JPH0817146B2 - Capacitor and manufacturing method thereof - Google Patents

Capacitor and manufacturing method thereof

Info

Publication number
JPH0817146B2
JPH0817146B2 JP4273998A JP27399892A JPH0817146B2 JP H0817146 B2 JPH0817146 B2 JP H0817146B2 JP 4273998 A JP4273998 A JP 4273998A JP 27399892 A JP27399892 A JP 27399892A JP H0817146 B2 JPH0817146 B2 JP H0817146B2
Authority
JP
Japan
Prior art keywords
layer
electrolyte
capacitor according
capacitor
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4273998A
Other languages
Japanese (ja)
Other versions
JPH06124858A (en
Inventor
康夫 工藤
正雄 福山
浩一 吉田
利邦 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP4273998A priority Critical patent/JPH0817146B2/en
Publication of JPH06124858A publication Critical patent/JPH06124858A/en
Publication of JPH0817146B2 publication Critical patent/JPH0817146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、周波数特性、損失特性
ならびに信頼性特性の優れたコンデンサ及びその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitor having excellent frequency characteristics, loss characteristics and reliability characteristics, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、電気機器のデジタル化に伴って、
コンデンサも小型大容量で高周波領域でのインピーダン
スの低いものが要求されている。従来、高周波領域で使
用されるコンデンサにはプラスチックコンデンサ、マイ
カコンデンサ、積層セラミックコンデンサがあるが、こ
れらのコンデンサでは形状が大きくなり大容量化が難し
い。
2. Description of the Related Art In recent years, with the digitization of electrical equipment,
The capacitors are also required to be small in size and large in capacity and have low impedance in the high frequency region. Conventionally, capacitors used in the high frequency region include plastic capacitors, mica capacitors, and laminated ceramic capacitors, but these capacitors have a large shape and it is difficult to increase the capacity.

【0003】一方、大容量コンデンサとしてはアルミニ
ウム乾式電解コンデンサあるいはアルミニウムまたはタ
ンタル固体電解コンデンサ等の電解コンデンサがある。
これらのコンデンサでは誘電体となる酸化皮膜は極めて
薄いために大容量が実現できるのであるが、一方酸化皮
膜の損傷が起こり易いためにそれを修復するための電解
質を陰極との間に設ける必要がある。
On the other hand, as a large-capacity capacitor, there is an electrolytic capacitor such as an aluminum dry electrolytic capacitor or an aluminum or tantalum solid electrolytic capacitor.
In these capacitors, the oxide film that serves as the dielectric is extremely thin, so a large capacity can be realized, but on the other hand, because the oxide film is easily damaged, it is necessary to provide an electrolyte between it and the cathode to repair it. is there.

【0004】アルミニウム乾式コンデンサでは、エッチ
ングを施した陽、陰極アルミニウム箔をセパレータを介
して巻取り、液状の電解質をセパレータに含浸して用い
ている。この液状電解質はイオン伝導性で比抵抗が大き
いため、損失が大きくインピーダンスの周波数特性、温
度特性が著しく劣る、さらに加えて液漏れ、蒸発等が避
けられず、時間経過と共に容量の減少及び損失の増加が
起こるといった問題を抱えていた。
In the aluminum dry type capacitor, the etched positive and negative electrode aluminum foil is wound around a separator, and the separator is impregnated with a liquid electrolyte. Since this liquid electrolyte is ionic conductive and has a large specific resistance, the loss is large and the impedance frequency characteristic and temperature characteristic are significantly inferior.In addition, liquid leakage, evaporation, etc. are unavoidable, and the capacity decreases and the loss with the passage of time. I had a problem with an increase.

【0005】またタンタル固体電解コンデンサでは二酸
化マンガンを電解質として用いているため、温度特性お
よび容量、損失等の経時変化の問題は改善されるが、二
酸化マンガンの比抵抗が比較的高いため損失、インピー
ダンスの周波数特性が積層セラミックコンデンサあるい
はフィルムコンデンサと比較して劣っていた。
Further, since the manganese dioxide is used as the electrolyte in the tantalum solid electrolytic capacitor, the problems of temperature characteristics and changes with time such as capacity and loss are improved, but since the specific resistance of manganese dioxide is relatively high, the loss and impedance are relatively high. Was inferior in frequency characteristics to the monolithic ceramic capacitor or film capacitor.

【0006】近年、ピロール、チオフェンなどの複素環
式のモノマーを支持電解質を用い電解酸化重合すること
により、支持電解質のアニオンをドーパントとして含む
導電性高分子を電解質(真の陰極)として用いる周波数
特性及び温度特性の優れた固体電解コンデンサが提案さ
れている(特開昭60-37114号公報、特開昭60-244017号
公報)。
In recent years, a frequency characteristic using a conductive polymer containing anion of a supporting electrolyte as a dopant by electrolytically oxidatively polymerizing a heterocyclic monomer such as pyrrole or thiophene using a supporting electrolyte as an electrolyte (true cathode). Also, solid electrolytic capacitors having excellent temperature characteristics have been proposed (JP-A-60-37114 and JP-A-60-244017).

【0007】さらにまた、エッチドアルミ箔上に電着ポ
リイミド薄膜からなる誘電体を形成した後電解重合導電
性高分子層を形成して電極とする大容量フィルムコンデ
ンサが提案されている(電気化学会第58会大会講演要
旨集251〜252頁(1991年))。
Furthermore, a large-capacity film capacitor has been proposed in which a dielectric made of an electrodeposited polyimide thin film is formed on an etched aluminum foil and then an electrolytically polymerized conductive polymer layer is formed to serve as an electrode (electrochemistry. Pp. 251-252 (1991)).

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記の導
電性高分子を電解質とし、弁金属の酸化皮膜を誘電体と
する従来の構成では、極性を有することが避けられず、
交流だけを加える回路及び時々電圧の方向が変化する回
路上で使用することができない、さらに実装に当たって
も極性の区別を行わなければならないといった課題を抱
えていた。またエッチドアルミ箔上に電着ポリイミド薄
膜誘電体とした上記のフィルムコンデンサは、無極性で
はあるが、ポリイミドの誘電率が約3と酸化アルミニウ
ムの3分の1、また酸化タンタルの9分の1と小さいた
め、容積効率が十分高いとはいえない。
However, in the conventional structure in which the above conductive polymer is used as the electrolyte and the oxide film of the valve metal is used as the dielectric, it is unavoidable that it has polarity.
There is a problem that it cannot be used in a circuit that applies only alternating current and a circuit in which the voltage direction changes from time to time, and that the polarity must be distinguished even in mounting. The above-mentioned film capacitor having an electrodeposited polyimide thin film dielectric on an etched aluminum foil is non-polar, but has a dielectric constant of polyimide of about 3 and one third of aluminum oxide, and nine times that of tantalum oxide. Since it is as small as 1, it cannot be said that the volumetric efficiency is sufficiently high.

【0009】さらに、電解重合により誘電体表面に導電
性高分子を形成する際には、その導電化が必要であり、
その目的のために二酸化マンガンが適している。この二
酸化マンガンの形成に、従来は硝酸マンガンを300℃
程度の高温熱分解法が用いられていたが、その際誘電体
皮膜の損傷が起こり易いという課題を抱えていた。
Furthermore, when a conductive polymer is formed on the surface of a dielectric by electrolytic polymerization, it is necessary to make it conductive.
Manganese dioxide is suitable for that purpose. Conventionally, manganese nitrate was used at 300 ° C to form this manganese dioxide.
Although a high temperature pyrolysis method was used to some extent, there was a problem that the dielectric film was easily damaged at that time.

【0010】さらにまた、電解重合高分子層表面に、低
分子量の不純物の付着が生じる場合があるため、その上
に積層して設けた陰極形成のための、コロイダルグラフ
ァイト層との間密着性が弱く、剥離を生じ損失係数のも
たらすという課題もあった。
Furthermore, since adhesion of low-molecular weight impurities may occur on the surface of the electropolymerized polymer layer, the adhesion between the layer and the colloidal graphite layer for forming a cathode may be improved. There was also a problem of weak peeling and loss factor.

【0011】なお、この傾向は電解重合によって得られ
るポリピロ−ルの電気伝導度を向上させるために、フェ
ノ−ル系添加剤を用いた場合に顕著である。
This tendency is remarkable when a phenol-based additive is used in order to improve the electric conductivity of the polypyrrole obtained by electrolytic polymerization.

【0012】本発明は上記従来技術の課題を解決するも
ので、交流あるいは電圧の方向が時々変化する回路でも
使用できるような、また実装時の極性逆接続の心配のな
い高周波数特性、温度特性及び信頼性特性の優れた小型
の無極性固体電解型のコンデンサ及びその製造方法を提
供することを目的とする。また二酸化マンガン層形成時
の誘電体皮膜の損傷及び導電性高分子電解質とグラファ
イト層間の密着性を向上し、漏れ電流、損失係数等の優
れたコンデンサを提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art, and can be used in a circuit in which the direction of alternating current or voltage changes from time to time, and has high frequency characteristics and temperature characteristics that do not cause reverse polarity connection during mounting. Another object of the present invention is to provide a small nonpolar solid electrolytic capacitor having excellent reliability characteristics and a manufacturing method thereof. Another object of the present invention is to provide a capacitor excellent in leakage current, loss factor, etc. by improving the damage of the dielectric film during the formation of the manganese dioxide layer and the adhesion between the conductive polymer electrolyte and the graphite layer.

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
に本発明は、まず、箔状または板状弁金属表面上に、誘
電体層と導電性高分子を主体とした電解質層を順次設け
たコンデンサであって、前記導電性高分子層を主体とし
た電解質層が、前記誘電体表面に設けられた過マンガン
酸塩の空気中の加熱による還元により形成された二酸化
マンガン層を介して電解重合で形成されたコンデンサで
ある。そして、このようなコンデンサを基本構成とし、
弁金属表面の所定部分に仕切りのための絶縁層を設け、
前記絶縁層によって区分された一方の部分に誘電体層と
導電性高分子を主体とした電解質層を順次設け、前記弁
金属を複数枚、隣り合った各弁金属の絶縁層によって区
分され電解質層が設けられていないもう一方の部分が相
互に重ならない2方向に位置するように、前記電解質層
が設けられた部分を対応させて電気的に接合して積層
し、前記2方向に位置させた弁金属の電解質が設けられ
ていない部分に両電極を形成したコンデンサとしてもよ
い。
In order to achieve this object, the present invention firstly provides a dielectric layer and an electrolyte layer mainly composed of a conductive polymer on a foil-shaped or plate-shaped valve metal surface in order. In the capacitor, an electrolyte layer mainly composed of the conductive polymer layer is electrolyzed through a manganese dioxide layer formed by reduction of permanganate provided on the dielectric surface by heating in air. It is a capacitor formed by polymerization. Then, using such a capacitor as a basic configuration,
An insulating layer for partitioning is provided on a predetermined part of the valve metal surface,
An electrolyte layer mainly composed of a dielectric layer and a conductive polymer is sequentially provided on one portion divided by the insulating layer, and a plurality of the valve metals, and an electrolyte layer divided by adjacent insulating layers of each valve metal. The portions provided with the electrolyte layers are electrically bonded to each other and laminated so that the other portions not provided with are placed in the two directions so as not to overlap each other, and are placed in the two directions. A capacitor having both electrodes formed in a portion of the valve metal where the electrolyte is not provided may be used.

【0014】この場合、誘電体層が弁金属の酸化物であ
り、また弁金属がアルミニウムまたはタンタルであるこ
とが好適である。また導電性高分子膜が、共役二重結合
ポリマ−となり得る重合性モノマ−を繰り返し単位とす
るものであってもよく、この重合性モノマーがピロー
ル、チオフェンまたはアニリン及びそれらの誘導体の少
なくとも1種から構成されるものであることが好適であ
る。また複数のコンデンサを用いて積層構造をとる場合
には、電解質が設けられた部分の電気的接合に導電性接
着剤を用いてもよい。
In this case, the dielectric layer is an oxide of valve metal.
And the valve metal is aluminum or tantalum.
And are preferred. In addition, the conductive polymer film is a conjugated double bond.
The repeating unit is a polymerizable monomer that can be a polymer.
The polymerizable monomer may be a pillow
And thiophene or aniline and their derivatives
It is preferable that it is composed of at least one kind.
It When using a multilayer structure with multiple capacitors
Has a conductive connection to the electrical connection of the part where the electrolyte is provided.
A binder may be used.

【0015】また本発明は、以上のコンデンサを製造す
るに好適な、箔状または板状弁金属の表面上に誘電体層
を設ける工程と、前記誘電体層上に過マンガン酸塩を付
着させる工程と、前記過マンガン酸塩を空気中で加熱し
還元することにより二酸化マンガン層を形成する工程
と、前記二酸化マンガン層を介して電解重合により導電
性高分子を主体とした電解質層を形成する工程とにより
前記電解質層を有する弁金属を形成する工程とを有する
コンデンサの製造方法である。そしてさらに、弁金属の
表面の所定部分に仕切りのための絶縁層が設けられ、前
記絶縁層によって区分された一方の部分に誘電体層が設
けられており、更に、電解質層を有する弁金属を複数枚
用意する工程と、前記複数枚の弁金属の隣接したもの同
士を各々の絶縁層によって仕切られた電解質層を有さな
い部分が同一の方向に位置しない2方向に位置させなが
ら、前記電解質層を有した部分を対応させて電気的導通
を持たせるように積層する工程と、前記複数枚の弁金属
の隣接したもの同士の電解質が設けられていない部分に
各々電極を形成する工程とを有するコンデンサの製造方
法であってもよい。またこのように複数のコンデンサを
組み合わせた積層構造をとる場合には、電解質層同士の
電気的接合を持たせるために導電性接着剤を用いてもよ
く、複数枚の弁金属の隣接したもの同士の電気的接合と
電極の形成を、溶接、溶射、金属メッキ、銀ペイントか
ら選ばれる少なくとも一種で行うこともできる。
The present invention also provides a step of providing a dielectric layer on the surface of a foil-shaped or plate-shaped valve metal, which is suitable for manufacturing the above capacitor, and depositing permanganate on the dielectric layer. And heating the permanganate in air
Forming a step of forming a manganese dioxide layer by reducing, the valve metal having the electrolyte layer by forming an electrolyte layer of a conductive polymer as a main component by electrolytic polymerization through the manganese dioxide layer Te And a method of manufacturing a capacitor having steps. Further, an insulating layer for partitioning is provided on a predetermined portion of the surface of the valve metal, and a dielectric layer is provided on one portion divided by the insulating layer, and further, a valve metal having an electrolyte layer is formed. The step of preparing a plurality of sheets and the electrolyte while arranging adjacent pieces of the plurality of pieces of valve metal in two directions in which portions not having an electrolyte layer partitioned by respective insulating layers are not located in the same direction A step of laminating the portions having layers so as to have electrical continuity, and a step of forming electrodes on the portions of the plurality of valve metals adjacent to each other where no electrolyte is provided. It may be a method of manufacturing the capacitor that has. Further, in the case where a laminated structure in which a plurality of capacitors are combined as described above is used, a conductive adhesive may be used to provide electrical connection between the electrolyte layers, and a plurality of valve metals that are adjacent to each other may be used. The electrical joining and the formation of the electrodes can be performed by at least one selected from welding, thermal spraying, metal plating, and silver paint.

【0016】さらに、電解質層は、導電性高分子層と、
前記導電性高分子層上に設けられたカーボン層と、前記
カーボン層上に設けられた導電性接着剤層を含み、前記
導電性高分子層を界面活性剤で処理した後に前記カーボ
ン層及び銀ペイント層を形成してもよい。この場合、界
面活性剤がノニオン系の界面活性剤であることが好適で
ある。この場合、誘電体表面への二酸化マンガンの形成
を、過マンガン酸塩水溶液を用いて行うことが好適で、
さらに、誘電体表面への二酸化マンガンの形成を、過マ
ンガン酸塩水溶液を付着させ、200℃以上の加熱条件
下で行ってもよい。また誘電体層は、弁金属の陽極酸化
によって設けてもよい。また導電性高分子層は、少なく
とも重合性モノマ−及び支持電解質が溶解または分散さ
れた液媒体中で電解重合により形成してもよく、この場
合の重合性モノマ−がピロ−ル、チオフェン、アニリン
もしくはこれらの誘導体から選ばれる一種であることが
好適である。また支持電解質は、アルキル置換基を有す
るナフタレンスルフォン酸塩であってもよい。
Further, the electrolyte layer includes a conductive polymer layer,
A carbon layer provided on the conductive polymer layer, and
Including a conductive adhesive layer provided on the carbon layer,
After treating the conductive polymer layer with a surfactant,
A silver layer and a silver paint layer may be formed. In this case
It is preferable that the surface active agent is a nonionic surface active agent.
is there. In this case, the formation of manganese dioxide on the surface of the dielectric
Is preferably performed using an aqueous solution of permanganate,
Furthermore, the formation of manganese dioxide on the surface of the dielectric is
An aqueous solution of ganganate is attached and heated at 200 ° C or higher
You may go below. Also, the dielectric layer is anodized of the valve metal.
May be provided by In addition, there are few conductive polymer layers
Both the polymerizable monomer and supporting electrolyte are dissolved or dispersed.
It may be formed by electrolytic polymerization in a liquid medium
Polymerizable monomer is pyrrole, thiophene, aniline
Alternatively, it may be one selected from these derivatives.
It is suitable. The supporting electrolyte also has an alkyl substituent.
Naphthalene sulfonate may also be used.

【0017】[0017]

【作用】上記のように、本発明では、過マンガン酸塩の
還元反応で二酸化マンガン層を形成しているため、硝酸
マンガンから熱分解二酸化マンガンを生成させる場合に
要求される250℃程度以上もの高温や腐食性の窒素酸
化物の発生といった短所を排し、空気中で200℃程度
の温度で、酸素を放って容易に進行する。このため、本
発明のコンデンサでは誘電体皮膜損傷の生じる度合が低
下し、漏れ電流特性が向上する。
As described above, according to the present invention, since the manganese dioxide layer is formed by the reduction reaction of permanganate, the temperature of about 250 ° C. or higher required for producing pyrolytic manganese dioxide from manganese nitrate. discharging the disadvantages such occurrence of high-temperature and corrosive nitrogen oxides, at a temperature of about 200 ° C. in air, it proceeds readily emanated oxygen. Therefore, in the capacitor of the present invention, the degree of damage to the dielectric film is reduced, and the leakage current characteristic is improved.

【0018】また、陰極を兼ねた電解質同士が電気的に
接続されるため、無極性コンデンサが構成される。その
ため交流だけを加える回路及び時々電圧の方向が変化す
る回路上で使用することが可能となるし、実装に当たっ
ても極性の区別を行う必要も無くなる。また、無極性の
構成をとることにより、容量は有極性の場合の2分の1
になるが、それでも酸化アルミニウム及び酸化タンタル
を誘電体として使用した場合、それぞれポリイミドを誘
電体として同様に構成したコンデンサの約1.5倍及び
約4.5倍の容量が得られる。
Further, the electrolytes that also serve as the cathode are electrically connected to each other.
Since they are connected, a nonpolar capacitor is formed. That
Therefore, the circuit that applies only alternating current and sometimes the direction of the voltage changes
It is possible to use it on a circuit that
However, there is no need to distinguish the polarities. In addition, the capacity is ½ of that in the case of polarity by adopting the non-polar configuration.
However, when aluminum oxide and tantalum oxide are used as the dielectric, the capacitances of about 1.5 times and about 4.5 times that of a capacitor similarly configured with polyimide as the dielectric are obtained.

【0019】また無極化した場合の製造方法も、誘電体
及び導電性高分子電解質を順次形成した個別の箔状また
は板状素子を陰極同士を電気的に接続して積層し、かつ
1枚ずつ交互に方向を変えて2方向に位置させたそれぞ
れの弁金属から両電極を引き出すだけであり、極めて容
易である。
The manufacturing method in the non-polarized state is also such that individual foil-shaped or plate-shaped elements in which a dielectric and a conductive polymer electrolyte are sequentially formed are laminated by electrically connecting the cathodes to each other, and one by one. It is very easy because it is only necessary to pull out both electrodes from the respective valve metals that are positioned in two directions by alternately changing directions.

【0020】このコンデンサは電解質が高導電性の導電
性高分子で構成されているため、高周波域のインピ−ダ
ンス特性、温度特性に特性に優れている。
In this capacitor, the electrolyte has high conductivity
Since it is composed of a conductive polymer,
It has excellent resistance and temperature characteristics.

【0021】本発明のコンデンサでは、支持電解質と重
合性モノマー及びフェノール系添加剤を少なくとも含有
する電解液を用いる電解重合により誘電体皮膜上に形成
される導電性高分子層で少なくとも一方の電極を構成
し、上記の導電性高分子層の表面をノニオン系の界面活
性剤溶液で処理した後、カーボン層及び銀ペイント層を
設けている。上記のようにノニオン系の界面活性剤溶液
で処理することにより、導電性高分子層の表面に存在す
る不純物が取り除かれて水分散性コロイダルグラファイ
トの導電性高分子層表面に対する濡れ性が高くなり、こ
のためにコンデンサの特性を改善することができる。
In the capacitor of the present invention, at least one of the electrodes is a conductive polymer layer formed on the dielectric film by electrolytic polymerization using an electrolytic solution containing at least a supporting electrolyte, a polymerizable monomer and a phenol-based additive. The surface of the above conductive polymer layer is treated with a nonionic surfactant solution, and then a carbon layer and a silver paint layer are provided. By treating with a nonionic surfactant solution as described above, impurities existing on the surface of the conductive polymer layer are removed and the wettability of the water-dispersible colloidal graphite to the conductive polymer layer surface is increased. Therefore, the characteristics of the capacitor can be improved.

【0022】[0022]

【実施例】【Example】

(実施例1)以下、本発明の第1の実施例について、図
面を参照しながら説明する。
(First Embodiment) A first embodiment of the present invention will be described below with reference to the drawings.

【0023】図1は本発明の一実施例における箔状弁金
属の構成を示す図である。図1はその平面図、図2はA
−A´における断面図である。
FIG. 1 is a diagram showing the structure of a foil valve metal in one embodiment of the present invention. 1 is a plan view thereof, and FIG. 2 is A
It is sectional drawing in -A '.

【0024】図1に示すように4×10mmのアルミニ
ウムエッチド箔を3mmと6mmの部分に仕切るように
両面に渡って幅1mmのポリイミドテープからなる絶縁
層1を設け、4×6mmの部分2を3%アジピン酸アン
モニウム水溶液を用い、約70℃で50V印加して陽極
酸化により誘電体皮膜4を形成後、硝酸マンガン30%
水溶液に浸しさらに250℃で10分加熱し熱分解マン
ガン酸化物を表面に付着させて陽極を作製した。
As shown in FIG. 1, an insulating layer 1 made of a polyimide tape having a width of 1 mm is provided on both sides so as to divide a 4 × 10 mm aluminum etched foil into 3 mm and 6 mm portions, and a 4 × 6 mm portion 2 is provided. 3% ammonium adipate aqueous solution was applied at 50 ° C. at about 70 ° C. to form the dielectric film 4 by anodic oxidation, and then manganese nitrate 30%
The anode was prepared by immersing in an aqueous solution and further heating at 250 ° C. for 10 minutes to deposit pyrolytic manganese oxide on the surface.

【0025】この陽極箔にステンレス製の電解重合用電
極を接触させ、ピロールモノマー(0.25M)、イソ
プロピルナフタレンスルフォン酸ナトリウム(0.1
M)水からなる電解液に浸し、電解重合電極と離隔して
設けた電解重合用第二の電極の間に2.5Vの電圧を印
加してポリピロールからなる電解重合膜5を形成した。
電解重合電極を取り外し水を用いて洗浄後105℃で風
乾した。その後、コロイダルグラファイト6を塗布して
電解質層が形成された弁金属箔を得た。
A stainless electrolytic electrode for electrolytic polymerization was brought into contact with this anode foil to prepare a pyrrole monomer (0.25M) and sodium isopropylnaphthalene sulfonate (0.1M).
M) A voltage of 2.5 V was applied between the second electrode for electrolytic polymerization, which was soaked in an electrolytic solution made of water and separated from the electrolytic polymerization electrode, to form an electrolytic polymerization film 5 made of polypyrrole.
The electrolytic polymerization electrode was removed, washed with water, and then air-dried at 105 ° C. Then, colloidal graphite 6 was applied to obtain a valve metal foil having an electrolyte layer formed thereon.

【0026】図2はその構成を示す断面図である。この
弁金属箔を、図3に示すように、絶縁層で仕切られ電解
質層の形成されていない部分3が1枚毎交互に180°
異なる方向に向けて、銀ペイント7を用いて電解質層が
形成された部分2を対応させて4枚積層し、さらに電解
質層が形成されない部分3にそれぞれの電極リ−ド8を
溶接により取り付けてコンデンサ素子を得た。図3は上
述のように構成されたコンデンサ素子を示す側面図であ
る。
FIG. 2 is a sectional view showing the structure. As shown in FIG. 3, the valve metal foil was alternately separated by 180 ° at each of the portions 3 separated by an insulating layer and having no electrolyte layer formed thereon.
Toward different directions, four portions are laminated using the silver paint 7 so as to correspond to the portion 2 on which the electrolyte layer is formed, and further the electrode leads 8 are attached to the portion 3 on which the electrolyte layer is not formed by welding. A capacitor element was obtained. FIG. 3 is a side view showing the capacitor element configured as described above.

【0027】陽極を誘電体及びマンガン酸化物を形成し
たアルミニム箔から20mm×30mmのニッケル板
に代えた以外、上述と同様にしてポリピロ−ルを析出さ
せ、その電気伝導度を4端子法で測定したところ25S
/cmが得られた。これは従来の電解コンデンサに用い
られてきた有機酸の塩溶液あるいは二酸化マンガン等の
電解質と比較して桁違いに大きい値である。
[0027] except for changing anodes from Arumini c beam foil having a dielectric and manganese oxide to a nickel plate of 20 mm × 30 mm, in the same manner as described above polypyrrole - Le to precipitate, 4-terminal method and the electrical conductivity 25S when measured with
/ Cm was obtained. This is an order of magnitude larger than the salt solutions of organic acids or electrolytes such as manganese dioxide that have been used in conventional electrolytic capacitors.

【0028】上述のコンデンサ素子をエポキシ樹脂で封
止して、10個のコンデンサを完成させた。これらは交
流50Hz13Vを印加したが、無極性コンデンサとし
て機能することが判明した。なお初期の120Hz にお
ける容量、損失さらに400kHzにおけるインピ−ダ
ンスを(表1)示す。なお比較のため、銀ペイント上に
対極リ−ドを設け積層しなかった以外、上記と同様にし
てコンデンサを10個作製し、上記と同様の評価を行っ
た。その結果を比較例1として(表1)に示す。
The above capacitor element was sealed with epoxy resin to complete 10 capacitors. These were applied with an alternating current of 50 Hz and 13 V, but were found to function as nonpolar capacitors. The initial capacity and loss at 120 Hz and the impedance at 400 kHz are shown (Table 1). For comparison, 10 capacitors were prepared in the same manner as above except that a counter lead was not provided on the silver paint and no lamination was performed, and the same evaluation as above was performed. The results are shown in Table 1 as Comparative Example 1.

【0029】[0029]

【表1】 [Table 1]

【0030】これらの比較から、積層する前の一枚の弁
金属箔の電解質形成部分に陰極を設けて作製した固体電
解コンデンサとほぼ同等の特性であり、極めて優れた特
性を有する無極性固体電解コンデンサが得られたことが
分かる。
From these comparisons, the non-polar solid electrolytic having substantially the same characteristics as the solid electrolytic capacitor prepared by providing the cathode on the electrolyte forming portion of one sheet of valve metal foil before lamination and having extremely excellent characteristics. It can be seen that a capacitor was obtained.

【0031】(実施例2)アルミニウム箔に代えて10
%リン酸水溶液を用いて90℃で化成したタンタル箔を
用いた以外、実施例1と同様にしてコンデンサを10個
作製して、実施例1と同様の評価を行ったところ無極性
固体電解コンデンサとして、機能することが示された。
なお初期の120Hz における容量、損失さらに400
kHzにおけるインピ−ダンスを(表1)示す。
(Example 2) 10 instead of aluminum foil
% Capacitor was prepared in the same manner as in Example 1 except that a tantalum foil formed at 90 ° C. using a phosphoric acid aqueous solution was used, and the same evaluation as in Example 1 was performed. Was shown to work as.
The initial capacity and loss at 120Hz is 400
The impedance at kHz is shown (Table 1).

【0032】なおこれらは積層する前の一枚の弁金属箔
の電解質形成部分に陰極を設けて作製した固体電解コン
デンサとほぼ同等の特性であり、極めて優れた特性を有
する無極性固体電解コンデンサが得られた。
These are almost the same characteristics as a solid electrolytic capacitor produced by providing a cathode on the electrolyte forming portion of one sheet of valve metal foil before lamination, and a non-polar solid electrolytic capacitor having extremely excellent characteristics is obtained. Was obtained.

【0033】(実施例3)上記実施例1のピロ−ルに替
えてピロ−ル0.15MとN−メチルピロ−ル0.15
Mを混合して用いた以外、実施例1と同様にしてコンデ
ンサを10個作製して、実施例1と同様の評価を行った
ところ、無極性固体電解コンデンサとして機能すること
が示された。
(Example 3) Instead of the pyrrole of Example 1, pyrrole 0.15M and N-methylpyrrole 0.15 were used.
Ten capacitors were produced in the same manner as in Example 1 except that M was mixed and used, and the same evaluation as in Example 1 was performed. It was shown that the capacitor functions as a nonpolar solid electrolytic capacitor.

【0034】(実施例4)硝酸マンガンの熱分解に代わ
りに、0.2M過マンガン酸カリウム溶液を付着し、2
00℃空気中で30分間加熱して、還元による二酸化マ
ンガンを形成し、さらに無極性構成を行う代わりに、銀
ペイント層から電極リ−ドを引き出した以外、実施例1
と同様にしてコンデンサを10個作製して、実施例1と
同様の評価を行った。結果を(表1)に示す。過マンガ
ン酸カリウムから還元によって得られた二酸化マンガン
を用いた場合でも、優れた特性のコンデンサが得られる
ことが分かった。
(Example 4) Instead of thermal decomposition of manganese nitrate, 0.2M potassium permanganate solution was attached, and 2
Example 1 except that the electrode lead was pulled out of the silver paint layer instead of heating for 30 minutes in air at 00 ° C to form manganese dioxide by reduction and then a non-polar construction.
Ten capacitors were prepared in the same manner as in, and the same evaluation as in Example 1 was performed. The results are shown in (Table 1). It has been found that even when manganese dioxide obtained by reduction from potassium permanganate is used, a capacitor having excellent characteristics can be obtained.

【0035】(実施例5)200℃で加熱する代わり
に、60℃の硝酸酸性にした0.2M過マンガン酸カリ
ウム溶液に箔を30分間浸漬した以外、実施例4と同様
にしてコンデンサを10個作製して、実施例1と同様の
評価を行った。結果を(表1)に示す。過マンガン酸カ
リウムから還元によって得られた二酸化マンガンを用い
た場合でも、優れた特性のコンデンサが得られることが
分かった。
Example 5 A capacitor was prepared in the same manner as in Example 4 except that the foil was immersed for 30 minutes in a 0.2 M potassium permanganate solution acidified with nitric acid at 60 ° C. instead of heating at 200 ° C. Individual pieces were produced and evaluated in the same manner as in Example 1. The results are shown in (Table 1). It has been found that even when manganese dioxide obtained by reduction from potassium permanganate is used, a capacitor having excellent characteristics can be obtained.

【0036】(実施例6) 陽極リードをつけた縦7mm×横10mmのアルミニウ
ムエッチド箔1を3%アジピン酸アンモニウム水溶液を
用い、約70℃、印加電圧70Vの条件で陽極酸化を4
0分間行うことにより、エッチド箔表面に誘電体皮膜2
を形成した。ついで、硝酸マンガン30%水溶液に浸漬
し自然乾燥させた後300℃で30分間加熱し熱分解処
理を行い、誘電体皮膜にマンガン酸化物層3の導電層を
積層形成した。次に、導電層を設けたエッチド箔を、ピ
ロール(0.25mol/l)、トリイソプロピルナフタレ
ンスルフォン酸ナトリウム(0.10mol/l)、添加剤
としてm−ヒドロキシ安息香酸(0.15mol/l)とp
−ニトロフェノール(0.01mol/l)、水からなる電
解重合液中に配置し、重合開始用電極を導電層に近接さ
せ、重合開始用電極に1.5Vの定電圧を50分間印加
して電解重合反応を行い、電解重合ポリピロール層4を
形成した。
(Example 6) Aluminum etched foil 1 having a length of 7 mm and a width of 10 mm and having an anode lead was anodized 4 at a temperature of about 70 ° C and an applied voltage of 70 V using a 3% ammonium adipate aqueous solution.
Dielectric film 2 on the surface of the etched foil by performing for 0 minutes
Was formed. Then, it was immersed in a 30% aqueous solution of manganese nitrate, naturally dried, and then heated at 300 ° C. for 30 minutes for thermal decomposition to form a conductive layer of the manganese oxide layer 3 on the dielectric film. Next, the etched foil provided with the conductive layer was treated with pyrrole (0.25 mol / l), sodium triisopropylnaphthalene sulfonate (0.10 mol / l), and m-hydroxybenzoic acid (0.15 mol / l) as an additive. And p
-Nitrophenol (0.01 mol / l), placed in an electropolymerization solution consisting of water, the polymerization initiation electrode was brought close to the conductive layer, and a constant voltage of 1.5 V was applied to the polymerization initiation electrode for 50 minutes. An electrolytic polymerization reaction was performed to form an electrolytic polymerization polypyrrole layer 4.

【0037】電解重合ポリピロール層を形成したエッチ
ド箔を10分間水洗し、ノニオン系界面活性剤ポリエチ
レングリコールアルキルエーテル濃厚液を水で20倍に
希釈した溶液中に5分間浸漬して電解重合ポリピロール
層の表面を処理し、さらに10分間水洗し、105℃で
5分間乾燥した。次に電解重合ポリピロール層の上に水
分散性コロイダルグラファイトを塗布してカーボン層5
を設け、さらに銀ペイント層6を設け、コンデンサを得
た。作製個数は10個である。
The etched foil having the electrolytically polymerized polypyrrole layer formed thereon was washed with water for 10 minutes, and the concentrated nonionic surfactant polyethylene glycol alkyl ether concentrated solution was immersed in a solution diluted 20 times with water for 5 minutes to form an electrolytically polymerized polypyrrole layer. The surface was treated, washed with water for another 10 minutes, and dried at 105 ° C. for 5 minutes. Next, water-dispersible colloidal graphite is applied onto the electrolytically polymerized polypyrrole layer to form a carbon layer 5
And a silver paint layer 6 were further provided to obtain a capacitor. The number of manufactured pieces is 10.

【0038】得られたコンデンサを10Vで1時間、1
6.3Vで1時間エージングをした後、120Hzでの
初期の容量及び損失係数を測定した。測定値の平均値を
(表1)に示す。
The obtained capacitor was kept at 10 V for 1 hour, and
After aging at 6.3 V for 1 hour, the initial capacity and loss factor at 120 Hz were measured. The average value of the measured values is shown in (Table 1).

【0039】比較のために、ピロール(0.25mol/
l)、トリイソプロピルナフタレンスルフォン酸ナトリ
ウム(0.10mol/l)、添加剤としてm−ヒドロキシ
安息香酸(0.15mol/l)とp−ニトロフェノール
(0.03mol/l)、水からなる電解重合液中で1.5
Vの定電圧を40分間印加して電解重合反応を行い、1
0分間水洗した後界面活性剤処理をせずにすぐ105℃
で5分間乾燥した以外は上記と同様にコンデンサを10
個作製し同様な測定を行った。測定値の平均値を比較例
2として(表1)に示す。
For comparison, pyrrole (0.25 mol /
l), sodium triisopropylnaphthalene sulfonate (0.10 mol / l), electrolytic polymerization of m-hydroxybenzoic acid (0.15 mol / l) and p-nitrophenol (0.03 mol / l) as additives, and water 1.5 in liquid
A constant voltage of V is applied for 40 minutes to carry out an electrolytic polymerization reaction, and 1
Immediately after washing with water for 0 minutes without treatment with a surfactant, 105 ° C
Repeat the procedure as above except that the capacitors were dried for 5 minutes.
Individual pieces were prepared and the same measurement was performed. The average value of the measured values is shown in Table 1 as Comparative Example 2.

【0040】比較例2では界面活性剤で処理しないコン
デンサのデータを示しているが、これと比べると実施例
6では、界面活性剤処理によって付着物が取り除かれ、
水分散性コロイダルグラファイトの濡れ性も上がり、そ
の効果として損失係数が大きく減少している。容量は実
施例6と比較例1とでほとんど変わらない。このことか
ら界面活性剤で処理しても容量が低下してしまう恐れは
ない。
In Comparative Example 2, the data of the capacitor not treated with the surfactant is shown, but in comparison with this, in Example 6, the deposit was removed by the treatment with the surfactant,
The wettability of water-dispersible colloidal graphite is also increased, and as a result, the loss coefficient is greatly reduced. The capacities of Example 6 and Comparative Example 1 are almost the same. From this, there is no fear that the capacity will decrease even if the treatment is performed with a surfactant.

【0041】なお初期の120Hz における容量、損失
さらに400kHzにおけるインピ−ダンスを(表1)
示す。なおこれらは積層する前の一枚の弁金属箔の電解
質形成部分に陰極を設けて作製した固体電解コンデンサ
とほぼ同等の特性であり、極めて優れた特性を有する無
極性固体電解コンデンサが得られた。なお実施例では、
仕切りの絶縁層を高分子フィルムを貼付して形成する場
合についてのみ述べたが、加熱により硬化する高分子物
質または溶媒揮散により固化する物質を塗布することに
より形成することもでき、その形成手段により本発明は
限定されない。
The initial capacity and loss at 120 Hz and impedance at 400 kHz are shown in Table 1.
Show. Note that these are almost the same characteristics as the solid electrolytic capacitor produced by providing the cathode on the electrolyte forming portion of one valve metal foil before lamination, and a nonpolar solid electrolytic capacitor having extremely excellent characteristics was obtained. . In the example,
Although only the case where the insulating layer of the partition is formed by pasting a polymer film is described, it can be formed by applying a polymer substance that is cured by heating or a substance that is solidified by volatilization of a solvent, and it can be formed by the forming means. The present invention is not limited.

【0042】なお実施例では、電解質層が形成された弁
金属箔を4枚積層する場合についてのみ述べたが、2枚
以上であればそれ以外の何枚を積層することもできる。
その積層枚数は要求される容量によって選択することが
できる。無極性コンデンサの概念から両極の容量は同等
程度が望ましく、その意味から両極を同形状に構成しそ
れぞれの積層枚数を同一にすることが望ましいが、電解
質層が形成される部分面積の異なる弁金属箔を用いて、
積層枚数を合わせることなく容量を同等にする構成をと
ることも可能である。
In the embodiment, only the case where four valve metal foils having an electrolyte layer are laminated is described, but any other number may be laminated as long as it is two or more.
The number of stacked layers can be selected according to the required capacity. From the concept of a non-polar capacitor, it is desirable that the capacities of both electrodes are approximately the same, and from that meaning it is desirable that both electrodes be configured in the same shape and the number of laminated layers be the same, but valve metals with different partial areas where the electrolyte layer is formed With foil,
It is also possible to adopt a configuration in which the capacities are made equal without adjusting the number of laminated layers.

【0043】なお実施例では、隣合う弁金属箔の電解質
が形成されていない部分を180°異なる方向に向けて
積層した場合について述べたが、これらは電極形成に際
して実質的に短絡しない程度に方向が異なっていればよ
く、本発明はその方向に限定されない。
In the embodiment, the case where the adjacent portions of the valve metal foil on which the electrolyte is not formed are laminated in different directions by 180 ° has been described. However, these are oriented so that they are not substantially short-circuited during electrode formation. However, the present invention is not limited to that direction.

【0044】なお実施例では、電解質層が形成された部
分を積層するために銀ペイント層を用いる場合について
のみ述べたが、それ以外の導電性接着剤を用いることも
できる。
In the examples, only the case where the silver paint layer is used for laminating the portion where the electrolyte layer is formed is described, but other conductive adhesives can be used.

【0045】なお実施例では、電極形成を溶接を行う場
合に付いてのみ述べたが、端面に金属溶射、メッキまた
は銀ペイントにより行うこともでき、本発明はその手段
に限定されない。
In the examples, the electrode formation is described only when welding is performed, but the end face may be formed by metal spraying, plating, or silver paint, and the present invention is not limited to this means.

【0046】なお実施例では、ピロ−ルあるいはNーメ
チルピロ−ルを繰り返し単位とする導電性高分子を電解
質に用いる場合についてのみ述べたが、チオフェン、ア
ニリンあるいはそれらの誘導体から得られる導電性高分
子を用いることもでき、その種類に本発明は限定されな
い。
In the examples, only the case where a conductive polymer having pyrrole or N-methylpyrrole as a repeating unit was used for the electrolyte was described, but a conductive polymer obtained from thiophene, aniline or their derivatives was used. Can be used, and the present invention is not limited to the type.

【0047】なお実施例では、支持電解質としてイソプ
ロピルナフタレンスルフォン酸塩を、また溶媒として水
をそれぞれ用いた場合についてのみ述べたが、他を使用
することのでき本発明はそれらの種類に限定されない。
In the examples, only the case where isopropyl naphthalene sulfonate is used as the supporting electrolyte and water is used as the solvent has been described, but other compounds can be used and the present invention is not limited to these types.

【0048】なお、実施例では界面活性剤としてポリエ
チレングリコールアルキルエーテルを使用した場合につ
いてのみ述べたが、ノニオン系の界面活性剤であれば、
他の界面活性剤も使用できる。
In the examples, only the case where polyethylene glycol alkyl ether was used as the surfactant was described, but if it is a nonionic surfactant,
Other surfactants can also be used.

【0049】なお、実施例では電解重合液に添加剤とし
てp−ニトロフェノールとm−ヒドロキシ安息香酸を加
えた場合についてのみ述べたが、その他のフェノール系
添加剤を加えた場合でも、導電性高分子層の表面に生じ
た不純物を取り除く手段として、界面活性剤処理は有効
である。
In the examples, only the case where p-nitrophenol and m-hydroxybenzoic acid were added to the electrolytic polymerization solution as additives was described. However, even when other phenol-based additives were added, high conductivity was obtained. The surfactant treatment is effective as a means for removing impurities generated on the surface of the molecular layer.

【0050】なお、実施例では重合性モノマーとしてピ
ロールを使用した場合についてのみ述べたが、導電性高
分子が電極として使用できる電気伝導度を有すれば、他
の重合性モノマーも使用することができる。
In the examples, only the case where pyrrole was used as the polymerizable monomer was described, but other polymerizable monomers may be used as long as the conductive polymer has an electric conductivity that can be used as an electrode. it can.

【0051】なお、実施例では陽極として弁金属のアル
ミニウムを使用した場合についてのみ述べたが、本発明
の主旨から明らかなように、電極として使用できる電気
伝導度を有すれば他の物質も使用可能である。
In the examples, only the case where the valve metal aluminum is used as the anode has been described, but as is clear from the gist of the present invention, other substances may be used as long as they have electric conductivity that can be used as the electrode. It is possible.

【0052】なお、実施例では誘電体としてアルミニウ
ム酸化物を使用した場合についてのみ述べたが、電着ポ
リイミドなどコンデンサの誘電体として使用できる他の
物質を使用することもできる。
In the examples, only the case where aluminum oxide is used as the dielectric is described, but other substances that can be used as the dielectric of the capacitor such as electrodeposited polyimide can also be used.

【0053】なお、実施例では一つの電極に導電性高分
子を用いた場合についてのみ述べたが、さらにもう一方
の電極にも導電性高分子を用いることも可能であり、本
発明は導電性高分子を用いる電極の数によって限定され
ることはない。
In the examples, only the case where the conductive polymer is used for one electrode has been described, but it is also possible to use the conductive polymer for the other electrode. It is not limited by the number of electrodes using the polymer.

【0054】[0054]

【発明の効果】以上のように本発明においては、誘電体
層上に過マンガン酸塩を付着させ、その過マンガン酸塩
空気中で加熱して還元することにより二酸化マンガン
層を形成し、その二酸化マンガン層を介して電解重合に
より導電性高分子を主体とした電解質層を形成すること
により、その条件が温和でかつ腐食性のガス発生がな
く、誘電体箔膜の損傷の小さいコンデンサを得ることが
できるようにしたものである。
As described above, in the present invention, a manganese dioxide layer is formed by depositing permanganate on the dielectric layer and heating the permanganate in air to reduce it. By forming an electrolyte layer mainly composed of a conductive polymer by electrolytic polymerization through the manganese dioxide layer, the conditions are mild, there is no corrosive gas generation, and a capacitor with less damage to the dielectric foil film is formed. It is something that can be obtained.

【0055】さらに本発明においては、弁金属の表面を
電解質層が設けられる部分とそうでない部分とに仕切
り、互いに隣接した電解質層同士を接触させ、電解質層
が設けられない部分を各々電極に接続しながら積層する
ことにより、周波数特性に優れた無極性のコンデンサを
容易に構成し、製造できるようにしたものである。
Further, in the present invention , the surface of the valve metal is
Partition the area where the electrolyte layer is provided and the area that is not.
Contact the electrolyte layers that are adjacent to each other,
Laminate while connecting the parts that are not provided with each electrode
As a result, a non-polarized capacitor with excellent frequency characteristics
It is configured and manufactured easily .

【0056】さらに本発明は、電解重合導電性高分子膜
形成後、その表面を界面活性剤で洗浄処理する製造方法
を提供するもので、その上に設けられたグラファイト層
との剥離を防止し、損失係数の小さいコンデンサを得る
ことができるようにしたものである。
Furthermore, the present invention provides a method for producing the electrolytically polymerized conductive polymer film, which is then washed with a surfactant on the surface thereof to prevent peeling from the graphite layer provided thereon. , A capacitor having a small loss coefficient can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における箔状弁金属部分
の平面図
FIG. 1 is a plan view of a foil valve metal portion in a first embodiment of the present invention.

【図2】本発明の第1の実施例における、誘電体皮膜、
導電性高分子電解質及びグラファイト層が順次形成され
た箔状弁金属の断面図
FIG. 2 is a dielectric film according to the first embodiment of the present invention,
Cross-sectional view of a foil valve metal on which a conductive polyelectrolyte and a graphite layer are sequentially formed.

【図3】本発明の第1の実施例におけるコンデンサ素子
の構成を示す概念図
FIG. 3 is a conceptual diagram showing a configuration of a capacitor element in the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電解質層が形成される部分とされない部分を仕切る
ための絶縁層 2 箔状または板状弁金属の電解質層が形成された部分 3 箔状または板状弁金属の電解質層が形成されない部
分 4 誘電体皮膜層 5 導電性高分子電解質層 6 グラファイト層 7 銀ペイント層 8 電極リ−ド
1 Insulation layer for partitioning a portion where an electrolyte layer is formed and a portion where an electrolyte layer is not formed 2 A portion where an electrolyte layer of a foil or plate valve metal is formed 3 A portion where an electrolyte layer of a foil or plate valve metal is not formed 4 Dielectric Body film layer 5 Conductive polymer electrolyte layer 6 Graphite layer 7 Silver paint layer 8 Electrode lead

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01G 9/14 H01G 9/05 M 9/14 Z (72)発明者 小島 利邦 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 (56)参考文献 特開 昭64−46914(JP,A) 特開 昭64−22017(JP,A) 特開 昭60−244017(JP,A) 特開 昭55−9472(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H01G 9/14 H01G 9/05 M 9/14 Z (72) Inventor Toshikuni Kojima Tama, Kawasaki City, Kanagawa Prefecture 3-10-1 Higashi-Mita, Ward Matsushita Giken Co., Ltd. (56) Reference JP-A 64-46914 (JP, A) JP-A 64-22017 (JP, A) JP-A 60-244017 (JP, A) JP-A-55-9472 (JP, A)

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 箔状または板状弁金属表面上に、誘電体
層と導電性高分子を主体とした電解質層を順次設け
たコンデンサであって、前記導電性高分子層を主体とし
た電解質層が、前記誘電体表面に設けられた過マンガン
酸塩を空気中で加熱することによる還元により形成され
た二酸化マンガン層を介して電解重合で形成されたコン
デンサ。
To 1. A foil or plate-like valve metal on the surface, and the metallic and dielectric layers, a conductive polymer a sequentially provided a capacitor and a principal and the electrolyte layer, the conductive polymer layer The electrolytic layer is formed by electrolytic polymerization through a manganese dioxide layer formed by reducing permanganate provided on the dielectric surface by heating in air .
【請求項2】 弁金属表面の所定部分に仕切りのための
絶縁層を設け、前記絶縁層によって区分された一方の部
分に誘電体層と導電性高分子を主体とした電解質層を順
次設け、前記弁金属を複数枚、隣り合った各弁金属の絶
縁層によって区分され電解質層が設けられていないもう
一方の部分が相互に重ならない2方向に位置するよう
に、前記電解質層が設けられた部分を対応させて電気的
に接合して積層し、前記2方向に位置させた弁金属の電
解質が設けられていない部分に両電極を形成した請求項
1記載のコンデンサ。
2. An insulating layer for partitioning is provided on a predetermined part of the valve metal surface, and a dielectric layer and an electrolyte layer mainly containing a conductive polymer are sequentially provided on one part divided by the insulating layer, The electrolyte layers are provided so that a plurality of the valve metals are divided by adjacent insulating layers of the valve metals and the other portions where the electrolyte layers are not provided are located in two directions in which they do not overlap each other. 2. The capacitor according to claim 1, wherein the electrodes are electrically bonded and laminated correspondingly to each other, and both electrodes are formed on the parts which are located in the two directions and where the electrolyte of the valve metal is not provided.
【請求項3】 誘電体層が、弁金属の酸化物である請求
項1または2記載のコンデンサ。
3. The capacitor according to claim 1, wherein the dielectric layer is an oxide of a valve metal.
【請求項4】 弁金属が、アルミニウムまたはタンタル
である請求項1から3のいずれかに記載のコンデンサ。
4. The capacitor according to claim 1, wherein the valve metal is aluminum or tantalum.
【請求項5】 導電性高分子膜が、共役二重結合ポリマ
−となり得る重合性モノマーを繰り返し単位とするもの
である請求項1から4のいずれかに記載のコンデンサ。
5. The capacitor according to claim 1, wherein the conductive polymer film has a repeating unit of a polymerizable monomer capable of becoming a conjugated double bond polymer.
【請求項6】 重合性モノマーが、ピロール、チオフェ
ンまたはアニリン及びそれらの誘導体の少なくとも1種
から構成されるものである請求項5記載のコンデンサ。
6. The capacitor according to claim 5, wherein the polymerizable monomer is composed of at least one of pyrrole, thiophene, aniline and their derivatives.
【請求項7】 電解質が設けられた部分の電気的接合に
導電性接着剤を用いた請求項2から6のいずれかに記載
のコンデンサ。
7. The capacitor according to claim 2, wherein a conductive adhesive is used to electrically connect the portions provided with the electrolyte.
【請求項8】 箔状または板状弁金属の表面上に誘電体
層を設ける工程と、前記誘電体層上に過マンガン酸塩を
付着させる工程と、前記過マンガン酸塩を空気中で加熱
して還元することにより二酸化マンガン層を形成する工
程と、前記二酸化マンガン層を介して電解重合により導
電性高分子を主体とした電解質層を形成する工程とによ
り前記電解質層を有する弁金属を形成する工程とを有す
るコンデンサの製造方法。
8. A step of providing a dielectric layer on the surface of a foil-shaped or plate-shaped valve metal, a step of depositing permanganate on the dielectric layer , and heating the permanganate in air.
And forming a manganese dioxide layer by reduction, the valve metal having the electrolyte layer by forming an electrolyte layer of a conductive polymer as a main component by electrolytic polymerization through the manganese dioxide layer formed And a method of manufacturing a capacitor having the step of:
【請求項9】 弁金属の表面の所定部分に仕切りのため
の絶縁層が設けられ、前記絶縁層によって区分された一
方の部分に誘電体層が設けられており、更に、電解質層
を有する弁金属を複数枚用意する工程と、前記複数枚の
弁金属の隣接したもの同士を各々の絶縁層によって仕切
られた電解質層を有さない部分が同一の方向に位置しな
い2方向に位置させながら、前記電解質層を有した部分
を対応させて電気的導通を持たせるように積層する工程
と、前記複数枚の弁金属の隣接したもの同士の電解質が
設けられていない部分に各々電極を形成する工程とを有
する請求項8記載のコンデンサの製造方法。
9. A valve having an insulating layer for partitioning provided on a predetermined portion of the surface of the valve metal, a dielectric layer provided on one portion divided by the insulating layer, and further having an electrolyte layer. While preparing a plurality of metals and arranging adjacent ones of the plurality of valve metals in two directions in which portions not having an electrolyte layer partitioned by respective insulating layers are not located in the same direction, A step of laminating the portions having the electrolyte layers in a corresponding manner so as to have electrical conduction; and a step of forming electrodes on the portions of the plurality of valve metals adjacent to each other where no electrolyte is provided. 9. The method for manufacturing a capacitor according to claim 8, further comprising:
【請求項10】 電解質層同士の電気的接合を持たせる
ために導電性接着剤を用いる請求項9記載のコンデンサ
の製造方法。
10. The method of manufacturing a capacitor according to claim 9, wherein a conductive adhesive is used to provide electrical connection between the electrolyte layers.
【請求項11】 複数枚の弁金属の隣接したもの同士の
電気的接合と電極の形成を、溶接、溶射、金属メッキ、
銀ペイントから選ばれる少なくとも一種で行う請求項9
または10記載のコンデンサの製造方法。
11. Electrical bonding and electrode formation of adjacent ones of a plurality of valve metals are performed by welding, thermal spraying, metal plating,
10. At least one selected from silver paint is used.
Or the method of manufacturing a capacitor as described in 10 above.
【請求項12】 電解質層は、導電性高分子層と、前記
導電性高分子層上に設けられたカーボン層と、前記カー
ボン層上に設けられた導電性接着剤層を含み、前記導電
性高分子層を界面活性剤で処理した後に前記カーボン層
及び銀ペイント層を形成する請求項9から11のいずれ
かに記載のコンデンサの製造方法。
12. The electrolyte layer includes a conductive polymer layer, a carbon layer provided on the conductive polymer layer, and a conductive adhesive layer provided on the carbon layer. The method for producing a capacitor according to claim 9, wherein the carbon layer and the silver paint layer are formed after treating the polymer layer with a surfactant.
【請求項13】 界面活性剤がノニオン系の界面活性剤
である請求項12記載のコンデンサの製造方法。
13. The method for producing a capacitor according to claim 12, wherein the surfactant is a nonionic surfactant.
【請求項14】 誘電体表面への二酸化マンガンの形成
を、過マンガン酸塩水溶液を用いて行う請求項8から1
3のいずれかに記載のコンデンサの製造方法。
14. The method according to claim 8, wherein the formation of manganese dioxide on the surface of the dielectric is performed using an aqueous solution of permanganate.
4. The method for manufacturing the capacitor according to any one of 3 above.
【請求項15】 誘電体表面への二酸化マンガンの形成
を、過マンガン酸塩水溶液を付着させ、200℃以上の
加熱条件下で行う請求項14記載のコンデンサの製造方
法。
15. The method for producing a capacitor according to claim 14, wherein the formation of manganese dioxide on the surface of the dielectric is carried out under the heating condition of 200 ° C. or higher by adhering an aqueous solution of permanganate.
【請求項16】 誘電体層を弁金属の陽極酸化によって
設ける請求項8から15のいずれかに記載のコンデンサ
の製造方法。
16. The method for manufacturing a capacitor according to claim 8, wherein the dielectric layer is provided by anodic oxidation of a valve metal.
【請求項17】 導電性高分子層の形成を、少なくとも
重合性モノマ−及び支持電解質が溶解または分散された
液媒体中で電解重合により行なう請求項8から16のい
ずれかに記載のコンデンサの製造方法。
17. The production of a capacitor according to claim 8, wherein the conductive polymer layer is formed by electrolytic polymerization in a liquid medium in which at least a polymerizable monomer and a supporting electrolyte are dissolved or dispersed. Method.
【請求項18】 導電性高分子層の形成を、重合性モノ
マー、支持電解質及びフェノール系添加剤を少なくとも
含有する電解液を用いて電解重合により行う請求項17
記載のコンデンサの製造方法。
18. The conductive polymer layer is formed by electrolytic polymerization using an electrolytic solution containing at least a polymerizable monomer, a supporting electrolyte and a phenol-based additive.
A method for manufacturing the described capacitor.
【請求項19】 重合性モノマ−が、ピロ−ル、チオフ
ェン、アニリンもしくはこれらの誘導体から選ばれる一
種である請求項17または18記載のコンデンサの製造
方法。
19. The method for producing a capacitor according to claim 17, wherein the polymerizable monomer is one selected from pyrrole, thiophene, aniline and derivatives thereof.
【請求項20】 支持電解質が、アルキル置換基を有す
るナフタレンスルフォン酸塩である請求項17から19
のいずれか記載のコンデンサの製造方法。
20. The supporting electrolyte is naphthalene sulfonate having an alkyl substituent.
5. A method for manufacturing a capacitor according to any one of 1.
JP4273998A 1992-10-13 1992-10-13 Capacitor and manufacturing method thereof Expired - Fee Related JPH0817146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4273998A JPH0817146B2 (en) 1992-10-13 1992-10-13 Capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4273998A JPH0817146B2 (en) 1992-10-13 1992-10-13 Capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06124858A JPH06124858A (en) 1994-05-06
JPH0817146B2 true JPH0817146B2 (en) 1996-02-21

Family

ID=17535528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4273998A Expired - Fee Related JPH0817146B2 (en) 1992-10-13 1992-10-13 Capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0817146B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231581A (en) * 2001-02-05 2002-08-16 Rohm Co Ltd Method for manufacturing solid-state electrolytic capacitor
JP4060657B2 (en) * 2002-07-18 2008-03-12 Necトーキン株式会社 Solid electrolytic capacitor and manufacturing method thereof
WO2006077906A1 (en) * 2005-01-24 2006-07-27 Matsushita Electric Industrial Co., Ltd. Chip type solid electrolytic capacitor
US7965492B2 (en) * 2007-10-19 2011-06-21 Oh Young Joo Metal capacitor and manufacturing method thereof
US7626802B2 (en) * 2007-10-19 2009-12-01 Oh Young Joo Metal capacitor and manufacturing method thereof
US8159811B2 (en) * 2007-10-19 2012-04-17 Oh Young Joo Metal capacitor and manufacturing method thereof
US8116062B2 (en) * 2007-10-19 2012-02-14 Oh Young Joo Metal capacitor to improve electric conductivity
US8203823B2 (en) * 2008-01-11 2012-06-19 Oh Young Joo Metal capacitor and manufacturing method thereof
JP6060381B2 (en) * 2011-02-18 2017-01-18 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method thereof
CN113725008A (en) * 2021-09-01 2021-11-30 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) Non-polar capacitor and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559472A (en) * 1978-07-06 1980-01-23 Nippon Electric Co Method of forming manganage oxide film
JPS60244017A (en) * 1984-05-18 1985-12-03 日通工株式会社 Method of producing solid electrolytic condenser
JPH0766902B2 (en) * 1986-12-27 1995-07-19 昭和電工株式会社 Solid electrolytic capacitor
JPS6422017A (en) * 1987-07-17 1989-01-25 Fujitsu Ltd Tantalum capacitor

Also Published As

Publication number Publication date
JPH06124858A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
JP3755336B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US20010017758A1 (en) Capacitor and its manufacturing method
EP0437857A2 (en) A method for producing a solid capacitor and a solid capacitor obtainable by said method
TW200402074A (en) Solid electrolytic capacitor, board having embedded solid-state electrolytic capacitor and manufacturing method of the same
JPH0817146B2 (en) Capacitor and manufacturing method thereof
JP2003086459A (en) Solid electrolytic capacitor
JP2000269070A (en) Manufacturing of capacitor
JP3252800B2 (en) Multilayer capacitor and method of manufacturing the same
JPH0362298B2 (en)
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP2768061B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP3469756B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2811700B2 (en) Method for manufacturing solid electrolytic capacitor
JP3800829B2 (en) Capacitor manufacturing method
JP2814585B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3232841B2 (en) Capacitor and method of manufacturing the same
JP2924310B2 (en) Manufacturing method of capacitor
JP3135072B2 (en) Method for manufacturing solid electrolytic capacitor
JP2730345B2 (en) Manufacturing method of capacitor
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JP2982543B2 (en) Manufacturing method of capacitor
JPH04188814A (en) Laminated type solid electrolytic capacitor
JPH06314641A (en) Manufacture of slid-state electrolytic capacitor
JP2000232033A (en) Capacitor and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees