JPH08171068A - Scanning optical device - Google Patents

Scanning optical device

Info

Publication number
JPH08171068A
JPH08171068A JP33444194A JP33444194A JPH08171068A JP H08171068 A JPH08171068 A JP H08171068A JP 33444194 A JP33444194 A JP 33444194A JP 33444194 A JP33444194 A JP 33444194A JP H08171068 A JPH08171068 A JP H08171068A
Authority
JP
Japan
Prior art keywords
polygon mirror
rotary polygon
cover
rotary
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33444194A
Other languages
Japanese (ja)
Inventor
Toru Kameyama
徹 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP33444194A priority Critical patent/JPH08171068A/en
Publication of JPH08171068A publication Critical patent/JPH08171068A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE: To control the displacement of a rotary polygon mirror caused by the generation of local negative pressure at the inside of a cover member by providing a guiding member guiding atmosphere at the inside of the cover member to the inside of the radial direction of the rotary polygon mirror. CONSTITUTION: The top plate 9c of a cover 9 possesses plural guide blades 10 projecting toward the upper surface of the rotary polygon mirror 1, and they are disposed in the peripheral direction of the rotary polygon mirror 1 at equal intervals. Respective guide blades 10 are constituted so as to guide a part of air flowing from the center part to the outer peripheral part of a rotating rotary polygon mirror 1 back to the center part of the rotary polygon mirror 1. Then, a large amount of outdoor air sucked in the inside of the cover 9 from a window 9a by the rotation of the rotary polygon mirror 1 cools a stator coil 8 and flows along the outer peripheral part of the rotary polygon mirror 1 and flows out again from the window 9a. At this time, an air flow flowing from the outer peripheral part of the rotary polygon mirror 1 inward in an radial direction of the rotary polygon mirror 1 is generated along the guide blade 1 at the top of the cover 9, so that the center of the top of the cover 9 is prevented from becoming an evacuated state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザビームプリンタ
やディジタル複写機等の画像形成装置に用いられる走査
光学装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning optical device used in an image forming apparatus such as a laser beam printer or a digital copying machine.

【0002】[0002]

【従来の技術】レーザビームプリンタやディジタル複写
機等に用いられる走査光学装置は、回転多面鏡と一体で
あるロータマグネットをモータ基板と一体であるステー
タコイルに対向させた極めてコンパクトな構成の駆動部
を有する。
2. Description of the Related Art A scanning optical device used in a laser beam printer, a digital copying machine or the like is a driving unit having an extremely compact structure in which a rotor magnet integrated with a rotary polygon mirror is opposed to a stator coil integrated with a motor substrate. Have.

【0003】図8は一従来例による回転多面鏡101の
駆動部を示すもので、これは、固定軸102に嵌合する
セラミック製の回転スリーブ103にロータマグネット
104と一体であるフランジ部材103aを固着し、押
えバネ105によって回転多面鏡101をフランジ部材
103aに押圧してこれと一体化するとともに、固定軸
102を固定したモータハウジング106にモータ基板
107を支持させ、モータ基板107上に立設されたス
テータコイル108を励磁することで、ロータマグネッ
ト104と回転多面鏡101を一体的に回転させる。
FIG. 8 shows a drive unit of a rotary polygon mirror 101 according to a conventional example. This is a ceramic rotary sleeve 103 fitted to a fixed shaft 102 and a flange member 103a integral with a rotor magnet 104. The rotary polygon mirror 101 is fixed and pressed by the pressing spring 105 against the flange member 103a to be integrated therewith, and the motor substrate 107 is supported by the motor housing 106 to which the fixed shaft 102 is fixed, and is erected on the motor substrate 107. The rotor magnet 104 and the rotary polygon mirror 101 are integrally rotated by exciting the generated stator coil 108.

【0004】回転スリーブ103はその回転によって固
定軸102との間に空気膜を形成し、固定軸102に非
接触で回転する動圧気体軸受を構成する。回転スリーブ
103の下端には第1の磁石103bが固着され、磁石
103bはモータハウジング106と一体である第2の
磁石106aに対向して配設される。回転スリーブ10
3の下端は、第1、第2の磁石103b,106aのス
ラスト方向の反発力によってモータハウジング106に
非接触で支持される。
The rotating sleeve 103 forms an air film between itself and the fixed shaft 102 by its rotation, and constitutes a dynamic pressure gas bearing that rotates in a non-contact manner with the fixed shaft 102. A first magnet 103b is fixed to the lower end of the rotating sleeve 103, and the magnet 103b is arranged so as to face a second magnet 106a that is integral with the motor housing 106. Rotating sleeve 10
The lower end of 3 is supported by the motor housing 106 in a non-contact manner by the repulsive force of the first and second magnets 103b and 106a in the thrust direction.

【0005】ステータコイル108はモータ基板107
上に立設されたヨーク108aに支持され、ヨーク10
8aはロータマグネット104の外周を包囲して各ステ
ータコイル108をロータマグネット104の外周面に
対向する位置に支持し、極めてコンパクトでしかも高性
能な駆動部を構成している。
The stator coil 108 is a motor board 107.
The yoke 10 is supported by the yoke 108a which is erected on the upper side.
Reference numeral 8a surrounds the outer periphery of the rotor magnet 104 and supports each stator coil 108 at a position facing the outer peripheral surface of the rotor magnet 104, forming an extremely compact and high-performance drive unit.

【0006】また、回転多面鏡101とその駆動部は略
円筒状のカバー109によって覆われており、回転多面
鏡101の反射面101aが塵等によって汚染されるの
を防ぎ、かつ、回転多面鏡101の回転に伴う騒音を低
減するように工夫されている。
The rotary polygon mirror 101 and its driving portion are covered with a substantially cylindrical cover 109 to prevent the reflecting surface 101a of the rotary polygon mirror 101 from being contaminated by dust and the like. It is devised to reduce noise associated with the rotation of 101.

【0007】なお、カバー109にはレーザ光を出入さ
せるための窓109aが設けれており、窓109aから
カバー109内に流入する外気は、ステータコイル10
8等を効果的に冷却し、駆動部の過熱を回避するのに役
立つ。
The cover 109 is provided with a window 109a for letting in and out laser light, and the outside air flowing into the cover 109 through the window 109a is the stator coil 10
8 and the like are effectively cooled, which helps to prevent overheating of the drive unit.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記従来
の技術によれば、カバー内に流入した外気は、その多く
が駆動部を冷却したうえで、回転多面鏡の遠心力によっ
て回転多面鏡の径方向外方へ流動し、再びカバーの窓か
ら流出する。このために、回転スリーブの上端に面した
カバーの頂部中央に負圧が発生して軸受のスラストの均
衡が失われ、回転多面鏡、フランジ部材、回転スリー
ブ、ロータマグネットからなる回転体全体が固定軸に沿
って浮上し、その結果、回転多面鏡の反射面の高さがレ
ーザ光の光路から大幅にずれて、適正な走査光を得るこ
とができないという未解決の課題がある。
However, according to the above-mentioned conventional technique, most of the outside air flowing into the cover cools the driving part and then the centrifugal force of the rotating polygon mirror causes the outside air to flow in the radial direction. It flows outwards and outflows through the cover window again. For this reason, negative pressure is generated in the center of the top of the cover facing the upper end of the rotating sleeve, and the thrust balance of the bearing is lost. There is an unsolved problem that the surface is levitated along the axis, and as a result, the height of the reflecting surface of the rotary polygon mirror is largely deviated from the optical path of the laser light, and proper scanning light cannot be obtained.

【0009】本発明は上記従来の技術の有する未解決の
課題に鑑みてなされたものであり、回転多面鏡の回転と
ともにカバー部材内に局部的な負圧が発生して回転多面
鏡が変位するトラブルを回避できる走査光学装置を提供
することを目的とするものである。
The present invention has been made in view of the above-mentioned unsolved problems of the prior art. When the rotary polygon mirror rotates, a local negative pressure is generated in the cover member to displace the rotary polygon mirror. An object of the present invention is to provide a scanning optical device that can avoid troubles.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明の走査光学装置は、光ビームを反射する回転
多面鏡と、該回転多面鏡を回転自在に支持する軸受手段
と、前記回転多面鏡を回転させる駆動手段と、前記回転
多面鏡を覆うカバー部材と、該カバー部材内で前記回転
多面鏡の回転とともに流動する雰囲気を前記回転多面鏡
の径方向内方へ誘導する誘導手段を有することを特徴と
する。
In order to achieve the above object, a scanning optical apparatus of the present invention comprises a rotary polygonal mirror for reflecting a light beam, a bearing means for rotatably supporting the rotary polygonal mirror, and the rotation. Drive means for rotating the polygonal mirror, a cover member for covering the rotary polygonal mirror, and guide means for guiding an atmosphere flowing with the rotation of the rotary polygonal mirror in the cover member inward in the radial direction of the rotary polygonal mirror. It is characterized by having.

【0011】誘導手段が、回転多面鏡またはカバー部材
と一体である少なくとも1個の案内羽根を備えていると
よい。
The guiding means may comprise at least one guide vane integral with the rotary polygon mirror or the cover member.

【0012】また、誘導手段が、カバー部材の内面に設
けられた少なくとも1個の傾斜突出部を備えていてもよ
い。
Further, the guiding means may include at least one slanted protrusion provided on the inner surface of the cover member.

【0013】[0013]

【作用】カバー部材内で回転多面鏡が回転すると、カバ
ー部材内の空気等の雰囲気が回転多面鏡の遠心力を受け
てその径方向外方へ流動するが、これを誘導手段によっ
て再び回転多面鏡の径方向内方へ誘導することで、カバ
ー部材の中央部分に局部的な負圧が発生するのを防ぐ。
従って、このような負圧のために軸受手段のスラストの
均衡が失われて回転多面鏡が変位するのを回避できる。
When the rotary polygon mirror rotates in the cover member, the atmosphere such as air in the cover member receives the centrifugal force of the rotary polygon mirror and flows outward in the radial direction thereof. By guiding the mirror radially inward, local negative pressure is prevented from being generated in the central portion of the cover member.
Therefore, it is possible to prevent the thrust of the bearing means from being unbalanced and the rotary polygon mirror to be displaced due to such negative pressure.

【0014】その結果、回転中の回転多面鏡の反射面が
光ビームの光路から著しくずれるおそれのない走査光学
装置を実現できる。
As a result, it is possible to realize a scanning optical device in which the reflecting surface of the rotating polygonal mirror during rotation is not significantly displaced from the optical path of the light beam.

【0015】[0015]

【実施例】本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described with reference to the drawings.

【0016】図1は、第1実施例による走査光学装置の
主要部を示す模式部分断面図であって、これは、外周面
に反射面1aを備えた回転多面鏡1を有し、その駆動部
は、固定部材である固定軸2に嵌合するセラミック製の
回転部材である回転スリーブ3にロータマグネット4と
一体であるフランジ部材3aを固着し、押えバネ5によ
って回転多面鏡1をフランジ部材3aに押圧してこれと
一体化するとともに、固定軸2を固定したモータハウジ
ング6にモータ基板7を支持させ、モータ基板7上に立
設されたステータコイル8を励磁することで、ロータマ
グネット4と回転多面鏡1とフランジ部材3aと回転ス
リーブ3からなる回転体を回転させる。
FIG. 1 is a schematic partial sectional view showing a main part of a scanning optical apparatus according to the first embodiment, which has a rotary polygon mirror 1 having a reflecting surface 1a on its outer peripheral surface, and its driving. In this part, a flange member 3a integral with a rotor magnet 4 is fixed to a rotary sleeve 3 which is a rotary member made of ceramic and is fitted to a fixed shaft 2 which is a fixed member, and the rotary polygon mirror 1 is fixed to the flange member 3a by a pressing spring 5. The rotor magnet 4 is pressed by 3a and integrated therewith, and the motor housing 6 to which the fixed shaft 2 is fixed is made to support the motor substrate 7 and the stator coil 8 standing on the motor substrate 7 is excited. Then, the rotating body composed of the rotating polygon mirror 1, the flange member 3a and the rotating sleeve 3 is rotated.

【0017】回転スリーブ3はその回転によって固定軸
2との間に空気膜を形成し、固定軸2に非接触で回転す
る軸受手段である動圧気体軸受を構成する。回転スリー
ブ3の下端には第1の磁石3bが固着され、磁石3bは
モータハウジング6と一体である第2の磁石6aに対向
する。回転スリーブ3の下端は、第1、第2の磁石3
b,6aのスラスト方向の反発力によってモータハウジ
ング6に非接触で支持される。
The rotating sleeve 3 forms an air film between itself and the fixed shaft 2 by its rotation, and constitutes a dynamic pressure gas bearing which is a bearing means which rotates in a non-contact manner with the fixed shaft 2. A first magnet 3b is fixed to the lower end of the rotary sleeve 3, and the magnet 3b faces a second magnet 6a that is integral with the motor housing 6. The lower end of the rotating sleeve 3 has the first and second magnets 3
It is supported in a non-contact manner on the motor housing 6 by the thrust force of b and 6a in the thrust direction.

【0018】ステータコイル8はモータ基板7上に立設
されたヨーク8aに支持され、ヨーク8aはロータマグ
ネット4の外周を包囲して各ステータコイル8をロータ
マグネット4の外周面に対向する位置に支持し、極めて
コンパクトでしかも高性能な駆動手段であるインナーロ
ータ型のモータを構成している。
The stator coil 8 is supported by a yoke 8a which is erected on the motor substrate 7, and the yoke 8a surrounds the outer circumference of the rotor magnet 4 and positions each stator coil 8 at a position facing the outer circumferential surface of the rotor magnet 4. An inner rotor type motor that supports and is extremely compact and has high performance is constructed.

【0019】また、回転多面鏡1とその駆動部は略円筒
状のカバー部材であるカバー9によって覆われており、
回転多面鏡1の反射面1aが塵等によって汚染されるの
を防ぎ、かつ、回転多面鏡1の回転に伴う騒音を低減す
るように工夫されている。
The rotary polygon mirror 1 and its drive section are covered with a cover 9 which is a substantially cylindrical cover member.
It is devised to prevent the reflecting surface 1a of the rotary polygon mirror 1 from being contaminated by dust and the like, and to reduce noise accompanying the rotation of the rotary polygon mirror 1.

【0020】なお、カバー9には光ビームであるレーザ
光を出入させるための窓9aが設けられており、窓9a
からカバー9内に流入する外気は、ステータコイル8等
を効果的に冷却し、駆動部の過熱を回避するのに役立
つ。
The cover 9 is provided with a window 9a for letting in and out laser light which is a light beam.
The outside air flowing from the inside into the cover 9 effectively cools the stator coil 8 and the like, and helps to avoid overheating of the drive unit.

【0021】カバー9は、略円筒状の側壁9bと略円盤
状の天板9cと側壁9bの下端と一体であるフランジ9
dを有し、カバー9の組み付けは、フランジ9dを図示
しないビスによってモータハウジング6に締結すること
で行なわれる。
The cover 9 has a substantially cylindrical side wall 9b, a substantially disk-shaped top plate 9c, and a flange 9 integral with the lower end of the side wall 9b.
The cover 9 is assembled by fastening the flange 9d to the motor housing 6 with a screw (not shown).

【0022】カバー9の天板9cは、回転多面鏡1の上
面に向かって突出する誘導手段である複数の案内羽根1
0を有し、これらは、図2に示すように、回転多面鏡1
の周方向に等間隔で配設されている。各案内羽根10
は、回転多面鏡1の中心部からその外周へ向かって矢印
Mで示す回転多面鏡1の回転方向と逆向きにら旋状にの
びており、回転多面鏡1の回転に伴って回転多面鏡1の
中心部から外周部へ向かって流動する雰囲気である空気
の一部分を、矢印Nで示すように、再び回転多面鏡1の
中心部に向かって誘導するように構成されている。
The top plate 9c of the cover 9 has a plurality of guide blades 1 which are guiding means protruding toward the upper surface of the rotary polygon mirror 1.
0, which, as shown in FIG.
Are arranged at equal intervals in the circumferential direction. Each guide blade 10
Extends from the center of the rotary polygonal mirror 1 toward the outer periphery thereof in a spiral shape in the direction opposite to the direction of rotation of the rotary polygonal mirror 1 indicated by the arrow M, and as the rotary polygonal mirror 1 rotates, the rotary polygonal mirror 1 As shown by an arrow N, a part of the air, which is an atmosphere flowing from the central portion of the rotating polygonal mirror 1 toward the outer peripheral portion, is guided again toward the central portion of the rotary polygon mirror 1.

【0023】前述のようにステータコイル8が励磁され
て回転多面鏡1が回転すると、カバー9の窓9aを通っ
て回転多面鏡1の反射面1aに照射されたレーザ光は回
転多面鏡1の回転軸と直交する所定の方向に偏向走査さ
れ、図示しない結像レンズ系を経て回転ドラムの感光体
に結像し、公知のように、回転多面鏡1の回転による主
走査と回転ドラムの回転による副走査によって静電潜像
を形成する。
As described above, when the stator coil 8 is excited and the rotary polygon mirror 1 rotates, the laser light emitted to the reflecting surface 1a of the rotary polygon mirror 1 through the window 9a of the cover 9 is reflected by the rotary polygon mirror 1. It is deflected and scanned in a predetermined direction orthogonal to the rotation axis, forms an image on a photosensitive member of a rotating drum through an imaging lens system (not shown), and as is well known, main scanning by rotation of the rotating polygon mirror 1 and rotation of the rotating drum. To form an electrostatic latent image.

【0024】回転多面鏡1の回転に伴って窓9aからカ
バー9内に吸引された外気は、その多くが、ステータコ
イル8を冷却し回転多面鏡1の外周部に沿って流動した
うえで再び窓9aから流出する。このとき、カバー9の
頂部においては、前述のように、回転多面鏡1の外周部
から案内羽根10に沿って回転多面鏡1の径方向内方へ
流動する空気流が発生し、カバー9の頂部中央が減圧状
態になるのを防ぐ。
Most of the outside air sucked into the cover 9 through the window 9a as the rotary polygon mirror 1 rotates, cools the stator coil 8 and flows along the outer periphery of the rotary polygon mirror 1, and then again. It flows out through the window 9a. At this time, at the top of the cover 9, as described above, an airflow is generated which flows from the outer peripheral portion of the rotary polygon mirror 1 along the guide vanes 10 inward in the radial direction of the rotary polygon mirror 1, and causes the cover 9 to move. Prevents depressurization at the center of the top.

【0025】従って、従来例のように、カバー9の頂部
中央の負圧のために回転多面鏡1が大きく浮上し、その
反射面1aがレーザ光の光路から大幅にずれるおそれは
ない。
Therefore, unlike the conventional example, there is no possibility that the rotary polygon mirror 1 is greatly floated due to the negative pressure at the center of the top of the cover 9 and the reflecting surface 1a thereof is largely displaced from the optical path of the laser beam.

【0026】なお、カバー9の天板9cの中央部分に
は、フランジ部材3aの上端に対向する突出部11が設
けられており、予期しない事故によって回転多面鏡1が
浮上したときのストッパーとして機能するように構成さ
れている。
A protrusion 11 is provided at the central portion of the top plate 9c of the cover 9 so as to face the upper end of the flange member 3a, and functions as a stopper when the rotary polygon mirror 1 floats up due to an unexpected accident. Is configured to.

【0027】なお、案内羽根10をカバー9の天板9c
と一体的に設ける替わりに、図3および図4に示すよう
に、案内羽根10と同様の案内羽根20を有する円板部
材21を回転多面鏡1の上面に固着してもよい。
The guide blade 10 is attached to the top plate 9c of the cover 9.
Instead of being provided integrally with, a disc member 21 having guide blades 20 similar to the guide blades 10 may be fixed to the upper surface of the rotary polygon mirror 1 as shown in FIGS. 3 and 4.

【0028】図5は第2実施例による走査光学装置の主
要部を示す模式部分断面図であって、これは、カバー部
材であるカバー39の天板39cに回転多面鏡1の上面
に向かって突出する複数の放射状の傾斜突出部である案
内壁40を設けたもので、これらは回転多面鏡1の周方
向に等間隔で配設されている。各案内壁40は、図6の
(a)に示すように、カバー39の天板39cの一部分
を内側へ突出(陥没)させたものであり、回転多面鏡1
の径方向外方へ向かって拡大する扇形の外形を有し、ま
た、各案内壁40の突出量は、図6の(b)に示すよう
に、矢印Mで示す回転多面鏡1の回転方向と同じ向きに
増大しており、回転多面鏡1の回転に伴って、回転多面
鏡1とカバー39の天板39cの間の空気が矢印Nで示
すように各案内壁40の突出端に向かって吸引され、隣
接する案内壁40の間にカバー39の頂部中央に向かう
空気流が発生するように構成されている。
FIG. 5 is a schematic partial cross-sectional view showing the main part of the scanning optical device according to the second embodiment, in which the top plate 39c of the cover 39 serving as a cover member faces the upper surface of the rotary polygon mirror 1. A guide wall 40 is provided which is a plurality of radially projecting inclined projections, and these are arranged at equal intervals in the circumferential direction of the rotary polygon mirror 1. As shown in FIG. 6A, each of the guide walls 40 is formed by projecting (depressing) a part of a top plate 39c of the cover 39 inward.
6 has a fan-shaped outer shape that expands outward in the radial direction, and the amount of protrusion of each guide wall 40 is, as shown in FIG. 6B, the rotation direction of the rotary polygon mirror 1 indicated by an arrow M. The air between the rotary polygon mirror 1 and the top plate 39c of the cover 39 is directed toward the projecting end of each guide wall 40 as indicated by an arrow N as the rotary polygon mirror 1 rotates. The airflow that is sucked in and directed toward the center of the top of the cover 39 is generated between the adjacent guide walls 40.

【0029】回転多面鏡1、固定軸2、回転スリーブ3
等については第1実施例と同様であるので同一符号で表
わし説明は省略する。
Rotating polygon mirror 1, fixed shaft 2, rotating sleeve 3
Since the like is the same as that of the first embodiment, the same reference numerals are given and the description thereof is omitted.

【0030】カバー39内の空気は、回転多面鏡1の外
周部においてその一部分がカバー39の案内壁40の間
を通ってカバー39の頂部中央へ流動し、ここに負圧が
発生するのを防ぎ、残りはカバー39の窓39aから外
へ流出する。
A part of the air in the cover 39 flows in the outer peripheral portion of the rotary polygon mirror 1 through the space between the guide walls 40 of the cover 39 to the center of the top of the cover 39, and a negative pressure is generated there. The rest is prevented and flows out through the window 39a of the cover 39.

【0031】本実施例によれば、カバーの天板に比較的
なだらかな陥没部を設けるだけであるから、カバーを例
えばプラスチック材料によって一体成形するときにヒケ
巣等を発生するおそれがなく、従って、部品コストが低
いという利点を有する。
According to the present embodiment, since only the comparatively gentle depression is provided on the top plate of the cover, there is no possibility of producing a sink or the like when the cover is integrally formed of, for example, a plastic material. It has the advantage of low component cost.

【0032】その他の点は第1実施例と同様であるので
説明は省略する。
Since the other points are the same as those of the first embodiment, the description thereof will be omitted.

【0033】なお、放射状の案内壁40の替わりに、図
7に示すように径方向外方に向かって、回転多面鏡1の
回転方向と逆向きに傾斜した案内壁50を設けてもよ
い。この場合は、矢印Oで示すように、回転多面鏡1の
外周部の空気をより積極的に案内壁50間へ導入するこ
とができるため、カバー39の中央部をより高圧にでき
るという利点が付加される。
Instead of the radial guide wall 40, a guide wall 50 may be provided, which is inclined outward in the radial direction, as shown in FIG. 7, in a direction opposite to the direction of rotation of the rotary polygon mirror 1. In this case, as shown by the arrow O, the air in the outer peripheral portion of the rotary polygon mirror 1 can be more positively introduced into the space between the guide walls 50, so that there is an advantage that the central portion of the cover 39 can have a higher pressure. Is added.

【0034】上記実施例はいずれも固定軸と回転スリー
ブを組み合わせた動圧気体軸受を用いるものであるが、
回転軸と固定スリーブを組み合わせた動圧気体軸受でも
よいし、また、動圧気体軸受以外の軸受を用いてもよ
い。
In each of the above embodiments, a dynamic pressure gas bearing in which a fixed shaft and a rotary sleeve are combined is used.
A dynamic pressure gas bearing in which a rotary shaft and a fixed sleeve are combined may be used, or a bearing other than the dynamic pressure gas bearing may be used.

【0035】[0035]

【発明の効果】本発明は、上述のとおり構成されている
ので、次に記載するような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0036】回転多面鏡の回転とともにカバー部材内に
局部的な負圧が発生して回転多面鏡が変位するトラブル
を回避し、回転中の回転多面鏡の反射面が光ビームの光
路から著しくずれるおそれのない走査光学装置を実現で
きる。
It is possible to avoid the trouble that the rotary polygon mirror is displaced due to the local negative pressure generated in the cover member as the rotary polygon mirror rotates, and the reflecting surface of the rotating polygon mirror is significantly displaced from the optical path of the light beam. A scanning optical device without fear can be realized.

【0037】このような走査光学装置を用いることで、
極めて高性能でしかも騒音の少ない画像形成装置を得る
ことができる。
By using such a scanning optical device,
It is possible to obtain an image forming apparatus with extremely high performance and low noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例による走査光学装置の主要部を示す
模式部分断面図である。
FIG. 1 is a schematic partial cross-sectional view showing a main part of a scanning optical device according to a first example.

【図2】図1の装置の案内羽根を説明するもので、
(a)は図1のA−A線に沿ってとった断面図、(b)
は(a)のB−B線からみた展開図である。
2 illustrates the guide vanes of the device of FIG.
(A) is a sectional view taken along the line AA of FIG. 1, (b)
[Fig. 4] is a development view seen from the line BB in (a).

【図3】第1実施例の一変形例を示す模式部分断面図で
ある。
FIG. 3 is a schematic partial sectional view showing a modification of the first embodiment.

【図4】図3のA−A線に沿ってとった断面図である。4 is a cross-sectional view taken along the line AA of FIG.

【図5】第2実施例による走査光学装置の主要部を示す
模式部分断面図である。
FIG. 5 is a schematic partial sectional view showing a main part of a scanning optical device according to a second example.

【図6】図5の装置の案内壁を説明するもので、(a)
は図5のA−A線に沿ってとった断面の一部分を示す部
分断面図、(b)は(a)のB−B線からみた展開図で
ある。
6 illustrates a guide wall of the apparatus of FIG. 5, (a)
[Fig. 6] is a partial cross-sectional view showing a part of the cross-section taken along line AA in Fig. 5, and Fig. 6B is a development view seen from line BB in Fig. 5A.

【図7】第2実施例の一変形例を示す部分断面図であ
る。
FIG. 7 is a partial sectional view showing a modification of the second embodiment.

【図8】従来例を示す模式部分断面図である。FIG. 8 is a schematic partial cross-sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 回転多面鏡 1a 反射面 2 固定軸 3 回転スリーブ 3a フランジ部材 4 ロータマグネット 5 押えバネ 6 モータハウジング 7 モータ基板 8 ステータコイル 9,39 カバー 9a,39a 窓 10,20 案内羽根 21 円板部材 40,50 案内壁 DESCRIPTION OF SYMBOLS 1 rotating polygon mirror 1a reflecting surface 2 fixed shaft 3 rotating sleeve 3a flange member 4 rotor magnet 5 pressing spring 6 motor housing 7 motor substrate 8 stator coil 9,39 cover 9a, 39a window 10, 20 guide blade 21 disk member 40, 50 guide wall

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光ビームを反射する回転多面鏡と、該回
転多面鏡を回転自在に支持する軸受手段と、前記回転多
面鏡を回転させる駆動手段と、前記回転多面鏡を覆うカ
バー部材と、該カバー部材内で前記回転多面鏡の回転と
ともに流動する雰囲気を前記回転多面鏡の径方向内方へ
誘導する誘導手段を有する走査光学装置。
1. A rotary polygonal mirror for reflecting a light beam, bearing means for rotatably supporting the rotary polygonal mirror, drive means for rotating the rotary polygonal mirror, and a cover member for covering the rotary polygonal mirror. A scanning optical device having guide means for guiding an atmosphere flowing in the cover member as the rotary polygon mirror rotates inward in a radial direction of the rotary polygon mirror.
【請求項2】 誘導手段が、回転多面鏡またはカバー部
材と一体である少なくとも1個の案内羽根を備えている
ことを特徴とする請求項1記載の走査光学装置。
2. A scanning optical device according to claim 1, wherein the guiding means comprises at least one guide vane integral with the rotary polygon mirror or the cover member.
【請求項3】 誘導手段が、カバー部材の内面に設けら
れた少なくとも1個の傾斜突出部を備えていることを特
徴とする請求項1記載の走査光学装置。
3. The scanning optical device according to claim 1, wherein the guiding means includes at least one inclined protrusion provided on the inner surface of the cover member.
【請求項4】 駆動手段が、インナーロータ型のモータ
であることを特徴とする請求項1ないし3いずれか1項
記載の走査光学装置。
4. The scanning optical device according to claim 1, wherein the driving means is an inner rotor type motor.
【請求項5】 軸受手段が、回転多面鏡と一体的に回転
する回転部材とこれを非接触で支持する固定部材からな
る動圧気体軸受であることを特徴とする請求項1ないし
4いずれか1項記載の走査光学装置。
5. The dynamic pressure gas bearing according to claim 1, wherein the bearing means is a rotary member that rotates integrally with the rotary polygon mirror and a fixed member that supports the rotary member in a non-contact manner. Item 1. The scanning optical device according to item 1.
JP33444194A 1994-12-19 1994-12-19 Scanning optical device Pending JPH08171068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33444194A JPH08171068A (en) 1994-12-19 1994-12-19 Scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33444194A JPH08171068A (en) 1994-12-19 1994-12-19 Scanning optical device

Publications (1)

Publication Number Publication Date
JPH08171068A true JPH08171068A (en) 1996-07-02

Family

ID=18277424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33444194A Pending JPH08171068A (en) 1994-12-19 1994-12-19 Scanning optical device

Country Status (1)

Country Link
JP (1) JPH08171068A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871475A (en) * 1985-10-07 1989-10-03 The Boeing Company Polysulfone and polyethersulfone oligomers
JP2016065555A (en) * 2014-09-23 2016-04-28 株式会社デンソー Rotating mechanism
JP2017215448A (en) * 2016-05-31 2017-12-07 京セラドキュメントソリューションズ株式会社 Optical scanner and image forming apparatus including the optical scanner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871475A (en) * 1985-10-07 1989-10-03 The Boeing Company Polysulfone and polyethersulfone oligomers
JP2016065555A (en) * 2014-09-23 2016-04-28 株式会社デンソー Rotating mechanism
JP2017215448A (en) * 2016-05-31 2017-12-07 京セラドキュメントソリューションズ株式会社 Optical scanner and image forming apparatus including the optical scanner

Similar Documents

Publication Publication Date Title
US4726640A (en) Optical deflector with a pneumatic and a magnetic bearing
EP0684497A1 (en) Magnetic thrust bearing for polygon mirror scanner
JPH08171068A (en) Scanning optical device
JPH06159361A (en) Pneumatic magnetic bearing type motor
JPH1172739A (en) Optical deflection scanner
EP0618469A2 (en) Optical deflector
US6392771B1 (en) Bearing device and deflecting-scanning apparatus using the same
JPH071347B2 (en) Air / magnetic bearing type optical deflector
JP3006227B2 (en) Optical scanning device
JPH07261111A (en) Noncontact bearing type polygon scanner
JP2556332Y2 (en) motor
JPH06337364A (en) Light deflector
JPH0299910A (en) Scanner motor for electrophotographic copying machine
JPH0865957A (en) Rotary motor
JP2000120659A (en) Dynamic pressure air bearing, motor with the bearing, and light polarizer
JPH08338960A (en) Scanning optical device
JPS63173012A (en) Rotary body supporting device
JPH08160333A (en) Deflection scanning device
JP2000171746A (en) Rotary polygon mirror device
JPH11218712A (en) Optical deflector
JPH10331850A (en) Bearing rotating device and deflection scanning device
JPH112244A (en) Bearing device and deflection scanner using it
JP2952086B2 (en) Deflection scanning device
JPH0643383A (en) Light deflector
JPH05297312A (en) Deflection scanning device