JPH08176604A - Iron powder for sintered steel excellent in cuttability and manufacture of sintered steel using the same - Google Patents

Iron powder for sintered steel excellent in cuttability and manufacture of sintered steel using the same

Info

Publication number
JPH08176604A
JPH08176604A JP1536895A JP1536895A JPH08176604A JP H08176604 A JPH08176604 A JP H08176604A JP 1536895 A JP1536895 A JP 1536895A JP 1536895 A JP1536895 A JP 1536895A JP H08176604 A JPH08176604 A JP H08176604A
Authority
JP
Japan
Prior art keywords
powder
machinability
sintered steel
iron powder
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1536895A
Other languages
Japanese (ja)
Inventor
Satoshi Uenosono
聡 上ノ薗
Kuniaki Ogura
邦明 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1536895A priority Critical patent/JPH08176604A/en
Publication of JPH08176604A publication Critical patent/JPH08176604A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain iron powder for powder metallurgy capable of obtaining a sintered steel excellent in a cuttability, and a sintered steel excellent in the cuttability and having high strength. CONSTITUTION: The iron powder for the sintering material has the composition consisting of, by weight, 0.001-0.03% B, 0.02-0.07% Cr, <0.1% Mn, 0.03-0.15% the total of one or more kinds of S, Se and Te, and the balance Fe with inevitable impurities. In addition, 0.05-1.0% Mo is contained, or one or more kinds of 0.05-0.7% MoO3 powder and 0.05-0.7% WO3 powder and 0.5-4% Cu powder and 0.5-1.5% graphite powder can be mixed, therein.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末冶金用鉄粉に係わ
り、とくに焼結後の焼結鋼の切削性が優れた鉄粉および
それを用いた焼結鋼の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron powder for powder metallurgy, and more particularly to an iron powder having excellent machinability of the sintered steel after sintering and a method for producing a sintered steel using the iron powder.

【0002】[0002]

【従来の技術】粉末冶金用鉄粉は、鉄粉にCu粉、黒鉛粉
などを添加混合し、金型中で圧粉成形して焼結し、通常
5.0 〜7.2g/cm3の密度を有する焼結機械部品などの製造
に用いられる。粉末冶金法は寸法精度が良く複雑な形状
の焼結体を製造できるが、寸法精度の厳しい部品を製造
する場合には、焼結後の切削加工、あるいはドリル孔明
け加工が必要となることがある。
2. Description of the Related Art Iron powder for powder metallurgy is usually manufactured by adding Cu powder, graphite powder, etc. to iron powder, compacting it in a mold and sintering it.
It is used for producing sintered machine parts and the like having a density of 5.0 to 7.2 g / cm 3 . The powder metallurgy method can produce a sintered body with a good dimensional accuracy and a complicated shape, but when manufacturing a component with a strict dimensional accuracy, cutting or drilling after sintering may be necessary. is there.

【0003】粉末冶金製品は一般に切削性が劣り、溶製
材に比べると工具寿命が短い問題点を有しているため機
械加工時のコストが高価になる欠点を有している。粉末
冶金製品における切削性の劣化は、粉末冶金製品に含ま
れる気孔による断続切削あるいは熱伝導率の低下による
切削温度の上昇に起因すると言われている。切削性の改
善を行うために、S、MnS などの快削成分を鉄粉に混合
することが多い。これらのS、MnS は切り屑の破断を容
易にする効果、あるいは工具にS、MnS の薄い構成刃先
を形成し工具すくい面での潤滑作用により切削性の向上
をもたらすといわれている。
Generally, powder metallurgy products have inferior machinability and short tool life as compared with ingots, and therefore have a drawback that the cost during machining is high. It is said that the deterioration of the machinability of the powder metallurgy product is caused by the intermittent cutting due to the pores contained in the powder metallurgy product or the increase of the cutting temperature due to the decrease of the thermal conductivity. In order to improve machinability, free-cutting components such as S and MnS are often mixed with iron powder. These S and MnS are said to bring about the effect of facilitating the breakage of chips, or to improve the cutting performance by forming a thin cutting edge of S and MnS on the tool and lubricating the tool rake face.

【0004】特公平3-25481 号公報においては若干のMn
(0.1 〜0.5 %)とSi、Cなどを含む純鉄粉にさらにS
を0.03〜0.07%添加した溶湯を、水または気体で噴霧し
て製造した粉末冶金用鉄粉が提案されている。この方法
においては切削性は従来材の2倍弱しか向上しておら
ず、一層の向上が必要であった。粉末冶金用鉄粉にBを
含有させる技術は特開昭61-253301 号公報に述べられて
いる。同発明においては、C:0.10%以下、Mn:2.0 %
以下、酸素量が0.30%以下であり、更にCr:0.10〜5.0
%、Ni:0.10〜5.0 %、Si:2.0 %以下、Cu:0.10〜1
0.0%、Mo:0.01〜3.0 %、W:0.01〜3.0 %、V:0.0
1〜2.0 %、Ti:0.005 〜0.50%、Zr:0.005 〜0.50
%、Nb:0.005 〜0.50%、P:0.03〜1.0 %及びB:0.
0005〜1.0 %からなる群のうち1種又は2種以上を含有
し、更に必要に応じてS:1.0 %以下を含み、残部が実
質的にFeからなる合金鋼粉が提案されている。
In Japanese Patent Publication No. 3-25481, some Mn
(0.1-0.5%) and pure iron powder containing Si, C, etc.
Iron powder for powder metallurgy has been proposed, which is produced by spraying a molten metal added with 0.03 to 0.07% with water or gas. In this method, the machinability was improved only slightly less than twice that of the conventional material, and further improvement was required. A technique for incorporating B into iron powder for powder metallurgy is described in JP-A-61-253301. In the present invention, C: 0.10% or less, Mn: 2.0%
Below, the amount of oxygen is 0.30% or less, further Cr: 0.10 ~ 5.0
%, Ni: 0.10 to 5.0%, Si: 2.0% or less, Cu: 0.10 to 1
0.0%, Mo: 0.01 to 3.0%, W: 0.01 to 3.0%, V: 0.0
1 to 2.0%, Ti: 0.005 to 0.50%, Zr: 0.005 to 0.50
%, Nb: 0.005 to 0.50%, P: 0.03 to 1.0% and B: 0.
There has been proposed an alloy steel powder containing one or more of the group consisting of 1.25 to 1.0%, optionally containing S: 1.0% or less, and the balance being substantially Fe.

【0005】しかしながら、この組成の合金鋼粉は、Cr
が0.10%以上と高い上に、この組成を得るには鉄鉱石、
ミルスケールなどの酸化鉄を粉コークスなどの還元剤で
粗還元した粉末に、予め合金化した水噴霧母合金粉末、
すなわちC:0.50%以下、Mn:5.0 %以下、酸素量が1.
5 %以下であり、さらにCr:0.10〜20.0%、Ni:0.15〜
20.0%、Si:5.0 %以下、Cu:0.15〜20.0%、Mo:0.01
5 〜15.0%、W:0.015 〜15.0%、V:0.015 〜5.0
%、Ti:0.01〜2.0 %、Zr:0.01〜2.0 %、Nb:0.01〜
2.0 %、P:0.04〜2.0 %、およびB:0.0010〜2.0 %
からなる群のうちの1種または2種以上を含有し、さら
に必要に応じてS:4%以下を含み、残部が実質的にFe
からなる水噴霧母合金粉末を、仕上げ還元後の合金元素
量が上記所望量になるように混合・調整し、しかる後に
該混合粉末を還元雰囲気中で仕上げ還元することが必要
とされ、非常に複雑でコストの高い製造方法をとらねば
ならない。
However, the alloy steel powder of this composition contains Cr
Is higher than 0.10%, iron ore to obtain this composition,
Powder of iron oxide such as mill scale roughly reduced with a reducing agent such as powder coke, pre-alloyed water spray mother alloy powder,
That is, C: 0.50% or less, Mn: 5.0% or less, oxygen content is 1.
5% or less, Cr: 0.10 to 20.0%, Ni: 0.15 to
20.0%, Si: 5.0% or less, Cu: 0.15 to 20.0%, Mo: 0.01
5 to 15.0%, W: 0.015 to 15.0%, V: 0.015 to 5.0
%, Ti: 0.01 to 2.0%, Zr: 0.01 to 2.0%, Nb: 0.01 to
2.0%, P: 0.04 to 2.0%, and B: 0.0010 to 2.0%
1 or 2 or more of the group consisting of, and optionally S: 4% or less, with the balance being substantially Fe.
It is necessary to mix and adjust the water-sprayed mother alloy powder consisting of so that the amount of alloying elements after finish reduction becomes the above-mentioned desired amount, and then finish-reduce the mixed powder in a reducing atmosphere. A complicated and costly manufacturing method must be taken.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来技術の欠点に鑑み、切削性に優れた焼結鋼が得られ
るような粉末冶金用鉄粉を提供することを目的とするも
のである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks of the prior art, and an object thereof is to provide an iron powder for powder metallurgy which allows a sintered steel having excellent machinability to be obtained. Is.

【0007】[0007]

【課題を解決するための手段】本発明者らは、特願平5-
337325号、特願平5-336076号において、水を用いた噴霧
法により製造されたS、Cr、Mnを所定量含む粉末冶金用
鉄粉を焼結すると、焼結鋼の気孔に残留黒鉛が、鉄粒子
内および粒界に5μm 以内のMnSが存在し、切削性に優
れる焼結鋼が容易に得られることを提案した。
[Means for Solving the Problems]
In 337325 and Japanese Patent Application No. 5-336076, when iron powder for powder metallurgy containing a predetermined amount of S, Cr, and Mn produced by a spraying method using water is sintered, residual graphite is left in the pores of the sintered steel. It has been proposed that MnS of 5 μm or less exists in iron particles and in grain boundaries, and a sintered steel having excellent machinability can be easily obtained.

【0008】特願平5-337325号による粉末冶金用鉄粉を
純窒素雰囲気中での焼結途中で急冷し、残留黒鉛の分析
を行った結果、残留黒鉛は焼結中の浸炭が阻害された結
果生成することが分かった。さらに黒鉛の浸炭を阻害す
る効果は鉄粉表層部に存在するFeSが有効であり、また
さらにCrを併用して添加することにより、残留黒鉛量が
一層増加することを発見した。
Iron powder for powder metallurgy according to Japanese Patent Application No. 5-337325 was rapidly cooled in the course of sintering in a pure nitrogen atmosphere and residual graphite was analyzed. As a result, the residual graphite was inhibited from carburizing during sintering. It turned out that it produces as a result. Further, it was discovered that FeS existing in the surface layer of iron powder is effective for inhibiting the carburization of graphite, and that the addition of Cr in combination further increases the amount of residual graphite.

【0009】また、本発明において、S以外に焼結中の
浸炭を阻害し、残留黒鉛量を増加させる合金元素の調査
を行った。その結果、溶製材料において鉄中への溶解度
が少なく、結晶粒界に偏析しやすいS、Se、Teはそれ単
独で残留黒鉛を生成させる効果があった。そして炭化物
形成元素であるB、Cr、Moは、S、Se、Teと併用するこ
とにより残留黒鉛を増加させ、Mnは残留黒鉛量を減少さ
せる効果があることが分かった。
In the present invention, alloy elements other than S that inhibit carburization during sintering and increase the amount of residual graphite were investigated. As a result, S, Se, and Te, which have a low solubility in iron in the ingot material and are easily segregated at the grain boundaries, had the effect of producing residual graphite by themselves. It was found that B, Cr, and Mo, which are carbide-forming elements, have the effect of increasing residual graphite when used in combination with S, Se, and Te, and Mn has the effect of reducing the amount of residual graphite.

【0010】この知見をもとにMn: 0.1%未満でCr、
S、Se、Teなどを含む鉄粉に、さらにBを添加すること
により、焼結鋼中の残留黒鉛が一層増加し、切削性が格
段に向上することを見い出した。さらに、Moは、添加量
の増加とともに強度が上昇するが、切削性の低下が少な
く、従って切削性とともに高強度の必要な場合は、Moの
添加が有効であることを見い出した。
Based on this finding, Mn: Cr less than 0.1%,
It has been found that the addition of B to the iron powder containing S, Se, Te, etc. further increases the residual graphite in the sintered steel and significantly improves the machinability. Further, it was found that although the strength of Mo increases as the amount of addition increases, the decrease in machinability is small, and therefore when high strength along with machinability is required, the addition of Mo is effective.

【0011】さらに、本発明では、Moの添加方法を鋭意
検討した結果、Moを予合金化した鉄粉を成形、焼結する
よりも、MoO3粉として鉄粉に混合後成形、焼結した方
が、高強度が得られ、さらに一層切削性が向上すること
を見い出した。すなわち、FeSは焼結中のCのγ粒内へ
の拡散を一部抑制し(浸炭の抑制)、焼結後気孔に黒鉛
を残留させる効果があるので、H2 を含む焼結雰囲気で
はFeSがH2 により還元されるため残留黒鉛が減少し、
切削性が低下する問題があったが、これに対しMoO3粉は
FeSよりH2 により分解されやすく、分解後鉄粒子に固
溶するため、Moを鉄粉に予合金アトマイズして添加する
よりも、残留黒鉛が増加し、一層切削性が向上すること
を見い出した。
Further, in the present invention, as a result of diligent examination of a method of adding Mo, rather than molding and sintering an iron powder pre-alloyed with Mo, it was molded and sintered after mixing with iron powder as MoO 3 powder. It was found that higher strength was obtained and the machinability was further improved. That, FeS suppresses some diffusion into the γ grains C during sintering (inhibition of carburizing), since an effect of residual graphite pores after sintering, the sintering atmosphere containing H 2 FeS Is reduced by H 2, the residual graphite decreases,
There was a problem that the machinability deteriorates, but in contrast, MoO 3 powder
Since it is more easily decomposed by H 2 than FeS and forms a solid solution in iron particles after decomposition, it was found that the residual graphite is increased and the machinability is further improved as compared with the case of adding Mo by prealloying atomizing iron powder. .

【0012】さらに、MoO3粉と同様の効果を示す添加物
としてWO3 粉があることを発見した。本発明は、重量比
でB:0.001 〜0.03%、Cr:0.02〜0.07%、Mn:0.1 %
未満、S、Se、Teの1種以上の合計が0.03〜0.15%、残
部がFeと不可避的不純物であることを特徴とする切削性
に優れた焼結鋼用の鉄粉であり、またこの組成に加え、
Mo:0.05〜1.0 %を含むことを特徴とする切削性に優れ
た焼結鋼用の鉄粉である。
Further, it was discovered that WO 3 powder is an additive exhibiting the same effect as MoO 3 powder. The weight ratio of the present invention is B: 0.001 to 0.03%, Cr: 0.02 to 0.07%, Mn: 0.1%.
Iron powder for sintered steel with excellent machinability, characterized in that the total content of at least one of S, Se, and Te is 0.03 to 0.15%, and the balance is Fe and unavoidable impurities. In addition to composition
Iron powder for sintered steel with excellent machinability, characterized by containing Mo: 0.05 to 1.0%.

【0013】また、本発明は、重量比でB:0.001 〜0.
03%、Cr:0.02〜0.07%、Mn:0.1%未満、S、Se、Te
の1種以上の合計が0.03〜0.15%、残部がFeと不可避的
不純物である組成の鉄粉に、MoO3粉:0.05〜0.7 %およ
びWO3 粉:0.05〜0.7 %のいずれか1種以上を混合した
ことを特徴とする切削性の優れた焼結鋼用の混合粉であ
り、さらに黒鉛粉末:0.5 〜1.5 %、必要によりCu粉:
4%以下を混合したことを特徴とする切削性に優れた焼
結鋼用の混合粉である。
In the present invention, the weight ratio B: 0.001-0.
03%, Cr: 0.02-0.07%, Mn: less than 0.1%, S, Se, Te
In addition to 0.03 to 0.15% of iron, the balance is Fe and inevitable impurities in the iron powder, MoO 3 powder: 0.05 to 0.7% and WO 3 powder: 0.05 to 0.7%. It is a mixed powder for sintered steel with excellent machinability, characterized by being mixed with graphite powder: 0.5 to 1.5%, and if necessary Cu powder:
It is a mixed powder for sintered steel having excellent machinability, which is characterized by mixing 4% or less.

【0014】また、本発明は、重量比でB:0.001 〜0.
03%、Cr:0.02〜0.07%、Mn:0.1%未満、S、Se、Te
の1種以上の合計が0.03〜0.15%、さらに必要によりM
o:0.05〜1.0 %、残部がFeと不可避的不純物である鉄
粉、又は重量比でB:0.001 〜0.03%、Cr:0.02〜0.07
%、Mn:0.1 %未満、S、Se、Teの1種以上の合計が0.
03〜0.15%、残部がFeと不可避的不純物である組成の鉄
粉にMoO3粉:0.05〜0.7%およびWO3 粉:0.05〜0.7 %
のいずれか1種以上を混合した混合粉に、重量比で黒鉛
粉末:0.5 〜1.5 %、必要によりCu粉:4%以下を混合
し、成形し、焼結してなる切削性に優れた焼結鋼の製造
方法である。
In the present invention, the weight ratio B: 0.001-0.
03%, Cr: 0.02-0.07%, Mn: less than 0.1%, S, Se, Te
The total of one or more of 0.03 to 0.15%, and if necessary M
o: 0.05 to 1.0%, the balance being Fe and iron powder which is an unavoidable impurity, or B: 0.001 to 0.03% by weight, Cr: 0.02 to 0.07.
%, Mn: less than 0.1%, the total of one or more of S, Se and Te is 0.
03-0.15%, the balance is Fe and inevitable impurities in the iron powder composition MoO 3 powder: 0.05-0.7% and WO 3 powder: 0.05-0.7%
Graphite powder: 0.5 to 1.5% by weight and, if necessary, Cu powder: 4% or less are mixed with a mixed powder obtained by mixing any one or more of the above, and the mixture is molded and sintered, which is excellent in machinability. This is a method for manufacturing steel.

【0015】[0015]

【作用】本発明では、Mn含有量を制限することによって
得られたS、Se、Teの浸炭防止作用により生じた焼結鋼
の気孔に生成した残留黒鉛の作用によって、焼結鋼の切
削性を向上させている。さらにCr、BをS、Se、Teと併
用することによりさらにこの効果を増加させている。そ
して、さらにMoを添加してもよく、望ましい添加の形態
は予合金化するよりも、MoO3粉として混粉化することに
より一層の切削性の向上をはかれる。またWO3 粉もMoO3
粉と同様の効果を示す。
In the present invention, the machinability of the sintered steel is improved by the action of the residual graphite formed in the pores of the sintered steel produced by the carburizing prevention effect of S, Se and Te obtained by limiting the Mn content. Is improving. Further, by using Cr, B in combination with S, Se, Te, this effect is further increased. Further, Mo may be further added, and the desirable mode of addition is to improve the machinability further by mixing the powder as MoO 3 powder rather than pre-alloying. WO 3 powder is also MoO 3
It has the same effect as powder.

【0016】したがって、本発明の粉末冶金用鉄粉を用
いて、通常のFe−Cu−C系、Fe−C系の配合で成形焼結
することにより、残留黒鉛を含有する切削性の優れた焼
結鋼を容易に得ることができる。以下に本発明において
重要な働きをする各元素の作用および限定範囲について
詳細に説明する。
Therefore, by using the iron powder for powder metallurgy of the present invention and forming and sintering it in a usual composition of Fe-Cu-C system and Fe-C system, excellent machinability containing residual graphite is obtained. Sintered steel can be easily obtained. The action and limiting range of each element that plays an important role in the present invention will be described in detail below.

【0017】S、Se、Teのうちの1種以上の合計:0.03
〜0.15% 水を用いた噴霧法により製造される粉末冶金用鉄粉の
S、Se、Teは焼結鋼中の残留黒鉛を生成させるために添
加する。その添加量の合計量は0.03〜0.15%に限定す
る。0.03%未満では、残留黒鉛生成による切削性向上の
効果がない。0.15%を超えると焼結中すすを発生しやす
く、焼結炉を傷めることが懸念される。切削性および合
金コストの理由で、好ましい範囲は0.08〜0.13%とする Mn: 0.1%未満 Mnは 0.1%未満とする。Mnは 0.1%以上では、焼結鋼中
の残留黒鉛が少なく切削性が悪い。この理由はMn自体が
残留黒鉛を減少させる合金元素であることと、粉末中の
MnがS、Se、Teと結合しやすく、焼結鋼中の残留黒鉛を
増加させるのに有効なS、Se、Teが減少するからであ
る。転炉におけるMn低減のための精錬コストと切削性の
観点から、好ましい範囲は0.04〜0.08%である。
Sum of at least one of S, Se and Te: 0.03
Iron powders for powder metallurgy produced by a spraying method using 0.15% water, S, Se and Te are added to form residual graphite in the sintered steel. The total amount of addition is limited to 0.03 to 0.15%. If it is less than 0.03%, there is no effect of improving the machinability due to the generation of residual graphite. If it exceeds 0.15%, soot is likely to be generated during sintering, which may damage the sintering furnace. For reasons of machinability and alloy cost, the preferable range is 0.08 to 0.13% Mn: less than 0.1% Mn is less than 0.1%. When Mn is 0.1% or more, the residual graphite in the sintered steel is small and the machinability is poor. The reason for this is that Mn itself is an alloying element that reduces residual graphite, and
This is because Mn easily bonds with S, Se, and Te, and S, Se, and Te, which are effective for increasing the residual graphite in the sintered steel, decrease. From the viewpoint of refining cost for reducing Mn in the converter and machinability, the preferable range is 0.04 to 0.08%.

【0018】B:0.001 〜0.03% 水を用いた噴霧法により製造される粉末冶金用鉄粉のB
は、S、Se、Teにより生成する残留黒鉛を増加させ、一
層切削性を増加させるために添加し、添加量は0.001 〜
0.03%に限定される。Bを含有する溶鋼を水でアトマイ
ズ噴霧すると、Bの一部は水により容易に酸化されて鉄
粉表面にB系酸化物が析出し、このB系酸化物が焼結中
に鉄粉中への黒鉛の浸炭を抑制するため、焼結鋼中の残
留黒鉛量を増加させる作用があると考えられる。したが
って、Bを含有しない鉄粉にFe−B粉を混合添加したと
しても切削性は改善されない。Bが 0.001%未満では添
加したことによる切削性の向上が認められない。Bが0.
03%を超えた場合には、固溶硬化のため、焼結鋼の硬さ
が高くなり、切削性を低下させる。切削性と合金コスト
の兼ね合いで、好ましい範囲は 0.002〜0.01%である。
B: 0.001 to 0.03% B of iron powder for powder metallurgy produced by a spraying method using water
Is added in order to increase the residual graphite generated by S, Se and Te, and to further improve the machinability. The addition amount is 0.001 ~
Limited to 0.03%. When atomizing atomized molten steel containing B with water, part of B is easily oxidized by water to deposit B-based oxide on the iron powder surface, and this B-based oxide is introduced into the iron powder during sintering. It is considered that this has the effect of increasing the amount of residual graphite in the sintered steel in order to suppress the carburization of graphite. Therefore, even if the Fe-B powder is mixed and added to the iron powder not containing B, the machinability is not improved. If B is less than 0.001%, no improvement in machinability due to addition is observed. B is 0.
If it exceeds 03%, the hardness of the sintered steel becomes high due to solid solution hardening, and the machinability deteriorates. In view of the balance between machinability and alloy cost, the preferable range is 0.002 to 0.01%.

【0019】Cr:0.02〜0.07% 水を用いた噴霧法により製造される粉末冶金用鉄粉のCr
は、S、Se、Teにより生成する残留黒鉛を増加させ、一
層切削性を増加させるために添加し、添加量は0.02〜0.
07%に限定される。Crが0.02%未満ではCrを添加したこ
とによる切削性の向上が認められない。Crが0.07%を超
えた場合には、炭化物のため、焼結鋼の硬さが高くな
り、切削性を低下させる。切削性と合金コストの兼ね合
いで、好ましい範囲は0.04〜0.06%である。
Cr: 0.02 to 0.07% Cr of iron powder for powder metallurgy produced by a spraying method using water
Is added in order to increase the residual graphite generated by S, Se and Te and further increase the machinability, and the addition amount is 0.02 to 0.
Limited to 07%. If Cr is less than 0.02%, no improvement in machinability due to the addition of Cr is observed. When Cr exceeds 0.07%, the hardness of the sintered steel becomes high and the machinability deteriorates because of carbides. In view of the balance between machinability and alloy cost, the preferable range is 0.04 to 0.06%.

【0020】Mo:0.05〜1.0 % 水を用いた噴霧法により製造される粉末冶金用鉄粉のMo
は、S、Se、TeおよびそれらとCr、Bの併用により生成
する残留黒鉛の量をさらに増加させて一層切削性を向上
させるためと、その固溶硬化により強度を高めるために
添加する。比較的強度が必要な場合には、その添加が一
層有効である。ただし、添加量は0.05〜1.0 %に限定さ
れる。Moが0.05%未満では添加したことによる強度の向
上が認められない。Moが 1.0%を超えた場合、切削性が
急激に低下する。合金コストと切削性の兼ね合いで、好
ましい範囲は 0.4〜0.7 %である。
Mo: Mo of iron powder for powder metallurgy produced by the spraying method using 0.05 to 1.0% water
Is added in order to further increase the amount of S, Se, Te and the residual graphite produced by using them in combination with Cr and B to further improve the machinability, and to enhance the strength by solid solution hardening. When relatively high strength is required, its addition is more effective. However, the addition amount is limited to 0.05 to 1.0%. If the Mo content is less than 0.05%, no improvement in strength due to addition is observed. If Mo exceeds 1.0%, the machinability drops sharply. A preferable range is 0.4 to 0.7% in consideration of alloy cost and machinability.

【0021】MoO3粉:0.05〜0.7 %、WO3 粉:0.05〜0.
7 %のいずれか1種以上 MoO3粉、WO3 粉は、切削性を向上させるためと、固溶硬
化により強度を高めるために添加する。MoO3粉とWO3
の添加量をそれぞれ0.05〜0.7 %に限定した理由は、0.
05%未満ではその効果が認められず、 0.7%を超えると
ベーナイトが生成し強度が低下するからである。
MoO 3 powder: 0.05-0.7%, WO 3 powder: 0.05-0.
Any one or more of 7% of MoO 3 powder and WO 3 powder is added to improve machinability and strength by solid solution hardening. The reason for limiting the addition amounts of MoO 3 powder and WO 3 powder to 0.05 to 0.7% respectively is as follows.
If it is less than 05%, the effect is not recognized, and if it exceeds 0.7%, bainite is formed and the strength is reduced.

【0022】Cu粉:4%以下 Cu粉は切削性を低下させないで焼結体の強度を高めるた
めに添加する。4%超では切削性および衝撃値が低下す
る。 黒鉛粉末:0.5 〜1.5 % 黒鉛粉末は切削性向上のために焼結後気孔に黒鉛を残留
させる黒鉛源として、また鉄中に固溶せしめさらに強度
を高めるために添加する。 0.5%未満では、強度が低下
し、一方、 1.5%超では、パーライト比率が増加し、切
削性が低下するので0.5 〜1.5 %の範囲で添加する。
Cu powder: 4% or less Cu powder is added to enhance the strength of the sintered body without lowering the machinability. If it exceeds 4%, the machinability and impact value will decrease. Graphite powder: 0.5 to 1.5% Graphite powder is added as a graphite source for leaving graphite in pores after sintering to improve machinability, and as a solid solution in iron to further enhance strength. If it is less than 0.5%, the strength decreases, while if it exceeds 1.5%, the pearlite ratio increases and the machinability deteriorates. Therefore, it is added in the range of 0.5 to 1.5%.

【0023】また、MoO3粉とWO3 粉のいずれか1種以上
と黒鉛粉末、Cu粉を添加するとき、偏析防止処理を施し
て混合することが、より一層好ましい。MoO3粉とWO3
が鉄粉に均質に混合されるため、単純混合方法に比べ焼
結中のMo、W の鉄粉への固溶が均質となる。その結果、
焼結後のフェライト相が微細となり、単純混合方法に比
べ強度が15%程度増加する。
Further, when any one or more of MoO 3 powder and WO 3 powder and graphite powder and Cu powder are added, it is even more preferable to perform a segregation preventing treatment and mix them. Since the MoO 3 powder and the WO 3 powder are homogeneously mixed with the iron powder, the solid solution of Mo and W during sintering becomes more homogeneous than in the simple mixing method. as a result,
The ferrite phase after sintering becomes finer and the strength increases by about 15% compared to the simple mixing method.

【0024】[0024]

【実施例】【Example】

実施例I 表1に鉄粉の化学組成を示す。これらの鉄粉は、溶鋼を
水噴霧して得た生粉を窒素雰囲気中で 140℃で60分乾燥
した後、純水素雰囲気中 930℃で20分還元したのち、粉
砕分級して製造した。
Example I Table 1 shows the chemical composition of iron powder. These iron powders were produced by drying raw powder obtained by spraying molten steel with water in a nitrogen atmosphere at 140 ° C. for 60 minutes, reducing it in a pure hydrogen atmosphere at 930 ° C. for 20 minutes, and then pulverizing and classifying.

【0025】黒鉛粉末1重量%とCu粉2重量%とを混合
した混合粉 100重量部に対して、ステアリン酸亜鉛1重
量部を混合後、圧粉密度 6.85g/cm3になるように成形
し、窒素気流中(水素10%)で1130℃20分焼結し、引張
強さの測定を行った。また、Cu粉を混合しない混合粉に
ついても同様に行った。切削性の評価は外径60φ、高さ
10mmの円板形状、圧粉密度 6.85g/cm3とし、上記の条件
で焼結後、直径1mmφのハイス製ドリルを用いて10000r
pm、0.012mm/rev の条件で加工が不可能になるまでに加
工した穴の平均個数(ドリル3本の平均値)を工具寿命
として評価した。
[0025] 1 part by weight of zinc stearate was mixed with 100 parts by weight of a mixed powder obtained by mixing 1% by weight of graphite powder and 2% by weight of Cu powder, and then molded so as to have a green compact density of 6.85 g / cm 3. Then, it was sintered in a nitrogen stream (hydrogen 10%) for 20 minutes at 1130 ° C, and the tensile strength was measured. Further, the same procedure was performed for the mixed powder in which the Cu powder was not mixed. Outer diameter of 60φ, height is evaluated for machinability
Disc shape of 10 mm, and green density 6.85 g / cm 3, after sintering under the conditions described above, using a high speed steel manufactured drill diameter 1 mm in diameter 10000R
The tool life was evaluated as the average number of holes (average of three drills) machined until it became impossible to machine under the conditions of pm and 0.012 mm / rev.

【0026】焼結鋼の残留黒鉛量は、硝酸溶解残渣をガ
ラスフィルタでろ過し、赤外線吸収法で定量化した。表
1に残留黒鉛量、工具寿命、焼結鋼のすすの発生の有
無、引張強さをまとめて示した。
The residual graphite content of the sintered steel was quantified by infrared absorption method after filtering the nitric acid-dissolved residue through a glass filter. Table 1 collectively shows the amount of residual graphite, the tool life, the presence or absence of soot in the sintered steel, and the tensile strength.

【0027】[0027]

【表1】 [Table 1]

【0028】表1の各実施例からB:0.001 〜0.03%、
Cr:0.02〜0.07%、Mn:0.1 %未満、S、Se、Teの1種
以上の合計が0.03〜0.15%を含むことを特徴とした粉末
冶金用鉄粉から得られた焼結鋼の残留黒鉛は 0.3%以
上、工具寿命は 800個以上であった。実施例2、4、
8、10と実施例11〜14とはCu粉添加の有無のみ異なり、
他は同一条件であるが、Cu粉無添加のものは添加したも
のに比べて焼結鋼の引張強さのみやや低下するが、残留
黒鉛量はほぼ等しく、したがって工具寿命も 800個以上
あり、快削性は優れている。
From each example in Table 1, B: 0.001 to 0.03%,
Cr: 0.02 to 0.07%, Mn: less than 0.1%, and the total of one or more of S, Se, and Te contains 0.03 to 0.15%, the residual of the sintered steel obtained from iron powder for powder metallurgy. Graphite was 0.3% or more, and tool life was 800 or more. Examples 2, 4,
8 and 10 and Examples 11 to 14 differ only in the presence or absence of Cu powder addition,
The other conditions are the same, but the tensile strength of the sintered steel is slightly lower when Cu powder is not added than when Cu powder is added, but the amount of residual graphite is almost the same, so the tool life is 800 or more. It has excellent free-cutting properties.

【0029】比較例1に示す鉄粉は、通常の純鉄粉であ
り、残留黒鉛は0.02%、工具寿命は15個であった。比較
例2はBを含まないが、残留黒鉛は 0.2%、工具寿命は
600個であり、本発明例との比較からBの添加による切
削性の向上が分かる。比較例3、12、13に示すようにB
の含有量が0.03%超、あるいはCrが0.02%未満あるいは
0.07%を超えると切削性が劣化する。比較例4から7に
示すようにS、Se、Teの1種以上の合計が0.03%未満で
は切削性が悪く、比較例8から11に示すようにS、Se、
Teの1種以上の合計が0.15%を超えると焼結鋼にすすが
発生した。比較例14に示すようにMnが 0.1%を超えると
切削性が低下する。
The iron powder shown in Comparative Example 1 was ordinary pure iron powder, the residual graphite was 0.02%, and the tool life was 15. Comparative Example 2 does not contain B, but has 0.2% residual graphite and a tool life of
The number is 600, and it can be seen from the comparison with the examples of the present invention that the addition of B improves the cutting performance. B as shown in Comparative Examples 3, 12, and 13
Content of more than 0.03% or Cr less than 0.02% or
If it exceeds 0.07%, the machinability deteriorates. As shown in Comparative Examples 4 to 7, when one or more of S, Se and Te is less than 0.03% in total, the machinability is poor, and as shown in Comparative Examples 8 to 11, S, Se, Te,
Soot was generated in the sintered steel when the total content of one or more of Te exceeds 0.15%. As shown in Comparative Example 14, if Mn exceeds 0.1%, the machinability deteriorates.

【0030】また、比較例15に用いた鉄粉は、実施例2
の鉄粉に比べBを含まない以外はほぼ同組成であるが、
この鉄粉に0.01%に相当するBをFe−B粉(B含有量:
20%)を混合することにより添加した。比較例15は実施
例2に比べ切削性が劣り、予合金されたBが切削性に寄
与し、Fe−B粉の混合添加では切削性が向上しないこと
がわかる。
The iron powder used in Comparative Example 15 was the same as in Example 2.
It has almost the same composition as the iron powder except that it does not contain B,
This iron powder contains B equivalent to 0.01% in Fe-B powder (B content:
20%) was added by mixing. In Comparative Example 15, the machinability was inferior to that in Example 2, pre-alloyed B contributes to the machinability, and it is understood that the machinability is not improved by the mixed addition of the Fe-B powder.

【0031】実施例II 表2に鉄粉の化学組成を示す。これらの鉄粉は、溶鋼を
水噴霧して得た生粉を窒素雰囲気中で 140℃で60分乾燥
した後、純水素雰囲気中 930℃で20分還元したのち、粉
砕分級して製造した。
Example II Table 2 shows the chemical composition of iron powder. These iron powders were produced by drying raw powder obtained by spraying molten steel with water in a nitrogen atmosphere at 140 ° C. for 60 minutes, reducing it in a pure hydrogen atmosphere at 930 ° C. for 20 minutes, and then pulverizing and classifying.

【0032】[0032]

【表2】 [Table 2]

【0033】黒鉛粉末1重量%とCu粉2重量%とを混合
した混合粉 100重量部に対して、ステアリン酸亜鉛1重
量部を混合後、圧粉密度 6.85g/cm3になるように成形
し、窒素気流中(水素10%)で1130℃20分焼結し、引張
強さの測定を行った。また、Cu粉を混合しない混合粉に
ついても同様に行った。切削性の評価は外径60φ、高さ
10mmの円板形状、圧粉密度 6.85g/cm3とし、上記の条件
で焼結後、直径1mmφのハイス製ドリルを用いて10000r
pm、0.012mm/rev の条件で加工が不可能になるまでに加
工した穴の平均個数(ドリル3本の平均値)を工具寿命
として評価した。
100 parts by weight of a mixed powder of 1% by weight of graphite powder and 2% by weight of Cu powder was mixed with 1 part by weight of zinc stearate, and then molded to a compacted density of 6.85 g / cm 3. Then, it was sintered in a nitrogen stream (hydrogen 10%) for 20 minutes at 1130 ° C, and the tensile strength was measured. Further, the same procedure was performed for the mixed powder in which the Cu powder was not mixed. Outer diameter of 60φ, height is evaluated for machinability
Disc shape of 10 mm, and green density 6.85 g / cm 3, after sintering under the conditions described above, using a high speed steel manufactured drill diameter 1 mm in diameter 10000R
The tool life was evaluated as the average number of holes (average of three drills) machined until it became impossible to machine under the conditions of pm and 0.012 mm / rev.

【0034】焼結鋼の残留黒鉛量は、硝酸溶解残渣をガ
ラスフィルタでろ過し、赤外線吸収法で定量化した。表
2に残留黒鉛量、工具寿命、焼結鋼のすすの発生の有
無、引張強さをまとめて示した。表2の各実施例から
B:0.001 〜0.03%、Cr:0.02〜0.07%、Mn:0.1 %未
満、S、Se、Teの1種以上の合計が0.03〜0.15%、さら
にMo:0.05 〜1.0 %を含むことを特徴とした粉末冶金用
鉄粉から得られた焼結鋼の残留黒鉛は0.33%以上であっ
た。Mo添加量の増加とともに引張強さが440 〜650MPaに
上昇したが、その割りには工具寿命は 870個から 600個
程度までと、切削性の低下が少なかった。
The residual graphite content of the sintered steel was quantified by infrared absorption method after filtering the nitric acid-dissolved residue through a glass filter. Table 2 shows the amount of residual graphite, the tool life, the presence or absence of soot in the sintered steel, and the tensile strength. From each example in Table 2, B: 0.001 to 0.03%, Cr: 0.02 to 0.07%, Mn: less than 0.1%, the total of one or more of S, Se and Te is 0.03 to 0.15%, and Mo: 0.05 to 1.0. %, The residual graphite of the sintered steel obtained from iron powder for powder metallurgy was 0.33% or more. Although the tensile strength increased to 440-650MPa with the increase of the amount of added Mo, the tool life was reduced from 870 to 600, showing a small decrease in machinability.

【0035】実施例16、21、23、24と実施例25〜28とは
Cu粉添加の有無のみ異なり、他は同一条件であるが、Cu
粉無添加のものは添加したものに比べて焼結鋼の引張強
さのみやや低下するが、残留黒鉛量はほぼ等しく、した
がって工具寿命も 600個以上あり、快削性は優れてい
る。比較例16に示す鉄粉は、表1の実施例2の鉄粉に加
えMoを0.03%含有するが、引張強さ、工具寿命ともほと
んど変化しなかった。比較例17に示すようにMoの含有量
が 1.0%を超えると切削性が劣化する。
Examples 16, 21, 23, 24 and Examples 25-28
The only difference is whether or not Cu powder is added.
Only the tensile strength of the sintered steel is slightly lower than that of the powder-free one, but the amount of residual graphite is almost the same, and therefore the tool life is 600 or more and the free-cutting property is excellent. The iron powder shown in Comparative Example 16 contains 0.03% of Mo in addition to the iron powder of Example 2 in Table 1, but the tensile strength and the tool life hardly changed. As shown in Comparative Example 17, when the Mo content exceeds 1.0%, the machinability deteriorates.

【0036】以下の比較例18〜30においては、Mo量を
0.5%とし、同じMo含有量の実施例17と比較する。比較
例18、28に示すBを含まない粉末、あるいはCrが0.02%
未満の場合は切削性が劣る。比較例19、29に示すように
Bの含有量が0.03%を、あるいは、Crが0.07%を超える
と切削性が劣化する。比較例20から23に示すようにS、
Se、Teの1種以上の合計が0.03%未満では切削性が悪
く、比較例24から27に示すようにS、Se、Teの1種以上
の合計が0.15%を超えると焼結鋼にすすが発生した。比
較例30に示すようにMnが 0.1%を超えると切削性が低下
する。
In the following Comparative Examples 18 to 30, the amount of Mo is
0.5%, and compared with Example 17 having the same Mo content. Powder not containing B shown in Comparative Examples 18 and 28, or Cr 0.02%
If it is less than, the machinability is poor. As shown in Comparative Examples 19 and 29, if the content of B exceeds 0.03% or the content of Cr exceeds 0.07%, the machinability deteriorates. As shown in Comparative Examples 20 to 23, S,
If the total of one or more of Se and Te is less than 0.03%, the machinability is poor, and as shown in Comparative Examples 24 to 27, if the total of one or more of S, Se and Te exceeds 0.15%, it is sooted into sintered steel. There has occurred. As shown in Comparative Example 30, when Mn exceeds 0.1%, the machinability deteriorates.

【0037】実施例III 表3に鉄粉の化学組成を示す。これらの鉄粉は、溶鋼を
水噴霧(アトマイズ)して得た生粉を窒素雰囲気中で 1
40℃で60分乾燥した後、純水素雰囲気中 930℃で20分還
元したのち、粉砕分級して製造した。
Example III Table 3 shows the chemical composition of iron powder. These iron powders are raw powders obtained by atomizing molten steel with water (atomizing) in a nitrogen atmosphere. 1
It was dried at 40 ° C. for 60 minutes, reduced in a pure hydrogen atmosphere at 930 ° C. for 20 minutes, and then pulverized and classified.

【0038】[0038]

【表3】 [Table 3]

【0039】平均粒径20μm のCu粉および平均粒径10μ
m の黒鉛粉末を表3に示す重量%と、平均粒径5μm の
MoO3粉、WO3 粉を表3に示す重量%を混合した混合粉 1
00重量部に対して、ステアリン酸亜鉛1重量部を添加
し、Vブレンダーで15分混合後、圧粉密度 6.85g/cm3
なるように成形し、水素を10%含む窒素気流中で1130℃
20分焼結した。焼結中のガス流量は成形体1kg当たり5
Nl/minであった。得られた焼結鋼について、引張強度、
シャルピー衝撃値(温度25℃)の測定を行った。なお、
Cu粉を混合しない場合も行った。
Cu powder having an average particle size of 20 μm and an average particle size of 10 μ
The graphite powder of m 3 has the weight% shown in Table 3 and the average particle size of 5 μm.
Powder mixture of MoO 3 powder and WO 3 powder in the weight percentages shown in Table 3 1
To 100 parts by weight of zinc, 1 part by weight of zinc stearate was added, mixed with a V blender for 15 minutes, and then molded to have a green compact density of 6.85 g / cm 3, and then subjected to 1130 in a nitrogen stream containing 10% hydrogen. ℃
Sintered for 20 minutes. Gas flow rate during sintering is 5 per 1kg of compact
It was Nl / min. About the obtained sintered steel, tensile strength,
The Charpy impact value (temperature 25 ° C) was measured. In addition,
This was also performed when Cu powder was not mixed.

【0040】切削性の評価は外径60φ、高さ10mmの円板
形状とし、上記の条件で焼結後、直径1mmφのハイス製
ドリルを用いて10000rpm、0.012mm/rev の条件で加工が
不可能になるまでに加工した穴の平均個数(ドリル3本
の平均値)を工具寿命として評価した。焼結鋼の残留黒
鉛量は、硝酸溶解残渣をガラスフィルタでろ過し、赤外
線吸収法で定量化した。表3に残留黒鉛量、工具寿命、
引張強度、シャルピー衝撃値、すす発生の有無をまとめ
て示した。
For the evaluation of machinability, a disk shape having an outer diameter of 60φ and a height of 10 mm was used, and after sintering under the above conditions, using a HSS drill with a diameter of 1 mmφ, processing was not possible under the conditions of 10,000 rpm and 0.012 mm / rev. The average number of holes machined until it became possible (average of three drills) was evaluated as the tool life. The residual graphite amount of the sintered steel was quantified by infrared absorption method after filtering the nitric acid-dissolved residue with a glass filter. Table 3 shows the amount of residual graphite, tool life,
The tensile strength, the Charpy impact value, and the presence or absence of soot generation are collectively shown.

【0041】表3の各実施例29〜35から、本発明の組成
範囲の鉄粉を望ましい製造条件で焼結すれば、引張強度
410 〜650MPaの範囲で優れた切削性の焼結鋼が得られる
ことが分かる。また、実施例36のようにCu粉を含まない
場合にも、強度は若干低下しているが、十分な切削性を
有する。
From each of Examples 29 to 35 in Table 3, the iron powder having the composition range of the present invention was sintered under desirable manufacturing conditions to obtain tensile strength.
It can be seen that a sintered steel with excellent machinability can be obtained in the range of 410 to 650 MPa. Further, even when Cu powder is not contained as in Example 36, the strength is slightly reduced, but sufficient machinability is obtained.

【0042】比較例31〜34に示すようにMoO3粉、WO3
の添加量がそれぞれ0.05%未満または 0.7%を超えると
切削性が悪い。比較例35はBを含まず、残留黒鉛も0.24
%と低く、工具寿命は 510個であり、実施例との比較か
らBの添加による切削性の向上が分かる。比較例36、46
に示すようにBの含有量が0.03%を、あるいはCrの含有
量が0.07%を超えると切削性が劣化する。また、比較例
37〜40に示すようにS、Se、Teの1種以上の合計が0.03
%未満では切削性が悪く、比較例41〜44に示すように
S、Se、Teの1種以上の合計が0.15%を超えると焼結鋼
にすすが発生した。また、比較例45に示すようにCrの含
有量が0.02%未満では切削性が劣化している。また、比
較例47に示すようにMnの含有量が 0.1%を超えても切削
性が劣化している。
As shown in Comparative Examples 31 to 34, if the addition amounts of MoO 3 powder and WO 3 powder are less than 0.05% or more than 0.7%, respectively, the machinability is poor. Comparative Example 35 does not contain B and has a residual graphite content of 0.24
%, The tool life is 510, and the comparison with the examples shows that the addition of B improves the machinability. Comparative Examples 36 and 46
As shown in (3), if the B content exceeds 0.03% or the Cr content exceeds 0.07%, the machinability deteriorates. Also, a comparative example
As shown in 37-40, the total of one or more of S, Se, and Te is 0.03.
If it is less than 0.1%, the machinability is poor, and as shown in Comparative Examples 41 to 44, if the total of one or more kinds of S, Se and Te exceeds 0.15%, soot is generated in the sintered steel. Further, as shown in Comparative Example 45, when the Cr content is less than 0.02%, the machinability is deteriorated. Further, as shown in Comparative Example 47, the machinability deteriorates even when the Mn content exceeds 0.1%.

【0043】また、比較例49、50に示すように黒鉛の添
加量が 0.5%未満では強度が低く、あるいは 1.5%を超
えると切削性が悪い。また、比較例48に示すようにCu粉
の添加量が4%を超えると衝撃値が悪い。
Further, as shown in Comparative Examples 49 and 50, if the amount of graphite added is less than 0.5%, the strength is low, or if it exceeds 1.5%, the machinability is poor. Further, as shown in Comparative Example 48, the impact value is poor when the added amount of Cu powder exceeds 4%.

【0044】[0044]

【発明の効果】本発明に開示した水を用いた噴霧法によ
り製造される粉末冶金用鉄粉を焼結した場合、優れた切
削性と強度および靭性を有する焼結鋼をすすの発生を伴
わずに容易に製造できる。
Industrial Applicability When the iron powder for powder metallurgy produced by the spraying method using water disclosed in the present invention is sintered, soot of sintered steel having excellent machinability, strength and toughness is generated. Can be easily manufactured without.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 重量比でB:0.001 〜0.03%、Cr:0.02
〜0.07%、Mn:0.1%未満を含み、さらにS、Se、Teの
1種以上を合計で0.03〜0.15%含み、残部がFeと不可避
的不純物であることを特徴とする切削性に優れた焼結鋼
用の鉄粉。
1. A weight ratio of B: 0.001 to 0.03% and Cr: 0.02.
-0.07%, Mn: less than 0.1%, 0.03 to 0.15% in total of one or more of S, Se and Te, with the balance being Fe and unavoidable impurities, and excellent machinability Iron powder for sintered steel.
【請求項2】 重量比でB:0.001 〜0.03%、Cr:0.02
〜0.07%、Mn:0.1%未満、Mo:0.05〜1.0 %を含み、
さらにS、Se、Teの1種以上を合計で0.03〜0.15%含
み、残部がFeと不可避的不純物であることを特徴とする
切削性に優れた焼結鋼用の鉄粉。
2. A weight ratio of B: 0.001 to 0.03% and Cr: 0.02.
~ 0.07%, Mn: less than 0.1%, Mo: 0.05 to 1.0%,
Further, an iron powder for sintered steel having excellent machinability, which contains 0.03 to 0.15% in total of at least one of S, Se and Te, and the balance being Fe and inevitable impurities.
【請求項3】 請求項1記載の鉄粉に、重量比でMoO
3粉:0.05〜0.7 %および/またはWO3 粉:0.05〜0.7
%を混合したことを特徴とする切削性に優れた焼結鋼用
の混合粉。
3. The iron powder according to claim 1 in a weight ratio of MoO
3 powder: 0.05-0.7% and / or WO 3 powder: 0.05-0.7
% Mixed powder for sintered steel with excellent machinability.
【請求項4】 請求項1記載の鉄粉に、重量比でMoO
3粉:0.05〜0.7 %および/またはWO3 粉:0.05〜0.7
%、黒鉛粉末:0.5 〜1.5 %を混合したことを特徴とす
る切削性に優れた焼結鋼用の混合粉。
4. The iron powder according to claim 1, in a weight ratio of MoO.
3 powder: 0.05-0.7% and / or WO 3 powder: 0.05-0.7
%, Graphite powder: 0.5 to 1.5% was mixed, which is a mixed powder for sintered steel with excellent machinability.
【請求項5】 請求項1記載の鉄粉に、重量比でMoO
3粉:0.05〜0.7 %および/またはWO3 粉:0.05〜0.7
%、黒鉛粉末:0.5 〜1.5 %およびCu粉:4%以下を混
合したことを特徴とする切削性に優れた焼結鋼用の混合
粉。
5. The iron powder according to claim 1, in a weight ratio of MoO.
3 powder: 0.05-0.7% and / or WO 3 powder: 0.05-0.7
%, Graphite powder: 0.5 to 1.5% and Cu powder: 4% or less, a mixed powder for sintered steel having excellent machinability.
【請求項6】 請求項1、2のいずれかに記載の鉄粉
に、重量比で黒鉛粉末:0.5 〜1.5 %を混合し、成形
し、焼結してなる切削性に優れた焼結鋼の製造方法。
6. A sintered steel having excellent machinability, which is obtained by mixing the iron powder according to any one of claims 1 and 2 with a graphite powder in a weight ratio of 0.5 to 1.5%, molding and sintering. Manufacturing method.
【請求項7】 請求項1、2のいずれかに記載の鉄粉
に、重量比で黒鉛粉末:0.5 〜1.5 %およびCu粉:4%
以下を混合し、成形し、焼結してなる切削性に優れた焼
結鋼の製造方法。
7. The iron powder according to claim 1 or 2, in a weight ratio, graphite powder: 0.5 to 1.5% and Cu powder: 4%.
A method for producing a sintered steel having excellent machinability, which is obtained by mixing, shaping, and sintering the following.
【請求項8】 請求項1記載の鉄粉に、重量比でMoO
3粉:0.05〜0.7 %および/またはWO3 粉:0.05〜0.7
%、黒鉛粉末:0.5 〜1.5 %を混合し、成形し、焼結し
てなる切削性に優れた焼結鋼の製造方法。
8. The iron powder according to claim 1, in a weight ratio of MoO.
3 powder: 0.05-0.7% and / or WO 3 powder: 0.05-0.7
%, Graphite powder: 0.5 to 1.5% are mixed, shaped, and sintered to produce a sintered steel having excellent machinability.
【請求項9】 請求項1記載の鉄粉に、重量比でMoO
3粉:0.05〜0.7 %および/またはWO3 粉:0.05〜0.7
%、黒鉛粉末:0.5 〜1.5 %およびCu粉:4%以下を混
合し、成形し、焼結してなる切削性に優れた焼結鋼の製
造方法。
9. The iron powder according to claim 1, in a weight ratio of MoO.
3 powder: 0.05-0.7% and / or WO 3 powder: 0.05-0.7
%, Graphite powder: 0.5 to 1.5% and Cu powder: 4% or less are mixed, molded and sintered to produce a sintered steel having excellent machinability.
JP1536895A 1994-04-18 1995-02-01 Iron powder for sintered steel excellent in cuttability and manufacture of sintered steel using the same Pending JPH08176604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1536895A JPH08176604A (en) 1994-04-18 1995-02-01 Iron powder for sintered steel excellent in cuttability and manufacture of sintered steel using the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7838294 1994-04-18
JP6-264964 1994-10-28
JP26496494 1994-10-28
JP6-78382 1994-10-28
JP1536895A JPH08176604A (en) 1994-04-18 1995-02-01 Iron powder for sintered steel excellent in cuttability and manufacture of sintered steel using the same

Publications (1)

Publication Number Publication Date
JPH08176604A true JPH08176604A (en) 1996-07-09

Family

ID=27280980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1536895A Pending JPH08176604A (en) 1994-04-18 1995-02-01 Iron powder for sintered steel excellent in cuttability and manufacture of sintered steel using the same

Country Status (1)

Country Link
JP (1) JPH08176604A (en)

Similar Documents

Publication Publication Date Title
EP1985393B1 (en) Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts
US4266974A (en) Alloy steel powder having excellent compressibility, moldability and heat-treatment property
EP2659014B1 (en) Iron based powders for powder injection molding
KR101608912B1 (en) Powdered metal alloy composition for wear and temperature resistance applications and method of producing same
JP6227871B2 (en) Master alloy for producing sintered hardened steel parts and process for producing sintered hardened parts
US5571305A (en) Atomized steel powder excellent machinability and sintered steel manufactured therefrom
US5605559A (en) Alloy steel powders, sintered bodies and method
US7347884B2 (en) Alloy steel powder for powder metallurgy
JP3957331B2 (en) Method for producing water atomized iron powder for powder metallurgy
JP3294980B2 (en) Alloy steel powder for high-strength sintered materials with excellent machinability
JP3446322B2 (en) Alloy steel powder for powder metallurgy
EP0136169B1 (en) An alloy steel powder for high strength sintered parts
US5599377A (en) Mixed iron powder for powder metallurgy
WO2019111833A1 (en) Steel alloy powder
JP3475545B2 (en) Mixed steel powder for powder metallurgy and sintering material containing it
JPH07233401A (en) Atomized steel powder excellent in machinability and dimensional precision and sintered steel
JPH08176604A (en) Iron powder for sintered steel excellent in cuttability and manufacture of sintered steel using the same
WO2000039353A1 (en) Iron-based powder blend for use in powder metallurgy
JPH1150103A (en) Production of iron powder for powder metallurgy
JPH1180803A (en) Ferrous mixed powder for powder metallurgy
JPH07233402A (en) Atomized steel powder excellent in machinability and wear resistance and sintered steel produced therefrom
EP1323840B1 (en) Iron base mixed powder for high strength sintered parts
JP3353836B2 (en) Iron powder for powder metallurgy, its production method and iron-base mixed powder for powder metallurgy
JP3491094B2 (en) Manufacturing method of sintered steel with excellent machinability
JPH07278725A (en) Production of sintered steel having excellent machinability