JPH08167327A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH08167327A
JPH08167327A JP6310867A JP31086794A JPH08167327A JP H08167327 A JPH08167327 A JP H08167327A JP 6310867 A JP6310867 A JP 6310867A JP 31086794 A JP31086794 A JP 31086794A JP H08167327 A JPH08167327 A JP H08167327A
Authority
JP
Japan
Prior art keywords
oxide
dielectric
formula
dielectric ceramic
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6310867A
Other languages
Japanese (ja)
Inventor
Hiroshi Kagata
博司 加賀田
Junichi Kato
純一 加藤
Keiji Nishimoto
恵司 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6310867A priority Critical patent/JPH08167327A/en
Publication of JPH08167327A publication Critical patent/JPH08167327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE: To provide a composition with high specific dielectric constant, high Q value, small temperature coefficient of resonance frequency and low sintering temperature in a dielectric porcelain used in a microwave region. CONSTITUTION: A dielectric porcelain comprises calcium oxide, lead oxide, magnesium oxide, cobalt oxide, niobium oxide and titanium oxide, and is represented by the following chemical formula 4. The dielectric porcelain has a low sintering temperature, high specific dielectric constant of 40 or more, a temperature coefficient of resonance frequency of almost 0ppm/ deg.C, and allows a dielectric resonator to be made compact and have high performance. Chemical formula 4: (Ca1-x Pb)x [ Mg1-z Co2 )1/3 Nb2/3 }1-y Tiy ]O3 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマイクロ波領域などで使
用される誘電体磁器組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition used in the microwave range and the like.

【0002】[0002]

【従来の技術】近年、自動車電話や可搬型電話、または
衛星放送など、マイクロ波領域の電磁波を利用する通信
の進展にともない、機器の小型化が要求されている。こ
のためには、機器を構成する個々の部品が小型化される
必要がある。誘電体はこれらの機器において、フィルタ
素子や発振素子に誘電体共振器として組み込まれてい
る。誘電体共振器の大きさは同じ共振モードを利用する
場合、誘電体材料の持つ比誘電率(εr )の平方根に逆
比例するため、小型の誘電体共振器を作製するには、高
い比誘電率を有する材料が必要である。加えて、誘電体
共振器として実用化するためには、マイクロ波領域で低
損失であること、すなわちQ値が高いこと、さらに共振
周波数の温度係数(τf )が小さいことが必要である。
2. Description of the Related Art In recent years, with the progress of communication using electromagnetic waves in the microwave range, such as car telephones, portable telephones, and satellite broadcasting, miniaturization of equipment is required. For this purpose, it is necessary to reduce the size of individual parts that make up the device. In these devices, the dielectric is incorporated as a dielectric resonator in a filter element or an oscillating element. When the same resonance mode is used, the size of the dielectric resonator is inversely proportional to the square root of the relative permittivity (ε r ) of the dielectric material. Materials with a dielectric constant are needed. In addition, for practical use as a dielectric resonator, it is necessary that the loss be low in the microwave region, that is, the Q value be high, and that the temperature coefficient (τ f ) of the resonance frequency be small.

【0003】従来誘電体共振器用のマイクロ波誘電体と
して、Ba(Zn1/3Ta2/33)系のようにAサイト
にBaを含むペロブスカイト系の磁器組成物が、例えば
特公昭59−48484号公報に提案されている。これ
らの誘電体は、非常に高いQ値をもっている。
As a microwave dielectric material for a conventional dielectric resonator, a perovskite-based porcelain composition containing Ba at the A site, such as Ba (Zn 1/3 Ta 2/3 O 3 ) system, has been disclosed, for example, in Japanese Examined Patent Publication 59. -48484. These dielectrics have very high Q values.

【0004】[0004]

【発明が解決しようとする課題】しかし前記誘電体磁器
組成物では比誘電率が30程度と低く、小型化の上で実
用性に乏しいという問題があった。したがって、誘電体
共振器を小型化するため、より比誘電率が高く、高いQ
値と小さい共振周波数の温度係数をもつ誘電体磁器の開
発が望まれていた。また、前記誘電体磁器組成物の焼結
温度は1400℃以上と高いため、製造コストの面からより
焼結温度の低い誘電体磁器の開発が望まれていた。
However, the above-mentioned dielectric ceramic composition has a problem that it has a low relative permittivity of about 30 and is impractical for miniaturization. Therefore, since the dielectric resonator is downsized, the relative dielectric constant is higher and the Q factor is higher.
It has been desired to develop a dielectric porcelain having a low temperature coefficient and a small resonance frequency temperature coefficient. Further, since the sintering temperature of the dielectric ceramic composition is as high as 1400 ° C. or higher, development of a dielectric ceramic having a lower sintering temperature has been desired from the viewpoint of manufacturing cost.

【0005】本発明は、上記の課題を解決するため、マ
イクロ波領域で使用する誘電体磁器において、高い比誘
電率とQ値を有し、かつ小さい共振振周波数の温度係数
を同時に満足させ、かつ焼結温度の低い誘電体磁器組成
物を提供することを目的としている。
In order to solve the above problems, the present invention has a dielectric ceramic used in the microwave region, which has a high relative permittivity and a Q value and simultaneously satisfies a small temperature coefficient of resonance vibration frequency. Moreover, it is an object to provide a dielectric ceramic composition having a low sintering temperature.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明の第1の誘電体磁器組成物は、酸化カルシウ
ム、酸化マグネシウム、酸化コバルト、及び酸化ニオブ
からなり、前記式(化1)で示される組成物である。
In order to achieve the above object, the first dielectric ceramic composition of the present invention comprises calcium oxide, magnesium oxide, cobalt oxide, and niobium oxide, and has the above formula (Formula 1). Is a composition represented by.

【0007】また、本発明の第2の誘電体磁器組成物
は、酸化カルシウム、酸化マグネシウム、酸化コバル
ト、酸化ニオブ、及び酸化チタンからなり、前記式(化
2)で示される組成物である。
The second dielectric ceramic composition of the present invention is a composition represented by the above formula (Formula 2), which is composed of calcium oxide, magnesium oxide, cobalt oxide, niobium oxide, and titanium oxide.

【0008】また、本発明の第3の誘電体磁器組成物
は、酸化カルシウム、酸化鉛、酸化マグネシウム、酸化
コバルト、及び酸化ニオブからなり、前記式(化3)で
示される組成物である。
The third dielectric ceramic composition of the present invention is a composition represented by the above formula (Formula 3), which is composed of calcium oxide, lead oxide, magnesium oxide, cobalt oxide, and niobium oxide.

【0009】また、本発明の第4の誘電体磁器組成物
は、酸化カルシウム、酸化鉛、酸化マグネシウム、酸化
コバルト、酸化ニオブ、及び酸化チタンからなり、前記
式(化4)で示される組成物である。
The fourth dielectric ceramic composition of the present invention is composed of calcium oxide, lead oxide, magnesium oxide, cobalt oxide, niobium oxide, and titanium oxide and is represented by the above formula (Formula 4). Is.

【0010】[0010]

【作用】前記本発明の第1の誘電体磁器組成物によれ
ば、酸化カルシウム、酸化マグネシウム、及び酸化ニオ
ブからなり、前記式(化1)で示される組成物であるこ
とにより、高い比誘電率とQ値、かつ小さい共振振周波
数の温度係数を有し、さらに低い焼結温度を持つ誘電体
磁器組成物を達成できる。
According to the first dielectric ceramic composition of the present invention, which has a high dielectric constant, it is composed of calcium oxide, magnesium oxide and niobium oxide and is represented by the formula (Formula 1). It is possible to achieve a dielectric porcelain composition having a low coefficient of resonance and a frequency coefficient, a small temperature coefficient of resonance frequency, and a lower sintering temperature.

【0011】前記本発明の第2の誘電体磁器組成物によ
れば、酸化カルシウム、酸化マグネシウム、酸化ニオ
ブ、及び酸化タンタルからなり、前記式(化2)で示さ
れる組成物であることにより、同様に高い比誘電率とQ
値、かつ小さい共振振周波数の温度係数を有し、さらに
低い焼結温度を持つ誘電体磁器組成物を達成できる。
According to the second dielectric porcelain composition of the present invention, which is composed of calcium oxide, magnesium oxide, niobium oxide and tantalum oxide, and which is represented by the above formula (Formula 2), Similarly high dielectric constant and Q
It is possible to achieve a dielectric ceramic composition that has a low temperature coefficient of resonance vibration frequency and a lower sintering temperature.

【0012】また、前記本発明の第3の誘電体磁器組成
物によれば、酸化カルシウム、酸化鉛、酸化マグネシウ
ム、酸化コバルト、及び酸化ニオブからなり、前記式
(化3)で示される組成物であることにより、前記同
様、高い比誘電率とQ値、かつ小さい共振振周波数の温
度係数を有し、さらに低い焼結温度を持つ誘電体磁器組
成物を達成できる。
Further, according to the third dielectric ceramic composition of the present invention, a composition comprising calcium oxide, lead oxide, magnesium oxide, cobalt oxide, and niobium oxide and represented by the above formula (Formula 3) Thus, similarly to the above, it is possible to achieve a dielectric ceramic composition having a high relative dielectric constant, a Q value, a small temperature coefficient of resonance vibration frequency, and a lower sintering temperature.

【0013】また、前記本発明の第4の誘電体磁器組成
物によれば、酸化カルシウム、酸化鉛、酸化マグネシウ
ム、酸化コバルト、酸化ニオブ、及び酸化チタンからな
り、前記式(化4)で示される組成物であることによ
り、前記同様、高い比誘電率とQ値、かつ小さい共振振
周波数の温度係数を有し、さらに低い焼結温度を持つ誘
電体磁器組成物を達成できる。
According to the fourth dielectric ceramic composition of the present invention, it is composed of calcium oxide, lead oxide, magnesium oxide, cobalt oxide, niobium oxide, and titanium oxide, and is represented by the above formula (Formula 4). As described above, a dielectric ceramic composition having a high relative permittivity and a Q value, a small temperature coefficient of resonance vibration frequency, and a low sintering temperature can be achieved by the composition described above.

【0014】すなわち、前記本発明の第1〜4の誘電体
磁器組成物によれば誘電特性を低下させることなく、焼
結温度を低下させることができる。よって、誘電体磁器
の製造コストを低減させることができる。
That is, according to the first to fourth dielectric porcelain compositions of the present invention, the sintering temperature can be lowered without lowering the dielectric characteristics. Therefore, the manufacturing cost of the dielectric porcelain can be reduced.

【0015】[0015]

【実施例】以下、実施例を用いて本発明を具体的に説明
する。 (実施例1)出発原料には化学的に高純度のCaCO
3 、MgO、Co34、及びNb25を用いた。原料の
純度補正を行なったのち、前記式(化1)のyを0.1
になるように秤量した。これらの粉体を、ポリエチレン
製のボールミルに入れ、直径5mmの安定化ジルコニア
の玉石と純水を加え、17時間混合した。混合後、スラ
リーを乾燥し、アルミナ製の坩堝にいれ、900から1
100℃で4時間仮焼した。仮焼体をライカイ機で解砕
した後、前述したボールミルで17時間粉砕し、乾燥さ
せ、原料粉体とした。この粉体にバインダとしてポリビ
ニルアルコールの5重量%水溶液を6重量%加えて混合
後、32メッシュのふるいを通して造粒し、100MP
aで直径13mm、厚み約5mmの円柱状にプレス成形
した。成形体を650℃で2時間加熱してバインダを焼
却後、マグネシア製の磁器容器に入れ、蓋をし、110
0から1500℃の種々の温度で2時間保持して焼成し
た。密度が最高となる温度で焼成した焼結体についてマ
イクロ波での誘電特性を測定した。共振周波数とQ値は
誘電体共振器法により求めた。焼結体の寸法と共振周波
数より誘電率を算出した。共振周波数は、2〜5GHz
であった。また、−25℃、20℃及び85℃における
共振周波数を測定し、最小二乗法により、その温度係数
(τf)を算出した。その結果は表1の番号2に示すよ
うに、比誘電率が27、Qf積が62000GHz、τ
fが−46であった。
EXAMPLES The present invention will be specifically described below with reference to examples. (Example 1) Starting material is chemically high purity CaCO
3 , MgO, Co 3 O 4 , and Nb 2 O 5 were used. After the raw material purity was corrected, y in the above formula (Formula 1) was adjusted to 0.1.
Was weighed so that These powders were placed in a polyethylene ball mill, stabilized zirconia boulders having a diameter of 5 mm and pure water were added and mixed for 17 hours. After mixing, dry the slurry and put it in an alumina crucible.
It was calcined at 100 ° C. for 4 hours. The calcined body was crushed with a raikai machine, crushed with the above-described ball mill for 17 hours, and dried to obtain a raw material powder. To this powder was added 6% by weight of a 5% by weight aqueous solution of polyvinyl alcohol as a binder, mixed, and then granulated through a 32 mesh sieve to obtain 100MP
In a, it was pressed into a cylindrical shape having a diameter of 13 mm and a thickness of about 5 mm. The molded body is heated at 650 ° C. for 2 hours to incinerate the binder, and then placed in a magnesia porcelain container, and the lid is closed.
Baking was performed by holding at various temperatures from 0 to 1500 ° C. for 2 hours. The dielectric properties of the sintered body that was fired at the temperature at which the density was highest were measured by microwaves. The resonance frequency and the Q value were obtained by the dielectric resonator method. The dielectric constant was calculated from the dimensions of the sintered body and the resonance frequency. Resonance frequency is 2-5 GHz
Met. In addition, the resonance frequencies at -25 ° C, 20 ° C, and 85 ° C were measured, and the temperature coefficient (τ f ) was calculated by the least square method. As a result, as shown in No. 2 of Table 1, the relative permittivity is 27, the Qf product is 62000 GHz, and τ
f was -46.

【0016】[0016]

【表1】 [Table 1]

【0017】(実施例2)出発原料には化学的に高純度
のCaCO3 、MgO、Co34、Nb25、及びTi
2を用いた。原料の純度補正を行なったのち、前記式
(化2)のxおよびyが表1に示した種々の値になるよ
うに秤量した。これらの粉体から実施例1と同様に焼結
体を作製し、各種の値を求めた。その結果も表1に示
す。
(Example 2) As starting materials, chemically high-purity CaCO 3 , MgO, Co 3 O 4 , Nb 2 O 5 , and Ti were used.
O 2 was used. After correcting the purity of the raw materials, the raw materials were weighed so that x and y in the above formula (Formula 2) have various values shown in Table 1. A sintered body was produced from these powders in the same manner as in Example 1, and various values were obtained. Table 1 also shows the results.

【0018】表1に示したように、前記式(化2)でx
およびyの値を適当に選択することにより、焼結体が、
比誘電率がほぼ40以上で、Qf積が20000GHz
以上と良好な特性を示すことが確認できた。また誘電特
性をほとんど低下させることなく、焼結温度を低下させ
ることができた。一方、前記式(化2)の範囲外の組成
になると、τf が50ppm/℃より大きくなるか、または
Qf積が15000GHz以下のいずれかとなり、実用
的でないと判断した。
As shown in Table 1, x in the above formula (Formula 2)
By appropriately selecting the values of y and y,
Dielectric constant of about 40 or more, Qf product of 20000 GHz
It was confirmed that the above characteristics were excellent. Moreover, the sintering temperature could be lowered without substantially lowering the dielectric properties. On the other hand, if the composition is out of the range of the above formula (Formula 2), τ f becomes larger than 50 ppm / ° C., or the Qf product becomes 15000 GHz or less, and it was judged to be not practical.

【0019】(実施例3)出発原料には化学的に高純度
のCaCO3 、PbO、MgO、Co34、及びNb2
5を用いた。原料の純度補正を行なったのち、前記式
(化3)のxおよびzが表2に示した種々の値になるよ
うに秤量した。これらの粉体から実施例1と同様に焼結
体を作製し、各種の値を求めた。その結果を表2に示
す。
(Example 3) As starting materials, chemically high purity CaCO 3 , PbO, MgO, Co 3 O 4 , and Nb 2 were used.
O 5 was used. After correcting the purity of the raw materials, the raw materials were weighed so that x and z in the formula (Formula 3) had various values shown in Table 2. A sintered body was produced from these powders in the same manner as in Example 1, and various values were obtained. The results are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】表2に示したように、前記式(化3)でx
およびzの値を適当に選択することにより、焼結体が、
比誘電率がほぼ40以上で、Qf積が20000GHz
以上と良好な特性を示すことが確認できた。また誘電特
性をほとんど低下させることなく、焼結温度を低下させ
ることができた。
As shown in Table 2, x in the above formula (Formula 3)
By appropriately selecting the values of z and z,
Dielectric constant of about 40 or more, Qf product of 20000 GHz
It was confirmed that the above characteristics were excellent. Moreover, the sintering temperature could be lowered without substantially lowering the dielectric properties.

【0022】(実施例4)出発原料には化学的に高純度
のCaCO3 、PbO、MgO、Co34、Nb 25
及びTiO2を用いた。原料の純度補正を行なったの
ち、前記式(化4)のx、yおよびzが表2に示す種々
の値になるように秤量した。これらの粉体から実施例1
と同様に焼結体を作製し、各種の値を求めた。その結果
も表2に示す。
(Embodiment 4) The starting raw material has a chemically high purity.
CaCO3 , PbO, MgO, Co3OFour, Nb 2OFive,
And TiO2Was used. The purity of the raw material was corrected
Where x, y and z in the formula (Formula 4) are various values shown in Table 2.
Was weighed so that Example 1 from these powders
A sintered body was prepared in the same manner as in, and various values were obtained. as a result
Are also shown in Table 2.

【0023】図1は、実施例3及び4の各実験例のxの
値を横軸に、yの値を縦軸に取ったグラフである。表2
の結果によれば、図1の四角形の頂点ABCDに囲まれ
た領域内で、前記式(化4)のxおよびyの値を適当に
選択し、zが0<z≦0.50の範囲であるとき、焼結
体の比誘電率がほぼ40以上で、Qf積が20000G
Hz程度以上と良好な特性を示すことが確認できた。ま
た誘電特性をほとんど低下させることなく、焼結温度を
低下させることができた。一方、図1の四角形の頂点A
BCDに囲まれた領域外の組成になると、τf が50pp
m/℃より大きくなるか、またはQf積が15000GH
z以下のいずれかとなり、実用的でないと判断した。
FIG. 1 is a graph in which the abscissa represents the value of x and the ordinate represents the value of y in each experimental example of Examples 3 and 4. Table 2
According to the result, in the region surrounded by the quadrangle apex ABCD of FIG. 1, the values of x and y in the formula (Formula 4) are appropriately selected, and z is in the range of 0 <z ≦ 0.50. When the relative dielectric constant of the sintered body is about 40 or more, the Qf product is 20000 G
It was confirmed that good characteristics were exhibited at about Hz or higher. Moreover, the sintering temperature could be lowered without substantially lowering the dielectric properties. On the other hand, the vertex A of the quadrangle in FIG.
When the composition is outside the area surrounded by BCD, τ f is 50 pp
Greater than m / ℃ or Qf product is 15000GH
It was judged to be unpractical because it was one of z or less.

【0024】なお、前記式(化1)〜(化4)に示され
る以外の元素、特にBa、Cr、Fe、Ni、Cu、S
i、Al、Bi、Ge、Sb、および希土類元素等から
なる酸化物なども誘電特性に悪い影響を与えない範囲で
あれば含有させることができる。
Elements other than those represented by the formulas (Formula 1) to (Formula 4), particularly Ba, Cr, Fe, Ni, Cu, S
Oxides such as i, Al, Bi, Ge, Sb, and rare earth elements can be contained as long as they do not adversely affect the dielectric properties.

【0025】以上より明らかなように、本実施例の誘電
体磁器組成物によると、比誘電率が40以上と非常に高
いときに、高いQ値と小さいτf を実現できるため、誘
電体共振器の小型化が可能となる。また、焼結温度も低
いため製造コストを低減させることができる。さらに、
実施例の誘電体磁器は、誘電体共振器のみならず、高周
波用の回路基板、磁器積層コンデンサなどにも利用で
き、工業的価値が大きいものである。
As is clear from the above, according to the dielectric ceramic composition of this embodiment, when the relative permittivity is as high as 40 or more, a high Q value and a small τ f can be realized, so that the dielectric resonance occurs. The size of the container can be reduced. Further, since the sintering temperature is low, the manufacturing cost can be reduced. further,
The dielectric ceramics of the examples can be used not only for dielectric resonators but also for high-frequency circuit boards, porcelain multilayer capacitors, etc., and have great industrial value.

【0026】[0026]

【発明の効果】以上説明した通り、本発明の第1〜4の
誘電体磁器組成物によれば、高い比誘電率とQ値、かつ
小さい共振振周波数の温度係数を有し、さらに低い焼結
温度を持つ誘電体磁器組成物を提供できるので、誘電体
共振器の小型化が可能となり、かつ製造コストを低減す
ることができる。
As described above, according to the first to fourth dielectric ceramic compositions of the present invention, they have a high relative permittivity and a Q value, a small temperature coefficient of resonance vibration frequency, and a lower firing temperature. Since the dielectric ceramic composition having the binding temperature can be provided, the dielectric resonator can be downsized and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の誘電体磁器組成物の組成範
囲を表わす図。
FIG. 1 is a diagram showing a composition range of a dielectric ceramic composition of an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01P 7/10 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01P 7/10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化カルシウム、酸化マグネシウム、酸
化コバルト、及び酸化ニオブからなり、下記式(化1)
で示される誘電体磁器組成物。 【化1】
1. Calcium oxide, magnesium oxide, cobalt oxide, and niobium oxide, represented by the following formula (Formula 1)
The dielectric ceramic composition shown by. Embedded image
【請求項2】 酸化カルシウム、酸化マグネシウム、酸
化コバルト、酸化ニオブ、及び酸化チタンからなり、下
記式(化2)で示される誘電体磁器組成物。 【化2】
2. A dielectric ceramic composition consisting of calcium oxide, magnesium oxide, cobalt oxide, niobium oxide, and titanium oxide, which is represented by the following formula (Formula 2). Embedded image
【請求項3】 酸化カルシウム、酸化鉛、酸化マグネシ
ウム、酸化コバルト、及び酸化ニオブからなり、下記式
(化3)で示される誘電体磁器組成物。 【化3】
3. A dielectric ceramic composition consisting of calcium oxide, lead oxide, magnesium oxide, cobalt oxide, and niobium oxide, which is represented by the following formula (Formula 3). Embedded image
【請求項4】 酸化カルシウム、酸化鉛、酸化マグネシ
ウム、酸化コバルト、酸化ニオブ、及び酸化チタンから
なり、下記式(化4)で示される誘電体磁器組成物。 【化4】
4. A dielectric ceramic composition composed of calcium oxide, lead oxide, magnesium oxide, cobalt oxide, niobium oxide, and titanium oxide, which is represented by the following formula (Formula 4). [Chemical 4]
JP6310867A 1994-12-14 1994-12-14 Dielectric porcelain composition Pending JPH08167327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6310867A JPH08167327A (en) 1994-12-14 1994-12-14 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6310867A JPH08167327A (en) 1994-12-14 1994-12-14 Dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH08167327A true JPH08167327A (en) 1996-06-25

Family

ID=18010349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6310867A Pending JPH08167327A (en) 1994-12-14 1994-12-14 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH08167327A (en)

Similar Documents

Publication Publication Date Title
JPH04285046A (en) Dielectric porcelain composition
JP3287978B2 (en) Dielectric porcelain composition
EP0727789A1 (en) Dielectric procelain composition and its manufacture
EP0464773A1 (en) Di-electric ceramic composition and dielectric resonator
JP3278520B2 (en) Dielectric porcelain composition
JPH0850813A (en) Dielectric ceramic composition
JPH08167327A (en) Dielectric porcelain composition
JP2738172B2 (en) Dielectric porcelain composition
JP3040286B2 (en) Dielectric porcelain composition
JPH08217535A (en) Dielectric porcelain composition
JP2798106B2 (en) Dielectric porcelain composition, method for producing laminate using the dielectric porcelain composition, and laminate of dielectric porcelain composition
JPH10330165A (en) Dielectric substance ceramic for high frequency
JP3330011B2 (en) High frequency dielectric ceramic composition
JP3597244B2 (en) Dielectric porcelain composition
JPH07169331A (en) Dielectric ceramic comopsition and multilayer microwave device
JP3098763B2 (en) Dielectric resonator
JP2002187771A (en) Dielectric porcelain and dielectric resonator using the same
JP3469986B2 (en) High frequency dielectric ceramic composition
JP2917476B2 (en) Dielectric porcelain composition
JP2737395B2 (en) Dielectric porcelain composition
JP2918077B2 (en) Dielectric porcelain composition
JPH06196020A (en) Dielectric ceramic composition
JPH04192209A (en) Dielectric ceramic composition
JPH05139812A (en) Dielectric ceramic composition
JPH05314815A (en) Dielectric ceramic composition