0.3%未満では塗装焼
付時に析出硬化によって強度向上に寄与するMg2 Si
の生成量が少なくなるため、充分な強度向上が得られ
ず、一方1.5%を越えれば成形性が低下するから、M
g量は0.3〜1.5%の範囲内とした。
Mg: Mg is a basic alloying element in the alloy of the system targeted by the present invention, and contributes to the strength improvement in cooperation with Si. When the amount of Mg is less than 0.3%, Mg 2 Si contributes to strength improvement by precipitation hardening at the time of coating baking.
Since the amount of M produced is small, sufficient improvement in strength cannot be obtained. On the other hand, if it exceeds 1.5%, the formability is deteriorated.
The amount of g was set within the range of 0.3 to 1.5%.

【0012】Si:Siもこの発明の系の合金で基本と
なる合金元素であって、Mgと共同して強度向上に寄与
する。またSiは、鋳造時に金属Siの晶出物として生
成され、その金属Si粒子の周囲が加工によって変形さ
れて、溶体化処理の際に再結晶核の生成サイトとなるた
め、再結晶組織の微細化にも寄与する。Siが0.3%
未満では上記の効果が充分に得られず、一方2.5%を
越えれば粗大Siが生じて合金の靭性低下を招く。した
がってSiは0.3〜2.5%の範囲内とした。
Si: Si is also a basic alloying element in the alloy of the present invention, and contributes to improvement in strength in cooperation with Mg. Further, Si is generated as a crystallized product of metallic Si during casting, and the periphery of the metallic Si particles is deformed by processing to become a recrystallization nucleus generation site during solution treatment, so that the fine recrystallization structure is fine. Also contributes to Si is 0.3%
If it is less than 2.5%, the above effect cannot be sufficiently obtained, while if it exceeds 2.5%, coarse Si is generated and the toughness of the alloy is lowered. Therefore, Si is set within the range of 0.3 to 2.5%.

【0013】Be,Ag,Sn,In,Cd:これら
は、時効性を促進して焼付硬化性の向上に寄与する元素
であり、いずれか1種または2種以上が添加される。B
eの添加量が0.01%以下、またAg,Sn,In,
Cdの添加量がそれぞれ0.005%未満では、焼付硬
化性の向上効果が充分に得られず、一方それぞれ0.5
%を越えればその効果が飽和するばかりでなく、成形性
に悪影響を及ぼす。したがってBeは0.01%を越え
0.5%以下、Ag,Sn,In,Cdはいずれも0.
005〜0.5%の範囲内とした。なおBeは上記の範
囲内でも0.03%〜0.5%が望ましい。またこれら
の元素のうち2種以上を同時に添加する場合には、成形
性の点から、その合計量は0.5%以下に抑えることが
望ましい。
Be, Ag, Sn, In, Cd: These are elements that promote aging and contribute to improvement of bake hardenability, and one or more of them are added. B
The addition amount of e is 0.01% or less, and Ag, Sn, In,
If the addition amount of Cd is less than 0.005%, the effect of improving the bake hardenability cannot be sufficiently obtained, while 0.5% for each.
If it exceeds%, not only the effect is saturated, but also the formability is adversely affected. Therefore, Be exceeds 0.01% and 0.5% or less, and Ag, Sn, In, and Cd are all 0.
It was set within the range of 005 to 0.5%. Note that Be is preferably 0.03% to 0.5% even within the above range. Further, when two or more of these elements are added at the same time, it is desirable to keep the total amount to 0.5% or less from the viewpoint of moldability.

【0014】Zn,Mn,Cr,Zr,V,Ti,F
e:これらは強度向上や結晶粒微細化のために1種また
は2種以上添加される。これらのうち、Znは合金の時
効性の向上を通じて強度向上に寄与する元素であり、そ
の含有量が0.03%未満では上記の効果が不充分であ
り、一方2.5%を越えれば成形性が低下するから、Z
nを添加する場合のZn量は0.03〜2.5%の範囲
内とした。さらにMn,Cr,Zr,Vはいずれも強度
向上と結晶粒の微細化および組織の安定化に効果がある
元素であり、いずれも含有量が0.03%未満では上記
の効果が充分に得られず、一方それぞれ0.4%を越え
れば上記の効果が飽和するばかりでなく、巨大金属間化
合物が生成されて成形性に悪影響を及ぼすおそれがあ
り、したがってMn,Cr,Zr,Vはいずれも0.0
3〜0.4%の範囲内とした。またTiも強度向上と鋳
塊組織の微細化に有効な元素であり、その含有量が0.
005%未満では充分な効果が得られず、一方0.2%
を越えればTi添加の効果が飽和するばかりでなく、巨
大晶出物が生じるおそれがあるから、Tiは0.005
〜0.2%の範囲内とした。そしてまたFeも強度向上
と結晶粒微細化に有効な元素であり、その含有量が0.
03%未満では充分な効果が得られず、一方0.5%を
越えれば成形性が低下するおそれがあり、したがってF
eは0.03〜0.5%の範囲内とした。なおこれらの
Zn,Mn,Cr,Zr,V,Ti,Feの範囲は、積
極的な添加元素としてこれらの元素を含む場合について
示したものであり、いずれもその下限値よりも少ない量
を不純物として含有していることは特に支障ない。特
に、0.03%未満のFeは、通常のアルミ地金を用い
れば不可避的に含有されるのが通常である。
Zn, Mn, Cr, Zr, V, Ti, F
e: These are added in one kind or two or more kinds in order to improve the strength and refine the crystal grains. Of these, Zn is an element that contributes to the strength improvement through the improvement of the aging property of the alloy, and if the content thereof is less than 0.03%, the above effect is insufficient, while if it exceeds 2.5%, it is formed. Since the property decreases, Z
When adding n, the amount of Zn was made into the range of 0.03 to 2.5%. Further, Mn, Cr, Zr, and V are all elements effective in improving strength, refining crystal grains, and stabilizing the structure. If the content is less than 0.03%, the above effect is sufficiently obtained. On the other hand, if each exceeds 0.4%, not only the above effect is saturated, but also a huge intermetallic compound is generated, which may adversely affect the formability. Therefore, Mn, Cr, Zr and V are Also 0.0
It was set within the range of 3 to 0.4%. Ti is also an element effective for improving strength and refining the ingot structure, and its content is 0.1.
If it is less than 005%, a sufficient effect cannot be obtained, while 0.2%
If Ti exceeds 0.005, not only the effect of Ti addition will be saturated, but also huge crystallized substances may occur, so Ti is 0.005
Within the range of 0.2%. Further, Fe is also an element effective for improving strength and refining crystal grains, and the content thereof is 0.
If it is less than 03%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.5%, the formability may be deteriorated.
e was made into the range of 0.03-0.5%. The ranges of Zn, Mn, Cr, Zr, V, Ti, and Fe are shown for the case where these elements are included as positively added elements, and all of the amounts are less than the lower limit value of impurities. It does not hurt to include as. In particular, Fe of less than 0.03% is usually unavoidably contained by using a normal aluminum base metal.

【0015】Cu:Cuはこの発明の系の合金で必須な
元素ではないが、0.3%を越えれば合金の耐糸錆性が
劣化するため、Cuの含有量は0.3%以下に規制す
る。
Cu: Cu is not an essential element in the alloy of the system of the present invention, but if it exceeds 0.3%, the rust resistance of the alloy will deteriorate, so the Cu content should be 0.3% or less. regulate.

【0016】以上の各元素のほかは、基本的にはAlお
よび不可避的不純物とすれば良い。なお一般のアルミニ
ウム合金においては、結晶粒微細化のために前述のTi
と同時にBを添加することもあり、この発明の場合もT
iとともに500ppm以下のBを添加することは許容
される。
In addition to the above elements, basically Al and inevitable impurities may be used. In general aluminum alloys, the above-mentioned Ti is used for grain refinement.
At the same time, B may be added at the same time.
It is acceptable to add 500 ppm or less of B with i.

【0017】次にこの発明の方法における製造プロセス
について説明する。
Next, the manufacturing process in the method of the present invention will be described.

【0018】溶体化処理前までの工程すなわち所要の製
品板厚の圧延板とするまでの工程は、従来の一般的なJ
IS 6000番系のAl−Mg−Si系合金と同様で
あれば良い。すなわち、DC鋳造法等によって鋳造した
後、常法により均質化処理を施し、熱間圧延および冷間
圧延を行なって所要の板厚とすれば良く、また熱間圧延
と冷間圧延との間、あるいは冷間圧延の中途において必
要に応じて中間焼鈍を行なっても良い。
The steps up to the solution treatment, that is, the steps up to forming a rolled plate having a required product plate thickness, are the same as those in the conventional J.
It may be the same as the IS 6000 series Al-Mg-Si series alloy. That is, after casting by a DC casting method or the like, homogenization treatment may be performed by an ordinary method, and hot rolling and cold rolling may be performed to obtain a required sheet thickness. In addition, hot rolling and cold rolling may be performed. Alternatively, intermediate annealing may be performed as needed in the middle of cold rolling.

【0019】上述のようにして所要の製品板厚とした
後、480℃以上の温度で溶体化処理を行なう。この溶
体化処理は、Mg2 Si等をマトリックスに固溶させ、
これにより焼付硬化性を付与して塗装焼付後の強度向上
を図るために必要な工程であり、また再結晶させて良好
な成形性を得るための工程でもある。溶体化処理温度が
480℃未満ではMg2 Siの固溶量が少なく、充分な
焼付硬化性が得られない。溶体化処理温度の上限は特に
規定しないが、共晶融解の発生のおそれや再結晶粒粗大
化等を考慮して、通常は580℃以下とすることが望ま
しい。また溶体化処理の時間も特に限定しないが、通常
は120分以内とする。
After the required product plate thickness is obtained as described above, solution treatment is performed at a temperature of 480 ° C. or higher. In this solution treatment, Mg 2 Si or the like is solid-dissolved in the matrix,
This is a step necessary for imparting bake hardenability and improving the strength after baking for coating, and is also a step for recrystallizing to obtain good formability. If the solution treatment temperature is lower than 480 ° C., the solid solution amount of Mg 2 Si is small and sufficient bake hardenability cannot be obtained. Although the upper limit of the solution treatment temperature is not particularly defined, it is usually desirable to be 580 ° C. or less in consideration of the possibility of eutectic melting and coarsening of recrystallized grains. The time for the solution treatment is not particularly limited, but is usually 120 minutes or less.

【0020】溶体化処理後には、100℃/min以上
の冷却速度で、50〜80℃の温度域まで冷却(焼入
れ)する。ここで、溶体化処理後の冷却速度が100℃
/min未満では、冷却中にMg2 Siが多量に析出し
てしまい、成形性が低下すると同時に、焼付硬化性が低
下して塗装焼付時の充分な強度向上が望めなくなる。
After the solution treatment, the material is cooled (quenched) to a temperature range of 50 to 80 ° C. at a cooling rate of 100 ° C./min or more. Here, the cooling rate after the solution treatment is 100 ° C.
If it is less than / min, a large amount of Mg 2 Si will be precipitated during cooling, and the formability will decrease, and at the same time, the bake hardenability will decrease, making it impossible to expect a sufficient improvement in strength during baking of the coating.

【0021】前述のようにして480℃以上の温度での
溶体化処理の後、100℃/min以上の冷却速度で5
0〜80℃の温度域内で冷却(焼入)し、その50〜8
0℃の温度域内で時間Tだけ保持する。この保持時間T
は下限(Tmin )を5秒とし、上限(Tmax )は合金の
耐力が100N/mm2 以下になるように調整する。そ
してこのように50〜80℃の温度域での5秒〜Tmax
の保持の後、改めて80℃を越え150℃以下の範囲内
の温度に加熱して、この温度範囲内で0.5〜50時間
保持する安定化処理を行なう。
After the solution treatment at a temperature of 480 ° C. or higher as described above, the cooling is performed at a cooling rate of 100 ° C./min or higher for 5 hours.
Cooling (quenching) in the temperature range of 0 to 80 ° C, 50 to 8
Hold for a time T within a temperature range of 0 ° C. This holding time T
Has a lower limit (T min ) of 5 seconds, and an upper limit (T max ) is adjusted so that the yield strength of the alloy is 100 N / mm 2 or less. And in this way, 5 seconds to T max in the temperature range of 50 to 80 ° C.
After the holding, the temperature is again heated to a temperature in the range of more than 80 ° C. and not more than 150 ° C., and the stabilization treatment is performed in which the temperature is kept for 0.5 to 50 hours.

【0022】上述のように溶体化処理後に50〜80℃
まで冷却して5秒〜Tmax の保持を行なう理由は次の通
りである。すなわち、溶体化処理後、特に100℃/m
in以上の冷却速度で50℃未満の室温に冷却した場合
には、G.P.Iゾーンが生成される。このG.P.I
ゾーンは強度に寄与するG.P.ゾーンに移行しにくい
ため、塗装焼付硬化性に不利となる。一方、溶体化処理
後に80℃を越える温度まで冷却してそのまま保持した
場合には、G.P.IIゾーンが生成され、塗装焼付硬
化性に対しては有利となるが、粒界析出が生じやすくな
り、また安定化処理後の室温時効による経時変化が大き
く、成形性に悪影響を与える。したがって成形性と塗装
焼付硬化性とのバランスの観点から、溶体化処理後には
50〜80℃の温度域内に焼入する必要がある。すなわ
ち、溶体化処理後には、50〜80℃の温度域内に冷却
することによって、成形性と塗装焼付硬化性との両者を
満たすことができるのである。
After solution treatment as described above, 50 to 80 ° C.
The reason for cooling to 5 seconds to hold T max for 5 seconds is as follows. That is, after the solution treatment, especially 100 ° C./m
When cooled to a room temperature of less than 50 ° C. at a cooling rate of in or more, G. P. An I-zone is created. This G. P. I
Zones contribute to strength in G. P. Since it is difficult to move to the zone, it is disadvantageous in paint bake hardenability. On the other hand, in the case of cooling to a temperature of more than 80 ° C. after the solution treatment and holding as it is, G. P. II zone is generated, which is advantageous for coating bake hardenability, but grain boundary precipitation is likely to occur, and the change over time due to room temperature aging after the stabilization treatment is large, which adversely affects formability. Therefore, from the viewpoint of the balance between moldability and paint bake hardenability, it is necessary to quench within the temperature range of 50 to 80 ° C. after the solution treatment. That is, after the solution treatment, both formability and coating bake hardenability can be satisfied by cooling within a temperature range of 50 to 80 ° C.

【0023】溶体化処理後に50〜80℃の温度域内に
冷却した後のその温度域での保持時間Tが5秒以下で
は、上述の効果、特に室温時効の抑制の効果が得られな
い。一方、50〜80℃の温度域内での保持時間Tが長
時間にわたれば、安定なG.P.IIゾーンの比率が低
くなってしまい、その後の塗装焼付硬化性が低下してし
まう。このように長時間保持した場合の保持時間Tの影
響は、合金成分や溶体化温度などによって変わるから、
保持時間Tの上限は一律に定めることはできないが、合
金の耐力を指標として定めることができる。すなわち、
50〜80℃での保持時間が長くなるに従ってその温度
域での時効の進行によってG.P.ゾーンの生成量が多
くなり、合金の耐力も高くなるから、その保持時の耐力
を指標として保持時間Tの上限Tmax を定めることがで
き、本発明者等の実験によれば、耐力が100N/mm
2 以下の範囲内となるように保持時間Tの上限Tmax
規制することが有効であることが判明した。なおこの耐
力は、溶体化処理後、100℃/min以上の冷却速度
で50〜80℃の温度域に冷却し、その温度域で保持し
た状態での耐力を意味する。したがって実際の操業にあ
たっては、この耐力が100N/mm2 以下となるよう
な保持時間Tの上限Tmax の具体値を、合金成分や溶体
化処理温度などの実際の具体的条件に応じて予備実験を
行なうことなどにより求めておけば良い。
If the holding time T in the temperature range after cooling in the temperature range of 50 to 80 ° C. after the solution heat treatment is 5 seconds or less, the above effect, particularly the effect of suppressing room temperature aging cannot be obtained. On the other hand, if the holding time T in the temperature range of 50 to 80 ° C. is long, the stable G.I. P. The ratio of the II zone becomes low and the subsequent paint bake hardenability deteriorates. The effect of the holding time T when holding for a long time in this way changes depending on the alloy components, solution temperature, etc.
Although the upper limit of the holding time T cannot be uniformly set, the yield strength of the alloy can be set as an index. That is,
The longer the holding time at 50 to 80 ° C., the more the aging in that temperature range progresses. P. Since the amount of zones produced is large and the yield strength of the alloy is also high, the upper limit T max of the holding time T can be set using the yield strength at the time of holding as an index. According to the experiments by the present inventors, the yield strength is 100 N / Mm
It has been found that it is effective to regulate the upper limit T max of the holding time T to be within the range of 2 or less. In addition, this yield strength means the yield strength in a state of being cooled to a temperature range of 50 to 80 ° C. at a cooling rate of 100 ° C./min or more after the solution treatment and being held in the temperature range. Therefore, in actual operation, a specific value of the upper limit T max of the holding time T at which the proof stress is 100 N / mm 2 or less is set in a preliminary experiment according to actual specific conditions such as alloy components and solution treatment temperature. You can ask for it by doing.

【0024】上述のような50〜80℃の温度域での保
持の後には、室温まで冷却することなく、改めて80℃
を越え150℃以下の範囲内の温度、好ましくは90〜
120℃の範囲内の温度に加熱して安定化処理を行な
う。この安定化処理は、最終的にG.P.IIゾーンの
安定性を向上させ、板製造後の経時変化を抑制して、充
分な焼付硬化性を確保するとともに良好な成形加工性を
得るために必要な工程であり、この安定化処理は、80
℃を越え150℃以下の範囲内の温度に0.5〜50時
間保持の条件とする必要がある。安定化処理の温度が8
0℃以下では上記の効果が充分に得られず、一方150
℃を越えれば高温時効によって素材強度が高くなり、成
形性が低下してしまう。また安定化処理における80℃
を越え150℃以下の範囲内の温度での保持時間が0.
5時間未満では、その後の室温での経時変化が速くなっ
て成形性と焼付硬化性が悪くなり、一方50時間を越え
れば、時効によって素材強度が高くなり、成形性が低下
してしまうとともに、生産性も阻害される。
After holding in the temperature range of 50 to 80 ° C. as described above, the temperature is kept at 80 ° C. again without cooling to room temperature.
Above 150 ° C, preferably within the range of 90-
Stabilization is performed by heating to a temperature in the range of 120 ° C. This stabilization process is finally performed by G.I. P. It is a step necessary for improving the stability of the II zone, suppressing the change over time after plate production, ensuring sufficient bake hardenability and obtaining good moldability. 80
It is necessary to keep the temperature within the range of more than 150 ° C. and less than 150 ° C. for 0.5 to 50 hours. Stabilization temperature is 8
If the temperature is 0 ° C or lower, the above effect cannot be sufficiently obtained.
If the temperature exceeds ℃, the material strength will increase due to high temperature aging, and the formability will decrease. Also, in the stabilization process, 80 ℃
Holding time at a temperature in the range of more than 150 ° C and less than 150 ° C.
If it is less than 5 hours, the change with time at room temperature thereafter becomes faster, and the moldability and bake hardenability deteriorate. On the other hand, if it exceeds 50 hours, the material strength increases due to aging, and the moldability deteriorates. Productivity is also hindered.

【0025】以上のようにこの発明の製造方法では、合
金の成分組成を適切に調整するとともに、製造プロセス
中において、480℃以上の温度での溶体化処理、およ
び50〜80℃の温度域への冷却(焼入れ)とその温度
域での適切な保持の後に改めて80℃を越え150℃以
下の条件で安定化処理を施すことにより、板製造後の室
温での経時変化、すなわち室温での自然時効の進行を阻
止することが可能となり、その結果、板製造後に長期間
放置されてから成形加工、塗装焼付を施す場合でも、良
好な成形性、優れた焼付硬化性を充分に確保することが
可能となったのである。
As described above, according to the manufacturing method of the present invention, the composition of the alloy components is appropriately adjusted, and the solution heat treatment at a temperature of 480 ° C. or higher and the temperature range of 50 to 80 ° C. are performed during the manufacturing process. After cooling (quenching) and appropriate holding in that temperature range, the stability treatment is performed again under the condition of above 80 ° C and below 150 ° C, so that the change over time at room temperature after plate production, that is, the natural temperature at room temperature It is possible to prevent the progress of aging, and as a result, it is possible to sufficiently secure good formability and excellent bake hardenability even when the plate is left for a long period of time and then subjected to forming processing and paint baking. It has become possible.

【0026】[0026]

【実施例】表1に示す本発明成分組成範囲内の合金記号
A1〜A3の合金、および本発明成分組成範囲外の合金
記号B1,B2の合金について、それぞれ常法に従って
DC鋳造法により鋳造し、得られた鋳塊に530℃×5
hの均質化処理を施してから、熱間圧延を開始し、続い
て冷間圧延を行なって厚さ1mmの圧延板とした。次い
で各圧延板に対し、530℃×10secの溶体化処理
を行なってから、100℃/min以上の冷却速度で種
々の温度まで焼入れして、その焼入温度で保持し、さら
に80℃を越え150℃以下の温度で安定化処理を行な
った。詳細な条件を表2中に示す。
EXAMPLE Alloys A1 to A3 within the composition range of the present invention shown in Table 1 and alloys B1 and B2 outside the composition range of the present invention were cast by the DC casting method according to a conventional method. , 530 ℃ × 5 to the obtained ingot
After carrying out the homogenizing treatment of h, hot rolling was started, and then cold rolling was carried out to obtain a rolled plate having a thickness of 1 mm. Then, each rolled plate is subjected to a solution heat treatment at 530 ° C. for 10 seconds, then quenched at various temperatures at a cooling rate of 100 ° C./min or more, maintained at the quenching temperature, and further exceeded 80 ° C. Stabilization was performed at a temperature of 150 ° C. or lower. Detailed conditions are shown in Table 2.

【0027】以上のように安定化処理を行なって得られ
た板を、さらに室温に1日もしくは50日放置した各板
について、それぞれ170℃×30分の加熱の塗装焼付
処理を施し、かつその焼付前の機械的特性および成形性
と、焼付後の機械的特性を調べた。その結果を表3に示
す。
The plate obtained by subjecting the plate to the stabilization treatment as described above is further left to stand at room temperature for 1 day or 50 days, and each plate is subjected to coating baking treatment by heating at 170 ° C. × 30 minutes, and The mechanical properties and formability before baking and the mechanical properties after baking were examined. Table 3 shows the results.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】製造番号1〜3は、いずれも合金の成分組
成がこの発明で規定する範囲内でかつ製造条件もこの発
明で規定する条件を満たしたものであるが、これらの場
合は、いずれも塗装焼付前の伸びおよびエリクセン値が
充分に高くて成形性が優れ、かつ焼付硬化性が高くて塗
装焼付時に大きな強度上昇が生じており、特に板製造後
50日室温(0〜40℃)に放置した場合においても、
伸びおよびエリクセン値の低下が少なくて成形性が低下
せず、かつ充分な焼付硬化性を示した。
Production Nos. 1 to 3 are those in which the composition of the alloy is within the range specified by the present invention and the manufacturing conditions also satisfy the conditions specified by the present invention. Elongation before coating baking and Erichsen value are sufficiently high and moldability is excellent, and bake hardenability is high, and a large increase in strength occurs during baking, especially at room temperature (0 to 40 ° C) for 50 days after plate manufacturing. Even if left unattended,
The elongation and Erichsen value did not decrease so much that the moldability did not decrease, and sufficient bake hardenability was exhibited.

【0032】これに対し製造番号4〜6は、合金の成分
組成はこの発明で規定す範囲内であるが、製造条件がこ
の発明で規定する条件を満たさなかったものである。そ
して製造番号4(合金記号A1)は、溶体化処理後室温
(25℃)まで冷却したものであるが、この場合には同
じ合金(合金記号A1)を用いた本発明例(製造番号
1)と比較して、焼付硬化性が劣った。また製造番号5
(合金記号A2)は、溶体化処理−冷却後52℃での保
持時間が長過ぎたため、保持時の合金の耐力が100N
/mm2 を越え、この場合には同じ合金(合金記号A
2)を用いた本発明例(製造番号2)と比較して焼付硬
化性が劣った。また製造番号6(合金記号A3)は、焼
入温度が高過ぎたため、本発明例(製造番号3)と比較
して成形性が劣り、また製造後の室温時効による経時変
化が大きく、50日経過後は充分な焼付硬化性が得られ
なかった。
On the other hand, in Production Nos. 4 to 6, the alloy composition was within the range specified by the present invention, but the manufacturing conditions did not satisfy the conditions specified by the present invention. And manufacturing number 4 (alloy code A1) is what was cooled to room temperature (25 ° C.) after solution treatment, but in this case, the same alloy (alloy code A1) was used as an example of the present invention (manufacturing number 1). Bake hardenability was inferior compared with. Serial number 5
(Alloy symbol A2) indicates that the proof stress of the alloy at the time of holding was 100 N because the holding time at 52 ° C after solution treatment-cooling was too long.
/ Mm 2 and in this case the same alloy (alloy code A
The bake hardenability was inferior to the invention example (Production No. 2) using 2). Further, since the quenching temperature of the production number 6 (alloy symbol A3) was too high, the moldability was inferior to that of the example of the present invention (production number 3), and the change with time due to room temperature aging after the production was large, and 50 days elapsed. After the passing, sufficient bake hardenability was not obtained.

【0033】一方製造番号7,8はいずれも成分組成が
この発明で規定する範囲を外れた合金について、この発
明で規定する範囲内の条件のプロセスを適用したもので
あるが、この場合にはいずれも素材強度が低いばかりで
なく、焼付硬化性も低く、塗装焼付後の強度も充分に得
られなかった。
On the other hand, the production numbers 7 and 8 are applied to the alloys whose component composition is out of the range specified by the present invention, and the processes under the conditions defined by the present invention are applied. In this case, Not only was the material strength low in all cases, but also the bake hardenability was low, and the strength after baking was not sufficiently obtained.

【0034】[0034]

【発明の効果】この発明の成形加工用アルミニウム合金
板の製造方法によれば、成形性が優れるとともに、焼付
硬化性が優れていて、塗装焼付後の強度が著しく高く、
しかも室温での経時変化が少なくて、板製造後に室温
(0〜40℃)で長期間放置した場合にも成形性の低下
が少ないとともに焼付硬化性の変化も少ない、安定な成
形加工用アルミニウム合金板を得ることができ、したが
って自動車用ボディシート、家電部品、各種機械器具部
品、そのほか成形加工および塗装焼付を施して用いる用
途のアルミニウム合金の製造に最適である。
EFFECTS OF THE INVENTION According to the method for producing an aluminum alloy sheet for forming of the present invention, the formability is excellent, the bake hardenability is excellent, and the strength after baking is extremely high.
Moreover, it is a stable aluminum alloy for forming, which shows little change with time at room temperature and shows little deterioration in formability and little change in bake hardenability even after being left at room temperature (0 to 40 ° C.) for a long time after plate production. It is possible to obtain a plate, and therefore, it is most suitable for the production of aluminum sheet for automobile body sheets, home electric appliances parts, various machine / equipment parts, as well as forming processing and paint baking.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Mg0.3〜1.5%(重量%、以下同
じ)、Si0.3〜2.5%を含有し、かつBe0.0
1%を越え0.5%以下、Ag0.005〜0.5%、
Sn0.005〜0.5%、In0.005〜0.5
%、Cd0.005〜0.5%のうちから選ばれた1種
または2種以上を含有し、さらにZn0.03〜2.5
%、Mn0.03〜0.4%、Cr0.03〜0.4
%、Zr0.03〜0.4%、V0.03〜0.4%、
Fe0.03〜0.5%、Ti0.005〜0.2%の
うちから選ばれた1種または2種以上を含有し、しかも
Cuが0.3%以下に規制され、残部がAlおよび不可
避的不純物よりなる合金を素材とし、鋳塊に均質化処
理、熱間圧延および冷間圧延を行なって所要の板厚の圧
延板とし、その圧延板に対し、480℃以上の温度で溶
体化処理を行なってから100℃/min以上の冷却速
度で50〜80℃の温度域まで冷却して、この温度域内
で5秒以上の保持を行ない、かつその保持時間の上限
を、合金の耐力(σ0.2 )が100N/mm2 以下にな
るように規制し、続いて80℃を越え150℃以下の範
囲内の温度に加熱して、この温度範囲で0.5〜50時
間保持する安定化処理を行なうことを特徴とする、室温
での経時変化が少なくかつ成形性および焼付硬化性に優
れた成形加工用アルミニウム合金板の製造方法。
1. A glass containing Mg 0.3 to 1.5% (weight%, the same hereinafter), Si 0.3 to 2.5%, and Be0.0.
More than 1% and 0.5% or less, Ag 0.005-0.5%,
Sn 0.005-0.5%, In 0.005-0.5
%, Cd 0.005 to 0.5%, one or more selected from, and Zn 0.03 to 2.5.
%, Mn 0.03-0.4%, Cr 0.03-0.4
%, Zr 0.03 to 0.4%, V 0.03 to 0.4%,
It contains one or more selected from Fe0.03 to 0.5% and Ti0.005 to 0.2%, Cu is regulated to 0.3% or less, and the balance is Al and unavoidable. Made from an alloy consisting of mechanical impurities, the ingot is homogenized, hot-rolled and cold-rolled to a rolled plate with the required thickness, and the rolled plate is solution-treated at a temperature of 480 ° C or higher. After performing the above, the material is cooled to a temperature range of 50 to 80 ° C. at a cooling rate of 100 ° C./min or more, and is held for 5 seconds or more within this temperature range, and the upper limit of the holding time is defined as the yield strength of the alloy (σ 0.2 ) is controlled to be 100 N / mm 2 or less, and subsequently, a stabilization treatment is performed by heating to a temperature in the range of more than 80 ° C. and 150 ° C. or less and holding in this temperature range for 0.5 to 50 hours. Is there little change over time at room temperature Method for producing a moldability and molding an aluminum alloy plate having excellent bake hardenability.
JP6338753A 1994-12-27 1994-12-27 Production of aluminum alloy sheet for forming Pending JPH08176764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6338753A JPH08176764A (en) 1994-12-27 1994-12-27 Production of aluminum alloy sheet for forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6338753A JPH08176764A (en) 1994-12-27 1994-12-27 Production of aluminum alloy sheet for forming

Publications (1)

Publication Number Publication Date
JPH08176764A true JPH08176764A (en) 1996-07-09

Family

ID=18321139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6338753A Pending JPH08176764A (en) 1994-12-27 1994-12-27 Production of aluminum alloy sheet for forming

Country Status (1)

Country Link
JP (1) JPH08176764A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634705A (en) * 2012-03-02 2012-08-15 佛山市高明永利坚铝业有限公司 Middle high strength aluminum alloy capable of reducing quench sensitivity, production process thereof and profile process method
US20140096879A1 (en) * 2012-10-05 2014-04-10 Hyundai Motor Company Aluminum alloy composition and heat treatment method of the aluminum alloy composition
CN104254634A (en) * 2012-02-23 2014-12-31 亚马格轧制公司 Age-hardenable aluminium alloy and method for improving the ability of a semi-finished or finished product to age artificially
CN106475435A (en) * 2016-10-19 2017-03-08 山东裕航特种合金装备有限公司 A kind of production technology of aluminium alloy large diameter thin wall pipe
CN107243517A (en) * 2017-04-25 2017-10-13 山东裕航特种合金装备有限公司 Aluminium alloy large diameter thin wall pipe production technology
CN108411169A (en) * 2018-04-04 2018-08-17 挪威科技大学 Al-mg-si alloy and preparation method thereof
CN108531789A (en) * 2018-06-04 2018-09-14 合肥大麦灯箱器材有限公司 A kind of high-strength endurance aluminum alloy doorframe and its preparation process
CN112575210A (en) * 2020-11-27 2021-03-30 李江巡 Preparation process of high-strength corrosion-resistant aluminum alloy
CN114592147A (en) * 2022-03-10 2022-06-07 广东凤铝铝业有限公司 Aluminum alloy profile and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254634A (en) * 2012-02-23 2014-12-31 亚马格轧制公司 Age-hardenable aluminium alloy and method for improving the ability of a semi-finished or finished product to age artificially
CN102634705A (en) * 2012-03-02 2012-08-15 佛山市高明永利坚铝业有限公司 Middle high strength aluminum alloy capable of reducing quench sensitivity, production process thereof and profile process method
US20140096879A1 (en) * 2012-10-05 2014-04-10 Hyundai Motor Company Aluminum alloy composition and heat treatment method of the aluminum alloy composition
CN106475435A (en) * 2016-10-19 2017-03-08 山东裕航特种合金装备有限公司 A kind of production technology of aluminium alloy large diameter thin wall pipe
CN107243517A (en) * 2017-04-25 2017-10-13 山东裕航特种合金装备有限公司 Aluminium alloy large diameter thin wall pipe production technology
CN108411169A (en) * 2018-04-04 2018-08-17 挪威科技大学 Al-mg-si alloy and preparation method thereof
CN108531789A (en) * 2018-06-04 2018-09-14 合肥大麦灯箱器材有限公司 A kind of high-strength endurance aluminum alloy doorframe and its preparation process
CN112575210A (en) * 2020-11-27 2021-03-30 李江巡 Preparation process of high-strength corrosion-resistant aluminum alloy
CN114592147A (en) * 2022-03-10 2022-06-07 广东凤铝铝业有限公司 Aluminum alloy profile and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2614686B2 (en) Manufacturing method of aluminum alloy for forming process excellent in shape freezing property and paint bake hardenability
JPH07197219A (en) Production of aluminum alloy sheet for forming
JP2015040340A (en) Molding aluminum alloy sheet and method for manufacturing the same
WO2018206696A1 (en) Method of manufacturing an al-si-mg alloy rolled sheet product with excellent formability
JPH06240424A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JP4086350B2 (en) Method for producing aluminum alloy sheet for forming
JP3845312B2 (en) Aluminum alloy plate for forming and method for producing the same
JP3849095B2 (en) Aluminum alloy plate for forming and method for producing the same
JPH08176764A (en) Production of aluminum alloy sheet for forming
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH0874014A (en) Production of aluminum alloy sheet having high formability and good baking hardenability
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JP2000160310A (en) Production of aluminum alloy sheet suppressed in cold aging property
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
JP2004124175A (en) Method for manufacturing 6000 system alloy plate for forming excellent in formability, baking hardenability, and springback characteristic
JP3686146B2 (en) Method for producing aluminum alloy sheet for forming
JPH0547615B2 (en)
JPH04365834A (en) Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH08269608A (en) High strength aluminum alloy excellent in formability and corrosion resistance
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JPH0860314A (en) Production of aluminum alloy sheet for forming
JPH0860315A (en) Production of aluminum alloy sheet for forming
JPH04276048A (en) Production of aluminum alloy sheet for forming excellent in baking hardenability