JPH08162682A - Superconducting element and manufacture thereof - Google Patents

Superconducting element and manufacture thereof

Info

Publication number
JPH08162682A
JPH08162682A JP6304948A JP30494894A JPH08162682A JP H08162682 A JPH08162682 A JP H08162682A JP 6304948 A JP6304948 A JP 6304948A JP 30494894 A JP30494894 A JP 30494894A JP H08162682 A JPH08162682 A JP H08162682A
Authority
JP
Japan
Prior art keywords
superconducting
oxide
junction
oxygen
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6304948A
Other languages
Japanese (ja)
Other versions
JP3076503B2 (en
Inventor
Nobuyuki Sugii
信之 杉井
Yoshinobu Taruya
良信 樽谷
Haruhiro Hasegawa
晴弘 長谷川
Takanori Kabasawa
宇紀 樺沢
Tokumi Fukazawa
徳海 深沢
一正 ▲高▼木
Kazumasa Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP06304948A priority Critical patent/JP3076503B2/en
Publication of JPH08162682A publication Critical patent/JPH08162682A/en
Application granted granted Critical
Publication of JP3076503B2 publication Critical patent/JP3076503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE: To obtain a superconducting element having high quality, excellent reliability and reproducibility by forming a superconducting electrode and normal conducting substance of the same crystalline structure and metallic composition. CONSTITUTION: A thin film of a superconducting electrode and a normal conducting barrier part 12 made of YB2 Cu3 O7-d oxide in which electric conductive characteristics are largely varied according to the difference of oxygen composition is formed on a substrate 11. The film is formed by a pulse laser depositing method with the oxide solid of the same metal composition as the film as a target. Then, the electrode, the barrier part and a wiring part of the junction are etched to optimize the crystallinity and oxide amount of the oxide of the part. Reducible substance Si 14 is brought into contact with a region in which oxygen content should be reduced, and oxygen composition is varied to change the conductive characteristics. Thus, a superconducting element having high quality, excellent reliability and reproducibility can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導素子に係り、特
に、ディジタル回路あるいはアナログ回路等に適用され
る酸化物超電導素子およびその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting element, and more particularly to an oxide superconducting element applied to a digital circuit or an analog circuit and a method for manufacturing the same.

【0002】[0002]

【従来の技術】超電導素子として、従来より超電導物質
にNbを用いたジョセフソントンネル素子が知られてお
り、ディジタル回路における高速かつ低消費電力の動作
を行い得ることが確認されている。このようなジョセフ
ソントンネル素子を作製しようとする場合、超電導体−
絶縁体−超電導体のいわゆる超電導トンネル接合を形成
することがまず要求される。
2. Description of the Related Art As a superconducting element, a Josephson tunnel element using Nb as a superconducting material has been conventionally known, and it has been confirmed that it can operate at high speed and low power consumption in a digital circuit. In order to manufacture such a Josephson tunnel device, a superconductor-
It is first required to form a so-called superconducting tunnel junction of insulator-superconductor.

【0003】しかし、動作温度を高くすることが可能な
酸化物超電導物質を用いてトンネル接合を形成する場
合、この物質のコヒーレンス長が短いために、極薄の酸
化物絶縁体層の形成が要求されるが、この要求は未だに
実現されていないものとなっている。
However, when forming a tunnel junction using an oxide superconducting material capable of increasing the operating temperature, it is necessary to form an extremely thin oxide insulating layer because the coherence length of this material is short. However, this requirement has not been realized yet.

【0004】これに対し、常伝導物質への超電導のしみ
だしを利用したSNS(超電導−常伝導−超電導)接合
は、トンネル接合に比べると常伝導バリア層の厚さに対
する制約が緩くなるため酸化物超電導物質を用いる場合
にはこのSNS接合が有利となる。
In contrast, an SNS (superconducting-normal-conducting-superconducting) junction utilizing the superconducting exudation of a normal-conducting substance has less restriction on the thickness of the normal-conducting barrier layer than a tunnel junction, so that it is oxidized. This SNS junction is advantageous when using a superconducting substance.

【0005】このようなSNS接合には、そのN層(常
伝導層)として貴金属や酸化物を用いた、いわゆる積層
型接合、エッジ型接合、および平面型接合がある。
Such SNS junctions include so-called layered junctions, edge junctions, and planar junctions in which a noble metal or oxide is used as the N layer (normal conductive layer).

【0006】貴金属をN層(常伝導層)に用いた接合で
は,そのN層の抵抗率が低いために、超電導臨界電流と
常伝導抵抗の積、いわゆるIcRn積が小さく、またN
層のキャリア濃度が高いために外部からの電界で制御で
きないという問題点がある[M.Yu Kupriyanov: Extende
d Abstarcts of ISEC '89, Tokyo, 534 (1989)参照]。
In a junction using a noble metal for the N layer (normal conductive layer), the product of the superconducting critical current and the normal resistance, so-called IcRn product, is small because the resistivity of the N layer is low.
There is a problem that it cannot be controlled by an external electric field due to the high carrier concentration in the layer [M. Yu Kupriyanov: Extende
d Abstarcts of ISEC '89, Tokyo, 534 (1989)].

【0007】N層に酸化物を用いる場合にも、キャリア
濃度が低く常伝導抵抗が低すぎないことが必要である。
超電導のしみだし距離を確保する観点からはN層の移動
度が高い必要があり、このためにはN層の結晶構造が完
全であり、粒界や転位、不純物の析出がないことなどが
重要になる。
Even when an oxide is used for the N layer, it is necessary that the carrier concentration is low and the normal resistance is not too low.
The mobility of the N layer must be high from the viewpoint of ensuring the exudation distance of superconductivity. For this purpose, it is important that the crystal structure of the N layer is perfect and that grain boundaries, dislocations, and precipitation of impurities are not present. become.

【0008】積層型接合ではN層の厚さを数nmまで薄
くすることが可能であるが、各層の平坦性の確保に限度
があること、ピンホールの存在、相互拡散が生じること
などにより、マイクロショートや界面バリアが発生し、
十分な特性を持つ接合が得られない。また、積層型接合
では素子の集積化が困難になる。
In the laminated junction, it is possible to reduce the thickness of the N layer to several nanometers, but there is a limit in securing the flatness of each layer, the presence of pinholes, mutual diffusion, etc. Micro shorts and interface barriers occur,
A bond with sufficient characteristics cannot be obtained. In addition, it is difficult to integrate the elements in the layered bonding.

【0009】エッジ型接合は一方の超電導電極の部分に
段差を形成し、そこに常伝導層ともう一方の超電導電極
を形成したものであるが、積層型に比べて常伝導層が厚
くなる。また、段差部分に粒界ができるために、N層内
部あるいはSN界面に粒界が生じ、これが近接効果電流
に悪影響を与える場合もある。ただし、段差によって人
工粒界型接合を形成する場合はこの限りではない。平面
型接合では集積化が可能、SN両層の結晶方位を揃えら
れるという利点を持つが、SN界面の劣化に問題があっ
た。
The edge-type junction is one in which a step is formed in a portion of one superconducting electrode, and a normal conducting layer and another superconducting electrode are formed therein, but the normal conducting layer is thicker than that of the laminated type. Further, since grain boundaries are formed in the step portion, grain boundaries may occur inside the N layer or at the SN interface, which may adversely affect the proximity effect current. However, this is not the case when an artificial grain boundary type junction is formed by steps. The planar junction has an advantage that it can be integrated and the crystal orientations of both SN layers can be aligned, but there is a problem in deterioration of the SN interface.

【0010】[0010]

【発明が解決しようとする課題】前記の従来技術での問
題点は、接合部分の常伝導層の特性が超電導素子を機能
させるに充分でなく、かつ素子製造の際の再現性が乏し
いことにある。この原因としては、異なる結晶構造の物
質、あるいは異なる金属組成の物質を積層あるいは結合
することが不可欠であったことによる。
The problem with the above-mentioned prior art is that the characteristics of the normal conductive layer at the junction are not sufficient for the superconducting device to function, and the reproducibility during device manufacturing is poor. is there. This is because it was essential to stack or bond substances having different crystal structures or substances having different metal compositions.

【0011】本発明は、このような事情に基づいてなさ
れたものであり、その目的は、高品質でかつ信頼性に優
れているとととに、再現性に優れた超電導素子を提供す
るにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a superconducting element having high quality and excellent reliability and excellent reproducibility. is there.

【0012】[0012]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
以下のとおりである。
Of the inventions disclosed in the present application, a representative one will be briefly described below.
It is as follows.

【0013】手段1.チャンネル層の物質の金属組成が
酸化物超電導電極と同一で、その超電導接合部にて酸素
組成が異なっていることを特徴とするものである。
Means 1. The metal composition of the material of the channel layer is the same as that of the oxide superconducting electrode, and the oxygen composition is different at the superconducting junction.

【0014】手段2.酸化物超電導電極の一部に還元性
物質を蒸着させることにより、その蒸着部分に超電導接
合部を形成することを特徴とするものである。
Means 2. It is characterized in that a superconducting junction is formed at the vapor-deposited portion by vapor-depositing a reducing substance on a part of the oxide superconducting electrode.

【0015】手段3.酸化物超電導電極に形成された人
工粒界の上部に還元性物質を蒸着させることにより該人
工粒界に沿って選択的に酸素を脱離させることを特徴と
するものである。
Means 3. It is characterized in that a reducing substance is vapor-deposited on the artificial grain boundary formed on the oxide superconducting electrode to selectively desorb oxygen along the artificial grain boundary.

【0016】手段4.上記手段2あるいは3の構成にお
いて、酸化物超電導電極は、その結晶方位が酸素拡散速
度の速い結晶方位が上面になっていることを特徴とする
ものである。
Means 4. In the constitution of the above means 2 or 3, the oxide superconducting electrode is characterized in that the crystal orientation thereof is such that the crystal orientation having a high oxygen diffusion rate is the upper surface.

【0017】[0017]

【作用】手段1の構成によれば、超電導電極および常伝
導物質(あるいは超電導弱結合部)を同一の結晶構造か
つ金属組成で構成されていることから、高品質でかつ信
頼性に優れたものが得られる。そして、同様の理由から
再現性の良好なものが得られるようになる。
According to the construction of the means 1, the superconducting electrode and the normal conducting material (or the superconducting weakly-bonded portion) are constituted by the same crystal structure and metal composition, so that they are of high quality and excellent in reliability. Is obtained. Then, for the same reason, the one having good reproducibility can be obtained.

【0018】また、手段2の構成によれば、極めて簡単
な製造方法により超電導接合部を形成することができる
ようになる。
Further, according to the constitution of the means 2, the superconducting junction can be formed by an extremely simple manufacturing method.

【0019】また、手段3の構成によれば、積極的な酸
素離脱を図っていることから再現性の良好な超電導素子
を得ることができるようになる。
Further, according to the constitution of the means 3, it is possible to obtain a superconducting element having good reproducibility because the oxygen is actively desorbed.

【0020】さらに、手段4の構成によれば、酸素濃度
変化の急俊性を図ることができることから特性の優れた
超電導素子を得ることができるようになる。
Further, according to the construction of the means 4, since the agility of the change in oxygen concentration can be achieved, it becomes possible to obtain a superconducting element having excellent characteristics.

【0021】[0021]

【実施例】以下、本発明による超電導素子の実施例を説
明する。
EXAMPLES Examples of the superconducting device according to the present invention will be described below.

【0022】実施例1.概略を説明すると、まず、超電
導電極及び常伝導物質には銅系ペロブスカイト型酸化物
を用いることが適当となる。特に、同一の金属組成であ
りながら酸素組成の違いにより電気伝導特性が大きく変
化する物質を用いることが望ましい。YBa2Cu3
7-dは容易に酸素欠損量dが変化し、dが0に近い超電
導体から0.5に近い半導体まで結晶構造を崩すことな
く変化するため望ましい物質である。
Example 1. In brief, first, it is appropriate to use a copper-based perovskite type oxide for the superconducting electrode and the normal conducting material. In particular, it is desirable to use a substance which has the same metal composition but whose electric conduction characteristics largely change due to the difference in oxygen composition. YBa 2 Cu 3 O
7-d is a desirable substance because the oxygen deficiency amount d easily changes, and changes from a superconductor in which d is close to 0 to a semiconductor in which d is close to 0.5 without breaking the crystal structure.

【0023】素子の接合部分はすべて同一の金属組成の
薄膜を用いる。そして、その一部の酸素組成を変化させ
ることにより伝導特性を変化させる。酸素組成を変化さ
せる具体的な方法としては、酸素含有量を減少させるべ
き領域に還元性物質を接触させる方法が望ましい。
Thin films of the same metal composition are used for all the junction parts of the device. Then, the conduction characteristic is changed by changing a part of the oxygen composition. As a specific method of changing the oxygen composition, a method of bringing a reducing substance into contact with a region where the oxygen content should be reduced is desirable.

【0024】還元性物質にはSiを用いることが望まし
い.膜厚が30nmのYBa2Cu37-d超電導薄膜に
Siを20nm真空蒸着すると薄膜の超電導性が失われ
ることが発明者らの予備検討で明らかで、これがSiの
接触による界面での還元反応によることは明白となって
いる。超電導電極に他の物質を接触させて素子を形成し
た場合に、その物質を介してバイパス電流が流れること
が危惧されるが、Siを接触させた場合には界面で絶縁
性の高いSiO2が形成されるため、バイパス電流は少
なく、とくに問題となることはない。
It is desirable to use Si as the reducing substance. It is clear from the preliminary study by the inventors that the superconductivity of the thin film is lost when Si is vacuum-deposited on the YBa 2 Cu 3 O 7-d superconducting thin film having a film thickness of 30 nm by 20 nm. This is the reduction at the interface due to the contact of Si. It is clear that it depends on the reaction. When an element is formed by contacting another substance with the superconducting electrode, it is feared that a bypass current will flow through that substance, but when Si is contacted, highly insulating SiO 2 is formed at the interface. By doing so, the bypass current is small and there is no particular problem.

【0025】なお、上記の処理を行う温度としては、酸
化物超電導体からの酸素の自然放出の起こる350℃以
下にする必要がある。反応速度の要請で室温以上であれ
ば上記350℃以下の温度範囲で酸素脱離が起こるから
である。
The temperature for performing the above treatment must be 350 ° C. or lower at which spontaneous release of oxygen from the oxide superconductor occurs. This is because oxygen desorption occurs in the temperature range of 350 ° C. or lower at room temperature or higher due to the reaction rate requirement.

【0026】また、素子の接合部分の寸法は、1000
nm以下にすることが必要である。超電導電極とチャネ
ル部分の膜厚は10nm以上100nm以下にすること
が接合長と接合部分の厚みの比を1以下にする意味で望
ましい。
The size of the joint portion of the element is 1000
It is necessary to set the thickness to nm or less. It is desirable that the film thickness of the superconducting electrode and the channel portion be 10 nm or more and 100 nm or less in the sense that the ratio of the junction length and the thickness of the junction portion is 1 or less.

【0027】図1は、本発明による超電導素子の一実施
例を示す断面図で、SNS接合の構造を示している。
FIG. 1 is a sectional view showing an embodiment of a superconducting element according to the present invention, showing the structure of an SNS junction.

【0028】同図において、SrTiO3単結晶の面方
位(100)のウェハーを基板11とし、その上に超電導
電極および常伝導バリア部分12の薄膜を形成する。こ
の部分の材料にはYBa2Cu37-d酸化物を用いた。
薄膜形成は薄膜と同一の金属組成の酸化物固体をターゲ
ットとしてパルスレーザー堆積法にて行う。膜厚は50
nmとする。薄膜形成法はこれに限らずスパッタリング
法やMBE法など酸化物をエピタキシャル成長可能な方
法であればよい。
In the figure, a wafer of SrTiO 3 single crystal having a plane orientation (100) is used as a substrate 11, and a thin film of a superconducting electrode and a normal conduction barrier portion 12 is formed thereon. YBa 2 Cu 3 O 7-d oxide was used as the material for this portion.
The thin film is formed by a pulse laser deposition method using an oxide solid having the same metal composition as the thin film as a target. Film thickness is 50
nm. The thin film forming method is not limited to this, and any method capable of epitaxially growing an oxide such as a sputtering method or an MBE method may be used.

【0029】次に接合の超電導電極および常伝導バリア
部分および配線部分をリソグラフィーとイオンミリング
によりエッチング加工する。そして,必要に応じて、5
00〜800℃で酸素雰囲気中でアニール処理をし、こ
の部分の酸化物の結晶性及び酸素量を最適化する。次に
電子線描画法により常伝導バリアとなる部分以外をレジ
スト13でおおう。バリア部分の長さは10nmとす
る。しかる後に真空蒸着によりSiを50nm蒸着し、
レジストを除去する。レジストに覆われていなかった部
分にのみSi14が残る。この試料を真空中250℃で
10分間加熱する。これによりSiに覆われている部分
のYBa2Cu37-d酸化物から酸素が抜かれて、酸素
欠損量dがおおよそ0.5になる。ちなみにレジストに
覆われていた部分のdはほとんど0である。
Next, the superconducting electrode, the normal barrier portion and the wiring portion of the junction are etched by lithography and ion milling. And, if necessary, 5
Annealing treatment is performed in an oxygen atmosphere at 00 to 800 ° C. to optimize the crystallinity and oxygen content of the oxide in this portion. Next, the resist 13 is used to cover the portions other than the normal conduction barrier by the electron beam drawing method. The length of the barrier portion is 10 nm. After that, Si is vapor-deposited by 50 nm by vacuum vapor deposition,
Remove the resist. Si14 remains only in the portion not covered with the resist. The sample is heated in vacuum at 250 ° C. for 10 minutes. As a result, oxygen is removed from the YBa 2 Cu 3 O 7-d oxide in the portion covered with Si, and the oxygen deficiency amount d becomes approximately 0.5. By the way, d of the portion covered with the resist is almost zero.

【0030】以上の方法により作製した超電導接合の電
流−電圧特性は抵抗シャント型接合タイプの特性を示
し。ゼロ電圧付近においては、約1mAの超電導電流が
流れ、これ以上のバイアス電流に対して電圧状態にな
る。また、接合部分にマイクロ波を照射すると、電流−
電圧特性にシャピロステップが現れる。また、超電導電
流は印加磁場に応じて変調し、これらの事実から、この
接合がジョセフソン接合であることが示される。
The current-voltage characteristics of the superconducting junction manufactured by the above method show resistance shunt type junction characteristics. In the vicinity of zero voltage, a superconducting current of about 1 mA flows and becomes a voltage state for a bias current higher than this. When microwave is applied to the joint, the current
Shapiro step appears in the voltage characteristic. Also, the superconducting current is modulated in response to the applied magnetic field, and these facts indicate that this junction is a Josephson junction.

【0031】実施例2.SNS接合での常伝導物質への
超電導のしみだしを制御して3端子素子を形成する場
合、電界を与えるゲート電極が必要になる。ゲート電極
は接合に近接させ、ゲート絶縁膜を介して形成する。接
合部の上面にゲートを形成する場合には、接合部の酸素
濃度変化への影響を与えない方法で行う必要がある。こ
のためには、ゲート絶縁膜、ゲート電極膜の形成および
パターニングのプロセスを350℃以下で行うことが望
ましい。これに対して、接合部の下面にゲートを形成す
る場合はゲート部分の作製において温度等の制限事項は
ないが、ゲート絶縁膜の上に超電導膜がエピタキシャル
成長するように絶縁膜材料を選択する必要がある。ペロ
ブスカイト型酸化物の絶縁体であれば、酸化物超電導体
との格子整合性が良くなるためゲート絶縁膜として使用
可能である。
Example 2. A gate electrode for applying an electric field is required to control the exudation of superconductivity into the normal conductive material at the SNS junction to form a three-terminal element. The gate electrode is formed near the junction with a gate insulating film interposed therebetween. When the gate is formed on the upper surface of the junction, it is necessary to use a method that does not affect the change in oxygen concentration in the junction. For this purpose, it is desirable to perform the process of forming and patterning the gate insulating film and the gate electrode film at 350 ° C. or lower. On the other hand, when forming the gate on the lower surface of the junction, there are no restrictions such as temperature when manufacturing the gate, but it is necessary to select the insulating film material so that the superconducting film can grow epitaxially on the gate insulating film. There is. An insulator of a perovskite type oxide can be used as a gate insulating film because it has good lattice matching with an oxide superconductor.

【0032】図2は、本発明による超電導素子の一実施
例を示す断面図で、SNS近接効果型三端子素子の構造
を示している。
FIG. 2 is a sectional view showing an embodiment of a superconducting element according to the present invention, showing the structure of an SNS proximity effect type three-terminal element.

【0033】同図において、SrTiO3単結晶の面方
位(100)のウェハーを基板21とし、その上にゲート
電極膜22を形成する。ゲート電極膜にはYBa2Cu3
7-d超電導酸化物薄膜をパルスレーザー堆積法で形成
し、電極及び配線部分はリソグラフィーとイオンミリン
グによりエッチング加工する。電極膜厚は30nmとす
る。ゲート電極膜材料はこれに限らず導電率の高いペロ
ブスカイト型酸化物であれば、基板上にエピタキシャル
成長が可能でさらにその上に同じペロブスカイト型酸化
物のゲート絶縁膜とSNS接合部分がエピタキシャル成
長可能なため用いることが可能である。薄膜形成法もこ
れに限らずスパッタリング法やMBE法など酸化物をエ
ピタキシャル成長可能な方法であればよい。
In the figure, a wafer having a plane orientation (100) of SrTiO 3 single crystal is used as a substrate 21, and a gate electrode film 22 is formed thereon. YBa 2 Cu 3 is used for the gate electrode film.
An O 7-d superconducting oxide thin film is formed by a pulse laser deposition method, and electrodes and wiring portions are etched by lithography and ion milling. The electrode film thickness is 30 nm. The gate electrode film material is not limited to this, and if it is a perovskite type oxide having high conductivity, it can be epitaxially grown on the substrate, and the gate insulating film of the same perovskite oxide and the SNS junction part can be epitaxially grown on it. It can be used. The thin film forming method is not limited to this, and any method capable of epitaxially growing an oxide such as a sputtering method or an MBE method may be used.

【0034】次にゲート絶縁膜23を形成する。ゲート
絶縁膜材料にはSrTiO3を用いた。薄膜形成方法は
上記ゲート電極膜と同様である。絶縁膜厚は150nm
とする。ゲート部分はリソグラフィーとイオンミリング
によりエッチング加工する。
Next, the gate insulating film 23 is formed. SrTiO 3 was used as the gate insulating film material. The thin film forming method is the same as that of the gate electrode film. Insulation film thickness is 150nm
And The gate part is etched by lithography and ion milling.

【0035】次に超電導電極および常伝導バリア24の
薄膜を形成する。この部分の材料にはYBa2Cu3
7-d酸化物を用いた。薄膜形成はパルスレーザー堆積法
にて行う。膜厚は50nmとする。しかるのちに超電導
電極および常伝導バリア部分を含む上部電極部分の配線
を上記と同様にエッチング加工する。そして、これまで
のプロセスで形成したゲート電極膜と絶縁膜、上部電極
部を必要に応じて500〜800℃で酸素雰囲気中でア
ニール処理をし、この部分の酸化物の結晶性及び酸素量
を最適化する。
Next, a thin film of the superconducting electrode and the normal conducting barrier 24 is formed. The material of this part is YBa 2 Cu 3 O
7-d oxide was used. The thin film is formed by the pulse laser deposition method. The film thickness is 50 nm. After that, the wiring of the upper electrode portion including the superconducting conductive electrode and the normal conduction barrier portion is etched in the same manner as above. Then, the gate electrode film, the insulating film, and the upper electrode portion formed by the processes so far are annealed in an oxygen atmosphere at 500 to 800 ° C., if necessary, so that the crystallinity and the oxygen amount of the oxide in this portion are changed. Optimize.

【0036】次に、電子線描画法により常伝導バリアと
なる部分以外をレジスト25でおおう。バリア部分の長
さは10nmとする。しかる後に真空蒸着によりSiを
50nm蒸着し、レジストを除去する。レジストに覆わ
れていなかった部分にのみSi26が残る。この試料を
真空中250℃で10分間加熱する。これによりSiに
覆われている部分のYBa2Cu37-d酸化物から酸素
が抜かれて、酸素欠損量dがおおよそ0.5になる。ち
なみにレジストに覆われていた部分のdはほとんど0で
ある。
Next, the resist 25 is used to cover the portion other than the portion that becomes the normal conduction barrier by the electron beam drawing method. The length of the barrier portion is 10 nm. After that, Si is evaporated to a thickness of 50 nm by vacuum evaporation and the resist is removed. Si 26 remains only in the portion not covered with the resist. The sample is heated in vacuum at 250 ° C. for 10 minutes. As a result, oxygen is removed from the YBa 2 Cu 3 O 7-d oxide in the portion covered with Si, and the oxygen deficiency amount d becomes approximately 0.5. By the way, d of the portion covered with the resist is almost zero.

【0037】以上の方法により作製した超電導素子の電
流−電圧特性は,実施例1の接合と同様に抵抗シャント
型接合タイプの特性を示し、ゼロ電圧付近においては、
約1mAの超電導電流が流れ、これ以上のバイアス電流
に対して電圧状態になる。さらにゲートに対して3Vの
電圧を印加した場合、超電導電流は0.5mAに減少
し、これ以上のバイアス電流で電圧が発生する。以上の
ごとく、本超電導素子は三端子素子としての基本特性を
有する。
The current-voltage characteristics of the superconducting element manufactured by the above method show the characteristics of the resistance shunt type junction like the junction of Example 1, and near the zero voltage,
A superconducting current of about 1 mA flows and becomes a voltage state for a bias current higher than this. Further, when a voltage of 3 V is applied to the gate, the superconducting current decreases to 0.5 mA, and a voltage is generated with a bias current higher than this. As described above, this superconducting device has the basic characteristics as a three-terminal device.

【0038】実施例3.また、本発明は人工粒界接合の
特性向上にも適用させることが可能である。ここで、人
工粒界接合とは、超電導膜を形成する下地をバイクリス
タル基板を用いる、シード層と呼ぶ結晶配向性を変化さ
せる層を形成する、単結晶基板の一部をエッチングによ
り段差を形成する、あるいは下地の単結晶基板表面にイ
オン打ち込み等の手法で結晶の一部に損傷を与える等の
処理を行った後に超電導膜を形成し下地の結晶粒界や段
差、損傷部分の上部に人工的に粒界を生じさせるもので
ある。このようにして生じた人工粒界は超電導体同士が
粒界を介して結合するために超電導のカップリングが弱
くなりジョセフソン特性が得られるようになる。人工粒
界はそのままでも弱結合特性を発揮することはできる
が、人工粒界の傾角が小さい場合などに充分な弱結合特
性が得られないという場合に、人工粒界部分の上部にS
i薄膜を形成すると粒界にそって酸素脱離が起こるため
に粒界部分の超電導特性がさらに弱まり良好な弱結合特
性が再現性良く得られる。
Example 3. The present invention can also be applied to improve the characteristics of artificial grain boundary bonding. Here, the artificial grain boundary junction uses a bicrystal substrate as a base for forming a superconducting film, forms a layer called a seed layer that changes crystal orientation, and forms a step by etching a part of a single crystal substrate. Or, the superconducting film is formed after the surface of the underlying single crystal substrate is damaged by a method such as ion implantation to form a superconducting film, and artificial grains are formed on the underlying crystal grain boundaries, steps, or damaged parts. Grain boundaries. In the artificial grain boundary generated in this way, the superconductors are bonded to each other through the grain boundary, so that the superconducting coupling is weakened and the Josephson characteristic is obtained. Although the artificial grain boundaries can exhibit weak binding properties as they are, if the weak binding properties cannot be obtained sufficiently when the inclination angle of the artificial grain boundaries is small, S is added to the upper part of the artificial grain boundary part.
When the i thin film is formed, oxygen is desorbed along the grain boundaries, so that the superconducting properties of the grain boundaries are further weakened and good weak bonding properties can be obtained with good reproducibility.

【0039】このような人工粒界型超電導接合の一実施
例を図3に示す。同図において、SrTiO3単結晶の
面方位(100)のウェハーを基板31とし、この基板上
にイオンミリングにより高さ100nmの段差部32を
形成する。しかる後に厚さ50nmのYBa2Cu3
7-d酸化物超電導膜33をパルスレーザー堆積法で形成
する。段差部に人工粒界34が形成されて弱結合部とな
る。さらに、リソグラフィーにより弱結合部の周囲の幅
100nmの領域のみにSi35を30nm真空蒸着法
で堆積する。
An embodiment of such an artificial grain boundary type superconducting junction is shown in FIG. In the figure, a wafer having a plane orientation (100) of SrTiO 3 single crystal is used as a substrate 31, and a step portion 32 having a height of 100 nm is formed on this substrate by ion milling. After that, 50 nm thick YBa 2 Cu 3 O
The 7-d oxide superconducting film 33 is formed by the pulse laser deposition method. An artificial grain boundary 34 is formed at the step portion to become a weakly bonded portion. Further, Si35 is deposited by a 30 nm vacuum evaporation method only on a region having a width of 100 nm around the weakly coupled portion by lithography.

【0040】こうすることにより、Siの作用により人
工粒界に沿って酸素欠損部分が形成されるために弱結合
特性が向上する。特性の指標となるIcRn積は77K
で3mVまで向上した。ちなみに、Si35を蒸着しな
い状態で弱結合特性を測定した場合、IcRn積は77
Kでたかだか0.5mVにすぎなかった。
By doing so, an oxygen deficiency portion is formed along the artificial grain boundary due to the action of Si, so that the weak bond characteristic is improved. The IcRn product, which is a characteristic index, is 77K
Improved to 3 mV. By the way, when the weak coupling property is measured without depositing Si35, the IcRn product is 77.
At K, it was only 0.5 mV.

【0041】実施例4.酸化物超電導体中の酸素イオン
の拡散速度には異方性があり、結晶を構成する銅酸素平
面と平行な方向の酸素イオンの拡散の方が垂直な方向に
比べて速いことが知られている。このため,酸素脱離を
行う部分と行わない部分の界面の酸素濃度変化の急峻性
を保つためには、酸化物超電導体の薄膜の結晶方位が銅
酸素平面の膜面に垂直な方向を向いていることが望まし
い。しかしながら,酸化物超電導体のコヒーレンス長の
異方性のために、素子の超電導電流は銅酸素平面に平行
な方向に流す必要がある。このため、酸化物超電導体の
銅酸素平面に垂直な結晶方位(一般的にはc軸)が薄膜
の面と平行であり、かつ電流を流す方向が銅酸素平面と
平行な方向になるように素子を配置することが望ましく
なる。
Example 4. It is known that there is anisotropy in the diffusion rate of oxygen ions in oxide superconductors, and the diffusion of oxygen ions in the direction parallel to the copper-oxygen plane forming the crystal is faster than in the vertical direction. There is. Therefore, in order to maintain the steepness of the oxygen concentration change at the interface between the portion where oxygen desorption is performed and the portion where oxygen desorption is not performed, the crystal orientation of the oxide superconductor thin film should be oriented in a direction perpendicular to the copper oxygen plane. Is desirable. However, due to the anisotropy of the coherence length of the oxide superconductor, the superconducting current of the device needs to flow in a direction parallel to the copper-oxygen plane. For this reason, the crystal orientation (generally the c-axis) of the oxide superconductor perpendicular to the copper-oxygen plane is parallel to the plane of the thin film, and the current flow direction is parallel to the copper-oxygen plane. It becomes desirable to arrange the elements.

【0042】上述した各実施例では、単結晶の面方位
(110)のウェハーを基板として用いることによって上
記効果を得ることができるようになる。
In each of the above-mentioned embodiments, the above effect can be obtained by using the wafer having the plane orientation (110) of the single crystal as the substrate.

【0043】以上説明したように各実施例による超電導
素子によれば、まず、SNS接合でにおいては、チャネ
ル長が10nm程度と極めて短い接合を再現性良く形成
することができ、近接効果型3端子素子とする場合に
は、ゲート電極やゲート絶縁膜も含めてすべて類似構造
の酸化物で構成できるため、素子の信頼性が高くなる。
超電導電極は液体窒素温度で超電導特性を示すためにこ
の温度以下で接合ないし素子の動作が可能である。そし
て、この接合ないし素子の特性を利用して、論理回路、
記憶回路、AD変換器等の能動素子として用いることが
可能になる。また、高性能人工粒界型弱結合素子が再現
性良く得られ、高感度低雑音のSQUIDを形成でき、
各種磁気センサー等に利用することができるようにな
る。
As described above, according to the superconducting elements according to the embodiments, first, in the SNS junction, a junction having a channel length as short as about 10 nm can be formed with good reproducibility, and the proximity effect type 3 terminal. In the case of forming an element, the reliability of the element is increased because the oxide including the gate electrode and the gate insulating film can be all formed.
Since the superconducting electrode exhibits superconducting properties at the temperature of liquid nitrogen, it is possible to operate the junction or the device below this temperature. Then, by utilizing the characteristics of this junction or element, the logic circuit,
It can be used as an active element such as a memory circuit and an AD converter. In addition, a high performance artificial grain boundary type weakly coupled device can be obtained with good reproducibility, and a high sensitivity and low noise SQUID can be formed.
It can be used for various magnetic sensors.

【0044】[0044]

【発明の効果】以上説明したことから明らかなように、
本発明による超電導素子によれば、高品質でかつ信頼性
に優れているとととに再現性に優れたものを得ることが
できるようになる。
As is apparent from the above description,
According to the superconducting element of the present invention, it is possible to obtain a high-quality, highly reliable and highly reproducible element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超電導素子の一実施例を示す断面
構造図である。
FIG. 1 is a sectional structural view showing an embodiment of a superconducting element according to the present invention.

【図2】本発明による超電導素子の他の実施例を示す断
面構造図である。
FIG. 2 is a sectional structural view showing another embodiment of the superconducting element according to the present invention.

【図3】本発明による超電導素子の他の実施例を示す断
面構造図である。
FIG. 3 is a sectional structural view showing another embodiment of the superconducting element according to the present invention.

【符号の説明】[Explanation of symbols]

11…基板、12…超電導電極および常伝導バリア部
分、13…レジスト、14…Si、21…基板、22…
ゲート電極膜、23…ゲート絶縁膜、24…超電導電極
および常伝導バリア部分、25…レジスト、26…S
i、31…基板、32…段差部、33…YBa2Cu3
7-d酸化物超電導膜、34…人工粒界、35…Si。
11 ... Substrate, 12 ... Superconducting electrode and normal conduction barrier part, 13 ... Resist, 14 ... Si, 21 ... Substrate, 22 ...
Gate electrode film, 23 ... Gate insulating film, 24 ... Superconducting electrode and normal conduction barrier portion, 25 ... Resist, 26 ... S
i, 31 ... Substrate, 32 ... Step portion, 33 ... YBa 2 Cu 3 O
7-d oxide superconducting film, 34 ... Artificial grain boundary, 35 ... Si.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樺沢 宇紀 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 深沢 徳海 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 ▲高▼木 一正 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Uki Kabazawa 1-280 Higashi Koikeku, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor Tokuumi Fukasawa 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Ltd. Central Research Laboratory of the Works (72) Inventor ▲ Kazumasa Takagi 1-280, Higashi Koikekubo, Kokubunji City, Tokyo Inside the Central Research Laboratory of Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 チャンネル層の物質の金属組成が酸化物
超電導電極と同一で、その超電導接合部にて酸素組成が
異なっていることを特徴とする超電導素子。
1. A superconducting element characterized in that the metal composition of the material of the channel layer is the same as that of the oxide superconducting electrode, and the oxygen composition is different at the superconducting junction.
【請求項2】 酸化物超電導電極の一部に還元性物質を
蒸着させることにより、その蒸着部分に超電導接合部を
形成することを特徴とする超電導素子の製造方法。
2. A method for producing a superconducting element, comprising depositing a reducing substance on a part of an oxide superconducting electrode to form a superconducting junction on the deposited portion.
【請求項3】 酸化物超電導電極に形成された人工粒界
の上部に還元性物質を蒸着させることにより該人工粒界
に沿って選択的に酸素を脱離させることを特徴とする超
電導素子の製造方法。
3. A superconducting element, characterized in that a reducing substance is vapor-deposited on an artificial grain boundary formed on an oxide superconducting electrode to selectively desorb oxygen along the artificial grain boundary. Production method.
【請求項4】 還元性物質としてSiを用いたことを
特徴とする請求項2および3のうちいずれか記載の超電
導素子の製造方法。
4. The method for manufacturing a superconducting element according to claim 2, wherein Si is used as the reducing substance.
【請求項5】 酸化物超電導電極は、その結晶方位が酸
素拡散速度の速い結晶方位が上面になっていることを特
徴とする請求項2ないし4のうちいずれか記載の超電導
素子の製造方法。
5. The method for producing a superconducting element according to claim 2, wherein the oxide superconducting electrode has a crystal orientation in which a crystal orientation having a high oxygen diffusion rate is an upper surface.
JP06304948A 1994-12-08 1994-12-08 Superconducting element and method of manufacturing the same Expired - Fee Related JP3076503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06304948A JP3076503B2 (en) 1994-12-08 1994-12-08 Superconducting element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06304948A JP3076503B2 (en) 1994-12-08 1994-12-08 Superconducting element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08162682A true JPH08162682A (en) 1996-06-21
JP3076503B2 JP3076503B2 (en) 2000-08-14

Family

ID=17939247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06304948A Expired - Fee Related JP3076503B2 (en) 1994-12-08 1994-12-08 Superconducting element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3076503B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199500A (en) * 2011-03-08 2012-10-18 Tottori Univ Josephson element and manufacturing method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428876A (en) * 1987-07-23 1989-01-31 Matsushita Electric Ind Co Ltd Manufacture of superconducting 3-terminal element
JPS6441282A (en) * 1987-07-21 1989-02-13 Philips Nv Method of depositing superconducting oxide material thin layer
JPS6443922A (en) * 1987-08-12 1989-02-16 Hitachi Ltd Formation of superconductive thin film
JPH0237786A (en) * 1988-07-28 1990-02-07 Fujitsu Ltd Superconducting transistor
JPH02194671A (en) * 1989-01-24 1990-08-01 Fujitsu Ltd Pattern formation of high temperature superconducting thin film
JPH0432275A (en) * 1990-05-29 1992-02-04 Shimadzu Corp Stepped region type josephson junction element
JPH0473976A (en) * 1990-07-16 1992-03-09 Sumitomo Electric Ind Ltd Manufacture of superconducting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441282A (en) * 1987-07-21 1989-02-13 Philips Nv Method of depositing superconducting oxide material thin layer
JPS6428876A (en) * 1987-07-23 1989-01-31 Matsushita Electric Ind Co Ltd Manufacture of superconducting 3-terminal element
JPS6443922A (en) * 1987-08-12 1989-02-16 Hitachi Ltd Formation of superconductive thin film
JPH0237786A (en) * 1988-07-28 1990-02-07 Fujitsu Ltd Superconducting transistor
JPH02194671A (en) * 1989-01-24 1990-08-01 Fujitsu Ltd Pattern formation of high temperature superconducting thin film
JPH0432275A (en) * 1990-05-29 1992-02-04 Shimadzu Corp Stepped region type josephson junction element
JPH0473976A (en) * 1990-07-16 1992-03-09 Sumitomo Electric Ind Ltd Manufacture of superconducting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199500A (en) * 2011-03-08 2012-10-18 Tottori Univ Josephson element and manufacturing method therefor

Also Published As

Publication number Publication date
JP3076503B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
KR910002311B1 (en) A superconductor device
WO1994007270A1 (en) Improved barrier layers for oxide superconductor devices and circuits
US5821556A (en) Superconductive junction
JPH03228384A (en) Superconducting element
JP3076503B2 (en) Superconducting element and method of manufacturing the same
JP2500302B2 (en) Superconducting element and superconducting circuit
JP2831967B2 (en) Superconducting element
US6160266A (en) Superconducting device and a method of manufacturing the same
JPH02194667A (en) Superconducting transistor and manufacture thereof
JP2867956B2 (en) Superconducting transistor
JP2907831B2 (en) Josephson element
JP3186035B2 (en) Laminated thin film for field effect element and field effect transistor using the laminated thin film
JP2909455B1 (en) Superconducting element
JP2907094B2 (en) Superconducting transistor
JP2680960B2 (en) Superconducting field effect device and method of manufacturing the same
JP4056575B2 (en) Superconducting device and manufacturing method thereof
JPH02194569A (en) Manufacture of oxide superconductive thin film and superconductive element
JP2944238B2 (en) Method for forming superconductor and superconducting element
JP2950958B2 (en) Superconducting element manufacturing method
JP2680959B2 (en) Superconducting field effect device and method of manufacturing the same
RU2298260C1 (en) Method for manufacturing superconducting device
JP2738144B2 (en) Superconducting element and fabrication method
JPH0831623B2 (en) Superconducting joining device
JP2691065B2 (en) Superconducting element and fabrication method
JP2731513B2 (en) Superconducting element and method of manufacturing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080609

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees