JPH08162132A - Polymer solid electrolyte-electrode joined body - Google Patents

Polymer solid electrolyte-electrode joined body

Info

Publication number
JPH08162132A
JPH08162132A JP6303672A JP30367294A JPH08162132A JP H08162132 A JPH08162132 A JP H08162132A JP 6303672 A JP6303672 A JP 6303672A JP 30367294 A JP30367294 A JP 30367294A JP H08162132 A JPH08162132 A JP H08162132A
Authority
JP
Japan
Prior art keywords
electrode
solid electrolyte
polymer solid
membrane
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6303672A
Other languages
Japanese (ja)
Other versions
JP3555999B2 (en
Inventor
Hiroshi Kato
博 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Gore Tex Inc
Original Assignee
Japan Gore Tex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Gore Tex Inc filed Critical Japan Gore Tex Inc
Priority to JP30367294A priority Critical patent/JP3555999B2/en
Priority to US08/568,100 priority patent/US6054230A/en
Priority to EP95308882A priority patent/EP0718903B1/en
Priority to EP01129420A priority patent/EP1217680B1/en
Priority to DE69527033T priority patent/DE69527033T2/en
Publication of JPH08162132A publication Critical patent/JPH08162132A/en
Priority to US10/372,961 priority patent/US7125626B2/en
Application granted granted Critical
Publication of JP3555999B2 publication Critical patent/JP3555999B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: To improve the energy efficiency and current density of an electrochemical device using a polymer solid electrolyte by integrally forming the polymer solid electrolyte adding a solid electrolytic resin contained in the porous void part of a drawn porous polytetrafluoroethylene (PTFE) on the surface of an electrode. CONSTITUTION: A polymer solid electrolyte 1 formed of a drawn porous polytetrafluoroethylene (PTFE) and a polymer solid electrolytic resin contained in its porous void part is integrally formed on the surface of an electrode 2, whereby a polymer solid electrolyte-electrode joined body is provided. When the polymer solid electrolytic resin solution is applied onto the electrode surface to form a film, for example, the drawn porous PTFE film is preliminarily arranged on the electrode surface. Thus, most of the resin component is contained in the void part of the drawn porous PTFE, and the resin partially penetrated into the reverse side contributes to the junction as a binder with the electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高分子固体電解質・電極
接合体に係わる。より詳しくは、イオン導電性高分子固
体電解質を使用する電気化学装置の電極・高分子固体電
解質接合体に係わり、例えば、リチウムイオン伝導性固
体電解質を使用したリチウム電池或いはプロトン伝導性
固体電解質を使用した水電解装置等に利用し得るが、最
適にはプロトン伝導性固体電解質を使用する高分子固体
電解質型燃料電池に使用するものである。
FIELD OF THE INVENTION The present invention relates to a polymer solid electrolyte / electrode assembly. More specifically, it relates to an electrode / polymer solid electrolyte assembly of an electrochemical device using an ion conductive polymer solid electrolyte, for example, a lithium battery using a lithium ion conductive solid electrolyte or a proton conductive solid electrolyte. Although it can be used for a water electrolysis device, etc., it is optimally used for a polymer solid oxide fuel cell using a proton conductive solid electrolyte.

【0002】[0002]

【従来の技術】高分子固体電解質を使用した電気化学装
置ではエネルギー効率の一層の向上が求められており、
そのため電極構造を工夫し、電極反応点を三次元化して
反応活性点を増す様にすると共に高分子固体電解質を電
極内部にも配置し、速やかにイオンが移動できる様にし
ている。発生したイオンを速やかに対極まで移動できる
様にするためには、電極内の固体電解質と隔膜である固
体電解質膜との接触が良く、又固体電解質膜自体の膜抵
抗が低い必要があり、そのためには膜厚はできるだけ薄
い方が好ましい。更に、燃料電池で使用されている高分
子固体電解質膜は常に湿潤状態で使用しなければイオン
伝導性の低下や、分極が発生して性能が低下するため、
反応ガスに加湿して、間接的に湿潤状態を維持するよう
にしているが、高分子固体電解質膜が薄いほど加湿効率
が良く、限界電流密度の向上が期待できる。
2. Description of the Related Art Electrochemical devices using polymer solid electrolytes are required to have further improved energy efficiency.
Therefore, the electrode structure has been devised so that the electrode reaction points are three-dimensionalized to increase the reaction active points, and the solid polymer electrolyte is placed inside the electrode so that the ions can move quickly. In order to allow the generated ions to move quickly to the counter electrode, it is necessary that the solid electrolyte in the electrode is in good contact with the solid electrolyte membrane that is the diaphragm, and the membrane resistance of the solid electrolyte membrane itself is low. It is preferable that the film thickness is as thin as possible. Further, the polymer solid electrolyte membrane used in the fuel cell must be used in a wet state at all times, because the ionic conductivity is reduced and polarization occurs, resulting in reduced performance.
The reaction gas is humidified to indirectly maintain the wet state. However, the thinner the solid polymer electrolyte membrane is, the better the humidification efficiency is and the expected improvement in the limiting current density can be expected.

【0003】また、従来は、固体電解質膜と電極をそれ
ぞれ別に用意し、これらを重ね合わせた後ホットプレス
により接合する方法が一般的に行われており、高分子固
体電解質としては市販品として膜状に成形されたもの
(例えば米国デュポン社製ナフィオン#115等)や、
その溶液をキャストして薄膜状に成形したもの等が使用
されている。またホットプレスせずに機械的にはさみこ
んで使用することも提案されている。
Further, conventionally, a method has been generally used in which a solid electrolyte membrane and an electrode are separately prepared, and these are superposed and then joined by hot pressing. As a polymer solid electrolyte, a commercially available membrane is used. Molded into a shape (for example, Nafion # 115 manufactured by DuPont, USA),
A product obtained by casting the solution into a thin film is used. It has also been proposed to mechanically sandwich and use it without hot pressing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ホット
プレスによる接合に於いては、温度により膜が軟化した
ところで圧力が加えられるため、膜厚をあまり薄くする
と膜が破壊されて、ガス漏れを生じたり、電極間の短絡
が発生したりしやすいという問題があった。このことは
電極の平滑性が悪いときには更に難しい問題となるた
め、極端に膜厚を薄くすることは困難であった。またホ
ットプレス時に電極自体も圧密化されるため、高電流密
度での作動を可能にするための電極の重要な要素である
通気性を損なうという問題もあった。
However, in joining by hot pressing, pressure is applied when the film softens due to temperature, so if the film is too thin, the film is broken and gas leakage occurs. However, there has been a problem that a short circuit between electrodes is likely to occur. This becomes a more difficult problem when the smoothness of the electrode is poor, and it has been difficult to extremely reduce the film thickness. Moreover, since the electrode itself is also consolidated during hot pressing, there is a problem that the air permeability, which is an important element of the electrode for enabling operation at a high current density, is impaired.

【0005】これら等の問題を解決し、またホットプレ
ス工程そのものを省略できるということで、機械的には
さみこんで使用する方法も提案されているが、電極との
接触を一様に保つこと及び接触抵抗自体を低く保つため
には、かなりの圧力を必要とし、膜厚を薄くした場合、
ホットプレスと同様の問題があった。また複数セルを積
み重ねて構成される燃料電池に於いては、電極または膜
の応力緩和等により長期にわたって一定の接触抵抗を保
つことは困難であり信頼性の低いものになってしまう。
Although a method of mechanically sandwiching the hot pressing step itself has been proposed in order to solve these problems and to omit the hot pressing step itself, it is necessary to keep the contact with the electrode uniform. To keep the contact resistance itself low, considerable pressure is required, and when the film thickness is reduced,
It had the same problem as the hot press. Further, in a fuel cell constructed by stacking a plurality of cells, it is difficult to maintain a constant contact resistance for a long period of time due to stress relaxation of electrodes or membranes, and reliability becomes low.

【0006】これらの問題を解決する為に、電極触媒、
好ましくはシート状に成形された電極または電極触媒面
上に、高分子固体電解質樹脂の溶液を塗布乾燥すること
により直接固体電解質膜を形成して接合体とし、更にこ
の様にして成形された接合体どうしを固体電解質膜面を
つき合わせてホットプレスするか、または高分子固体電
解質樹脂溶液またはその溶媒を塗布した後つき合わせて
一体化した後溶媒を除去するか、または電極面に高分子
固体電解質樹脂の溶液を塗布した後未乾燥状態のうちに
やはり電極または電極面に高分子固体電解質溶液を塗布
または塗布乾燥したものをつき合わせた後、溶媒を除去
して陽極/膜/陰極一体成形品とすることも提案されて
いる。しかしながら、電極触媒層面上に高分子固体電解
質樹脂溶液を塗布して膜を成形する方法では、電極構造
によっては造膜性が悪く、過度に溶液を塗布する必要が
あり、そのため電極触媒層内への高分子固体電解質樹脂
の浸透が過剰になり、ガス拡散性を阻害する可能性があ
った。また均一な膜厚とすることも難しく、膜厚を薄く
しようとする場合、やはり電極間の短絡を生じる可能性
が高いものであった。
In order to solve these problems, an electrode catalyst,
Preferably, a solid electrolyte membrane is directly formed on a sheet-shaped electrode or an electrode catalyst surface by coating and drying a solution of a polymer solid electrolyte resin to form a joined body, and the joined body is formed in this manner. The bodies are hot pressed against each other with the solid electrolyte membrane surfaces applied, or the solid polymer electrolyte resin solution or its solvent is applied and then integrated with each other to remove the solvent, or the solid polymer is applied to the electrode surface. After applying the electrolyte resin solution, in the undried state, also apply the solid polymer electrolyte solution to the electrode or the electrode surface, or apply and dry the solution, then remove the solvent and integrally form the anode / membrane / cathode It is also proposed to make it an item. However, in the method of forming a membrane by coating a polymer solid electrolyte resin solution on the surface of the electrode catalyst layer, the film-forming property is poor depending on the electrode structure, and it is necessary to coat the solution excessively. There was a possibility that the permeation of the solid polymer electrolyte resin of 1 was excessive and the gas diffusibility was hindered. Further, it is difficult to make the film thickness uniform, and when attempting to reduce the film thickness, there is a high possibility that a short circuit will occur between the electrodes.

【0007】本発明は、高分子固体電解質膜を使用した
電気化学装置のエネルギー効率、及び高電流密度での作
動を可能とすべく、固体電解質膜の厚さを薄くすること
を可能とし、しかも電極本来の物性を損なわずに、電極
との接触抵抗を低く且つ確実に確保し、また必ずしもヒ
ートプレス工程を必要としない電極/膜接合体または電
極/膜/電極接合体を得ることを目的とする。
The present invention makes it possible to reduce the thickness of the solid electrolyte membrane in order to enable the energy efficiency of the electrochemical device using the polymer solid electrolyte membrane and the operation at high current density to be possible. Aiming to obtain an electrode / membrane assembly or an electrode / membrane / electrode assembly that does not necessarily impair the physical properties of the electrode and ensures a low and reliable contact resistance with the electrode and does not necessarily require a heat pressing step. To do.

【0008】[0008]

【課題を解決するための手段】本発明によれば、上記目
的を達成するために、電極の表面に、延伸多孔質ポリテ
トラフルオロエチレンとその多孔質空隙部に含有された
高分子固体電解質樹脂とからなる高分子固体電解質を一
体に形成したことを特徴とする高分子固体電解質・電極
接合体を提供する。また、上記の高分子固体電解質の両
面に電極を一体に形成した電極/高分子固体電解質/電
極接合体とすることができる。
According to the present invention, in order to achieve the above object, a stretched porous polytetrafluoroethylene and a polymer solid electrolyte resin contained in the porous voids are formed on the surface of an electrode. Provided is a polymer solid electrolyte / electrode assembly, which is formed by integrally forming a polymer solid electrolyte comprising Further, an electrode / polymer solid electrolyte / electrode assembly in which electrodes are integrally formed on both surfaces of the above-mentioned polymer solid electrolyte can be used.

【0009】即ち、電極面上に高分子固体電解質樹脂溶
液を塗布製膜する際、延伸多孔質ポリテトラフルオロエ
チレン(PTFE)フィルムを予め電極面上に配置して
おくことにより、殆どの樹脂分が延伸多孔質PTFEの
空隙部に含有され、一部裏面まで浸透した樹脂が電極と
のバインダーとして接合に寄与する。一般的には、電極
内部にも電極反応点を増やすために高分子固体電解質樹
脂が含まれることが多いが、この場合には接合強度はよ
り強いものとなる。
That is, when a polymer solid electrolyte resin solution is applied onto the electrode surface to form a film, a stretched porous polytetrafluoroethylene (PTFE) film is placed on the electrode surface in advance, so that most of the resin can be removed. Is contained in the voids of the expanded porous PTFE, and the resin partially penetrating to the back surface contributes to the bonding as a binder with the electrode. Generally, a polymer solid electrolyte resin is often contained inside the electrode in order to increase the number of electrode reaction points, but in this case, the bonding strength becomes stronger.

【0010】同様の構造及び効果は延伸多孔質PTFE
膜に予め高分子固体電解質樹脂溶液を含浸したものを電
極面に配置した後に、溶媒を除去することによっても得
られる。この場合、延伸多孔質PTFE膜内の固体電解
質樹脂が電極に過度に浸透してしまい延伸多孔質PTF
E膜・高分子固体電解質樹脂複合膜が多孔質(ポーラ
ス)になってしまうことを防止するために、電極面に配
置する前に予め適度に溶媒を除去しておくことが好まし
いが、除去しすぎると接着力が低下し、抵抗が高くなっ
てしまう。
A similar structure and effect is obtained from expanded porous PTFE.
It can also be obtained by arranging a membrane impregnated with a polymer solid electrolyte resin solution in advance on the electrode surface and then removing the solvent. In this case, the solid electrolyte resin in the expanded porous PTFE membrane excessively penetrates into the electrode, and the expanded porous PTFE film
In order to prevent the E membrane / polymer solid electrolyte resin composite membrane from becoming porous, it is preferable to appropriately remove the solvent in advance before placing it on the electrode surface. If it is too much, the adhesive strength will decrease and the resistance will increase.

【0011】このため予め延伸多孔質PTFE膜に固体
電解質樹脂溶液を含浸した後、溶媒を除去して延伸多孔
質PTFE膜・固体電解質樹脂複合膜を形成した後、改
めてバインダーとして固体電解質樹脂溶液をその表面ま
たは電極面に塗布した後、溶媒の存在下に電極面上に配
置し、その後溶媒を除去して接合体としてもよい。以上
の高分子固体電解質と電極とを接合するに当って、電極
材料の表面に予め高分子固体電解質溶液をわずかに塗布
しておくこともできる。これは高分子固体電解質と電極
との接着性を向上させる効果がある。
Therefore, after the expanded porous PTFE membrane is impregnated with the solid electrolyte resin solution in advance, the solvent is removed to form the expanded porous PTFE membrane / solid electrolyte resin composite film, and then the solid electrolyte resin solution is again used as a binder. After applying on the surface or the electrode surface, it may be placed on the electrode surface in the presence of a solvent, and then the solvent may be removed to obtain a bonded body. When joining the above-mentioned solid polymer electrolyte and the electrode, a small amount of the solid polymer electrolyte solution may be previously applied to the surface of the electrode material. This has the effect of improving the adhesiveness between the polymer solid electrolyte and the electrode.

【0012】一方、延伸多孔質PTFEの片面上に予め
電極を形成しておいたものに於いても、同様の構造及び
効果が得られる。すなわち高分子固体電解質樹脂成分は
浸透できるが、触媒粉末等の固体成分は浸透出来ないよ
うな孔径を有する延伸多孔質PTFE膜を用意し、その
表面に電極形成成分である少なくとも触媒粉末或いは電
極成分粉末及び高分子固体電解質樹脂を含む成分を有す
るインク状物またはペースト状物を塗布するか、または
これら成分を有する溶液または分散液を濾過することに
より、表面に堆積させた後これらインク状物等の溶媒ま
たは分散媒を除去して、延伸多孔質PTFEの片面に電
極を形成した後、その裏面から更に高分子固体電解質樹
脂溶液を塗布、含浸させ、溶媒を除去して高分子固体電
解質膜を形成して接合体としても良い。
On the other hand, the same structure and effect can be obtained even in the case where the electrode is previously formed on one surface of the expanded porous PTFE. That is, an expanded porous PTFE membrane having a pore size such that a solid polymer electrolyte resin component can permeate but a solid component such as catalyst powder cannot permeate is prepared, and at least a catalyst powder or an electrode component which is an electrode forming component is provided on the surface thereof. After being deposited on the surface by applying an ink-like material or a paste-like material having a component containing a powder and a solid polymer electrolyte resin, or by filtering a solution or a dispersion liquid having these components, these ink-like substances, etc. After removing the solvent or dispersion medium, an electrode is formed on one surface of the expanded porous PTFE, and then a polymer solid electrolyte resin solution is further applied and impregnated from the back surface, and the solvent is removed to form a polymer solid electrolyte membrane. It may be formed into a bonded body.

【0013】また逆に高分子固体電解質膜を予め形成し
た後、その表面に電極を形成することによっても本発明
の構造、効果を得ることができる。すなわち、延伸多孔
質PTFEの空隙中に予め高分子固体電解質樹脂溶液を
含浸したもの或いはその溶媒を適当に除去することによ
り半乾燥状態にあるもの或いは完全に除去したもののい
ずれかを用意し、その表面に、少なくとも高分子固体電
解質樹脂成分を含む電極形成成分から成るインク状また
はペースト状物を塗布し、溶媒を除去することにより接
合体とすることができる。この場合、電極形成成分溶液
が高分子固体電解質樹脂を含むことが必須条件であり、
含まない場合には接合は不完全なものとなるため、さら
にヒートブレスする必要が生じてしまい、また充分な性
能も得られない。
On the contrary, the structure and effect of the present invention can be obtained by forming the solid polymer electrolyte membrane in advance and then forming the electrode on the surface thereof. That is, either the one obtained by previously impregnating the polymer solid electrolyte resin solution into the voids of the expanded porous PTFE or the one in a semi-dried state by appropriately removing the solvent or the one completely removed is prepared, A joined body can be obtained by applying an ink-like or paste-like substance comprising an electrode forming component containing at least a polymer solid electrolyte resin component on the surface and removing the solvent. In this case, it is an essential condition that the electrode forming component solution contains a polymer solid electrolyte resin,
If it is not contained, the joining will be incomplete, and further heat brace will be required, and sufficient performance cannot be obtained.

【0014】いずれの方法においても、溶媒除去後に1
20℃〜180℃程度の温度で十分に加熱することによ
り高分子固体電解質樹脂の構造が安定し、接着力も特に
プレス圧をかけなくても十分なものとなる。勿論、さら
にヒートプレスしてもよいが特に必要ではない。更に、
陰陽極の接合に対しても同様の方法が適用できる。即
ち、前記のようにして電極/膜接合体を陽極、陰極それ
ぞれに対して準備するか、又はいずれか一方を準備した
後、その膜側の表面かまたはそれと接する対向電極の表
面に高分子固体電解質溶液をバインダーとして適量塗布
した後、つき合わせ、溶剤を除去し、加熱することによ
り陽極/膜/陰極接合体または陽極/膜/膜/陰極接合
体を得ることができる。勿論、電極/膜接合体を準備し
た後ではなく、電極/膜/電極を一工程で構成すること
も可能である。即ち、下記の如くして電極/膜/電極接
合体を製造することもできる。
In either method, 1 is obtained after removing the solvent.
By sufficiently heating at a temperature of about 20 ° C. to 180 ° C., the structure of the polymer solid electrolyte resin becomes stable, and the adhesive force becomes sufficient without applying a pressing pressure. Of course, further heat pressing may be performed, but it is not particularly necessary. Furthermore,
The same method can be applied to the joining of negative and positive electrodes. That is, as described above, the electrode / membrane assembly is prepared for each of the anode and the cathode, or either one is prepared, and then the polymer solid is formed on the surface of the membrane side or on the surface of the counter electrode in contact therewith. After applying an appropriate amount of an electrolyte solution as a binder, butting them together, removing the solvent, and heating, an anode / membrane / cathode junction or an anode / membrane / membrane / cathode junction can be obtained. Of course, it is also possible to construct the electrode / membrane / electrode in one step, not after preparing the electrode / membrane assembly. That is, the electrode / membrane / electrode assembly can be manufactured as follows.

【0015】 電極/高分子固体電解質接合体の高分
子固体電解質面に高分子固体電解質樹脂の溶媒または溶
液を塗布し、同様の電極/高分子固体電解質接合体また
は電極をつき合わせた後、溶媒を除去し、その後熱処理
する。 電極上に延伸多孔質PTFE膜を配置した後、その
表面に高分子固体電解質樹脂溶液を塗布含浸させ、さら
にその表面に同様の電極/高分子固体電解質接合体また
は電極を配置し、次いで溶媒を除去し、その後熱処理す
る。
A solvent or solution of a polymer solid electrolyte resin is applied to the polymer solid electrolyte surface of the electrode / polymer solid electrolyte conjugate, and the same electrode / polymer solid electrolyte conjugate or electrodes are brought into contact with each other. Are removed and then heat treated. After arranging the expanded porous PTFE membrane on the electrode, coating and impregnating the surface with the polymer solid electrolyte resin solution, further arranging a similar electrode / polymer solid electrolyte conjugate or electrode on the surface, and then adding a solvent Removed and then heat treated.

【0016】 電極触媒層面上に、予め延伸多孔質P
TFEの空隙部に高分子固体電解質樹脂溶液を塗布含浸
させた膜を配置し、さらにその表面に電極を配置した後
溶媒を除去し、その後熱処理する。 予め延伸多孔質PTFE膜の空隙部に高分子固体電
解質樹脂溶液を含浸し、溶媒を除去して得た延伸多孔質
PTFE膜・高分子固体電解質樹脂−複合電解質を用意
し、その表面または電極面に高分子固体電解質樹脂の溶
媒または溶液を塗布した後、その複合電解質の両面に電
極を配置し、溶媒を除去した後、熱処理する。
On the surface of the electrode catalyst layer, previously drawn porous P
A membrane in which a polymer solid electrolyte resin solution is applied and impregnated is arranged in the void portion of TFE, and an electrode is further arranged on the surface thereof, and then the solvent is removed, followed by heat treatment. The porous porous PTFE membrane / polymer solid electrolyte resin-composite electrolyte obtained by previously impregnating the polymer porous electrolyte resin solution into the voids of the expanded porous PTFE membrane and removing the solvent is prepared, and the surface or electrode surface thereof is prepared. After applying the solvent or solution of the polymer solid electrolyte resin to, the electrodes are arranged on both surfaces of the composite electrolyte, the solvent is removed, and then heat treatment is performed.

【0017】 またはと同様に予め延伸多孔質P
TFE膜の空隙部に高分子固体電解質樹脂溶液を含浸し
たもの、或いはこれから一旦溶媒を除去したもの、或い
は溶媒除去後更に高分子固体電解質溶液を塗布したもの
の両表面に、電極形成成分(例えば触媒粉末と高分子固
体電解質樹脂またはPTFEまたはこれらの混合物)を
有するペースト状またはインク状成分を塗布後に、溶媒
を除去し、その後熱処理する。
Similarly to the above, the previously drawn porous P
An electrode-forming component (for example, a catalyst) is formed on both surfaces of the TFE membrane impregnated with the polymer solid electrolyte resin solution, the solvent once removed therefrom, or the polymer solid electrolyte solution coated after removing the solvent. After applying a paste-like or ink-like component having a powder and a solid polymer electrolyte resin or PTFE or a mixture thereof, the solvent is removed and then heat treatment is performed.

【0018】このようにして得た電極/膜接合体または
電極/膜/電極接合体では、電極上で直接に高分子固体
電解質を形成させるか、または膜形成後の未だ接着性の
よい状態で電極上に接合されるため、特にヒートプレス
などを行わなくても電極との密着力が高く、抵抗の小さ
い接合が可能であり、また延伸多孔質PTFE膜を高分
子固体電解質形成のマトリックスとして使用しているた
めに、多孔質の電極上といえども確実に一定の膜厚にし
かも薄膜として形成することができ、また強度の高い膜
とすることができる。さらに、例えば、ヒートプレス時
や電池組立時の圧縮等による高分子固体電解質樹脂のク
リープによる短絡の防止あるいは抵抗のばらつきの発生
の防止もできる。また予め延伸多孔質PTFE・高分子
固体電解質複合膜とした場合にも、高分子電解質樹脂が
未だ溶媒を含み、接着性はあるがそれのみでは強度がな
く、取扱できない状態での取扱を可能にする。このこと
は表面に樹脂溶液を塗布した場合にも同様の利点があ
り、まさに延伸多孔質PTFE膜との組合せにより初め
て本発明のような接合体を得ることが可能になったので
ある。
In the electrode / membrane assembly or the electrode / membrane / electrode assembly thus obtained, the polymer solid electrolyte is directly formed on the electrode, or after the membrane formation, the polymer solid electrolyte is still in a good adhesive state. Since it is bonded on the electrode, it can be bonded to the electrode with high adhesion and low resistance without heat pressing, and the expanded porous PTFE membrane is used as a matrix for forming a polymer solid electrolyte. Therefore, even on the porous electrode, it is possible to surely form a film having a constant film thickness and a thin film, and a film having high strength can be obtained. Further, for example, it is possible to prevent short circuit due to creep of the polymer solid electrolyte resin due to compression at the time of heat pressing or battery assembly or to prevent occurrence of variation in resistance. In addition, even when a stretched porous PTFE / polymer solid electrolyte composite membrane is prepared in advance, the polymer electrolyte resin still contains a solvent, and it has adhesiveness but is not strong enough to handle it in a state where it cannot be handled. To do. This has the same advantage when the resin solution is applied to the surface, and it is possible to obtain the joined body according to the present invention for the first time by combining with the expanded porous PTFE membrane.

【0019】本発明に用いる電極としては、その製法、
構造等に特に限定されるものではなく、電極としての形
態を有する物であれば使用し得る。すなわちカーボン
ペーパー、金属繊維不織布、メッシュ等の集電体上に、
触媒粉末とPTFE、またはこれに更に高分子固体電解
質樹脂等を加えた混合粉末をプレスしたもの。 と
同様の混合成分を有するペーストをやはり同様集電体上
に塗布成形したもの、 と同様の混合物をキャスト
等により膜状に成形したもの、 と同様成分を押出
またはロール圧延等の手段によりシート状に成形したも
のなどが挙げられるが、特にこれにこだわるものではな
い。さらに逆に、前述したようにEPTFEの空隙中に
高分子固体電解質を含浸した後、その表面にと同様の
混合成分を有するペースト状物あるいはインク状物を塗
布して形成した様なものであっても良い。
The electrode used in the present invention is manufactured by
The structure is not particularly limited, and any material having a form as an electrode can be used. That is, on a collector such as carbon paper, metal fiber nonwoven fabric, mesh,
A product obtained by pressing a catalyst powder and PTFE, or a mixed powder obtained by further adding a polymer solid electrolyte resin or the like thereto. A paste having the same mixed components as the above is also applied and molded on the current collector, a similar mixture is formed into a film by casting or the like, and the same components as a sheet by means such as extrusion or roll rolling. Examples include those molded into, but are not particularly limited to this. Further, on the contrary, it is formed by impregnating the polymer solid electrolyte into the voids of EPTFE as described above and then coating the surface thereof with a paste-like material or an ink-like material having the same mixed components. May be.

【0020】本発明に使用する延伸多孔質ポリテトラフ
ルオロエチレン(PTFE)膜はPTFEシートを延伸
多孔化して得られる、多数の微小結節とそれらの微小結
節から延出して微小結節相互を三次元的に連結する微細
繊維とからなる構造を有する多孔質PTFE膜である。
本発明に好ましい延伸多孔質PTFE膜の膜厚は1〜1
00μm、好ましくは3〜30μm、孔径は0.05〜
5μm、好ましくは0.5〜2μm、空隙率は60〜9
8%、好ましくは80〜92%である。膜厚が薄すぎる
とやはり短絡や、ガス漏れ(クロスリーク)が発生しや
すくなり、厚すぎると電気抵抗が高くなり、本発明によ
る利点が損なわれる。孔径が小さすぎると高分子固体電
解質の含浸が困難となり、大きすぎると高分子固体電解
質の保持力が弱くなり、また補強効果も弱くなる。空隙
率が小さすぎると固体電解質膜としての抵抗が大きくな
り、大きすぎると一般にEPTFE自体の強度が弱くな
り補強効果が得られない。
The stretched porous polytetrafluoroethylene (PTFE) membrane used in the present invention is obtained by stretching and stretching a PTFE sheet, and a large number of micronodules and three-dimensionally extending from these micronodules are formed. It is a porous PTFE membrane having a structure composed of fine fibers connected to.
The preferred thickness of the expanded porous PTFE membrane for the present invention is 1 to 1
00 μm, preferably 3 to 30 μm, and the pore size is 0.05 to
5 μm, preferably 0.5 to 2 μm, porosity 60 to 9
It is 8%, preferably 80 to 92%. If the film thickness is too thin, short circuits and gas leaks (cross leaks) are likely to occur. If the film thickness is too thick, the electrical resistance increases, and the advantages of the present invention are impaired. If the pore size is too small, impregnation with the solid polymer electrolyte becomes difficult, and if too large, the retention force of the solid polymer electrolyte becomes weak and the reinforcing effect also becomes weak. If the porosity is too small, the resistance as a solid electrolyte membrane increases, and if it is too large, the strength of EPTFE itself generally weakens and the reinforcing effect cannot be obtained.

【0021】さらに場合によっては、この延伸多孔質P
TFEに電子伝導性の生じない範囲で白金などの触媒
粉、カーボンブラック、黒鉛等の導電性粉末、アルミナ
等のセラミック粉等の各種微粉末を含ませても良い。こ
の場合には、PTFEの乳化重合後のディスパージョン
とこれら粉末の分散液を混合後、共凝集させて得られる
様な一次粒子レベルでの均一混合原料を用意し、あとは
前記PTFE単体原料と同様に加工することによって得
られる。
Further, in some cases, the expanded porous P
TFE may contain various fine powders such as catalyst powder such as platinum, conductive powder such as carbon black and graphite, ceramic powder such as alumina, etc. within a range where electron conductivity does not occur. In this case, a dispersion after the emulsion polymerization of PTFE and a dispersion of these powders are mixed, and then a uniform mixed raw material at the primary particle level is prepared so as to be co-aggregated. It is obtained by the same processing.

【0022】高分子固体電解質樹脂としては、用途に応
じて各種のものが使用できるが、例えば、ポリエチレン
オキサイド−アルカリ金属塩複合体や、これを延伸多孔
質PTFEに含浸後架橋処理したものなどが挙げられ
る。また燃料電池としてはパーフロロスルフォン酸樹脂
が挙げられ、これはデュポン社よりナフィオン(登録商
標)として販売されており、溶液としてはナフィオンN
R−50として入手できる。そのほか各種の炭化水素
系、フッ素系のイオン交換樹脂が用いられる。また場合
によってはこの高分子固体電解質に、電子導電性の生じ
ない範囲で白金などの触媒やカーボン粉末、各種セラミ
クス粉末を加えても良い。
As the polymer solid electrolyte resin, various kinds can be used depending on the application, but for example, a polyethylene oxide-alkali metal salt composite or a product obtained by impregnating this with expanded porous PTFE and then subjecting it to crosslinking treatment. Can be mentioned. Further, as the fuel cell, there is a perfluorosulphonic acid resin, which is sold as Nafion (registered trademark) by DuPont, and as a solution, Nafion N is used.
Available as R-50. In addition, various hydrocarbon-based and fluorine-based ion exchange resins are used. In some cases, a catalyst such as platinum, carbon powder or various ceramics powder may be added to the polymer solid electrolyte within a range in which electronic conductivity does not occur.

【0023】これら樹脂溶液の溶媒としては一般に各種
炭化水素系の有機溶剤、水、あるいはこれらの混合溶剤
が使用される。延伸多孔質PTFE膜に樹脂溶液を塗布
含浸する場合、樹脂の分子量や溶媒の種類によっては含
浸しにくいことがあるが、この場合、濃度調整や界面活
性剤の添加、延伸多孔質PTFE膜の表面処理など、適
宜適切な処理をすればよい。
As the solvent for these resin solutions, various hydrocarbon-based organic solvents, water, or mixed solvents thereof are generally used. When a stretched porous PTFE membrane is coated and impregnated with a resin solution, it may be difficult to impregnate it depending on the molecular weight of the resin and the type of solvent, but in this case, concentration adjustment, addition of a surfactant, surface of the stretched porous PTFE membrane Appropriate appropriate processing such as processing may be performed.

【0024】図1(A)(B)に本発明の高分子固体電
解質・電極接合体を示す。図1中、1は高分子固体電解
質、2は電極、3は高分子固体電解質膜内のEPTFE
の(微小結節、4は高分子固体電解質膜内の微細繊維、
5は高分子固体電解質である。本発明の高分子固体電解
質・電極接合体を各種の電気化学装置に使用する態様は
従来の装置と同様であることができる。
1A and 1B show the polymer solid electrolyte / electrode assembly of the present invention. In FIG. 1, 1 is a solid polymer electrolyte, 2 is an electrode, 3 is EPTFE in the solid polymer electrolyte membrane.
Of (micro nodules, 4 are fine fibers in the polymer solid electrolyte membrane,
5 is a solid polymer electrolyte. The mode of using the polymer solid electrolyte / electrode assembly of the present invention in various electrochemical devices can be the same as that of conventional devices.

【0025】図2に燃料電池の例を示す。図2中、1は
高分子固体電解質樹脂・PTFE複合膜、2,3は電
極、7,8は集電体、9,10はセパレータ板、11,
12はガス供給溝である。高分子固体電解質1/電極2
の接合体又は電極2/高分子固体電解質1/電極3の接
合体として本発明の高分子固体電解質・電極接合体を使
用する。
FIG. 2 shows an example of the fuel cell. In FIG. 2, 1 is a solid polymer electrolyte resin / PTFE composite membrane, 2 and 3 are electrodes, 7 and 8 are collectors, 9 and 10 are separator plates, 11 and
Reference numeral 12 is a gas supply groove. Polymer solid electrolyte 1 / electrode 2
The polymer solid electrolyte / electrode assembly of the present invention is used as the assembly or the electrode 2 / polymer solid electrolyte 1 / electrode 3 assembly.

【0026】こうして構成された高分子固体電解質燃料
電池では、図2を参照すると、ガス供給溝11にO2
溝12にH2 を供給すると、電極2内でO2 +4H+
4e - →2H2 O、電極3内で2H2 →4H+ +4e-
の反応が起こり、4H+ は高分子固体電解質1を通って
電極3から電極2へ流れ、4e- は外部負荷を通ること
により電気エネルギーとなる。作動温度は60℃から1
00℃程度、好ましくは80℃程度である。
Polymer solid electrolyte fuel constituted in this way
In the battery, referring to FIG.2To
H in groove 122Is supplied, O in the electrode 22+ 4H++
4e -→ 2H2O, 2H in electrode 32→ 4H++ 4e-
Reaction occurs, 4H+Through the solid polymer electrolyte 1
Flow from electrode 3 to electrode 2 4e-Is through an external load
Becomes electric energy. Operating temperature is from 60 ℃ to 1
The temperature is about 00 ° C, preferably about 80 ° C.

【0027】なお、本発明の高分子固体電解質・電極接
合体は高分子固体電解質燃料電池のほか、水電解装置や
オゾン発生器などにも使用できる。
The polymer solid electrolyte / electrode assembly of the present invention can be used not only for polymer solid electrolyte fuel cells but also for water electrolysis devices, ozone generators and the like.

【0028】[0028]

【実施例】【Example】

実施例1 グラファイト95%、PTFE5%から成るシート状の
リチウムイオン電池用黒鉛電極の表面に架橋剤を加えた
アルキレンオキサイド重合体オリゴマー及び塩素酸リチ
ウムの混合溶液を塗布した後、膜厚3μm、空孔率93
%の延伸多孔質PTFE(ジャパンゴアテックス製;ゴ
アテックス)をその表面に固定し、その上から電極に塗
布したのと同じ溶液を塗布含浸した後UVランプを照射
し架橋して電極/電解質接合体を得た。
Example 1 A sheet-like graphite electrode for a lithium ion battery composed of 95% graphite and 5% PTFE was coated with a mixed solution of an alkylene oxide polymer oligomer and a lithium chlorate having a cross-linking agent applied thereto, and then a film thickness of 3 μm was obtained. Porosity 93
% Expanded porous PTFE (manufactured by Japan GORE-TEX; GORE-TEX) was fixed on the surface, and the same solution as that applied to the electrode was applied and impregnated onto the surface, followed by irradiation with a UV lamp to crosslink and electrode / electrolyte bonding. Got the body

【0029】実施例2 カーボンブラック65%、PTFE35%から成る混合
物に液状潤滑剤としてのソルベントナフサを混合した後
押出、圧延シート化後液状潤滑剤を加熱除去すると同時
に5倍に延伸し、さらにロールを通して膜厚を1/5に
した後350℃で加熱焼成して、膜厚50μm、孔径1
μm、空孔率78%の導電性通気性シートを得た。この
シートをテフロン含浸処理をした厚さ0.2mmのカーボ
ンペーパーにホットプレスにより接着して、カーボンペ
ーパーを集電体とする、ガス拡散層を形成した。
Example 2 Solvent naphtha as a liquid lubricant was mixed with a mixture of carbon black 65% and PTFE 35%, and the mixture was extruded and rolled into a sheet. The liquid lubricant was removed by heating, and at the same time stretched 5 times and further rolled. To a thickness of 1/5 and then heated and baked at 350 ° C. to obtain a film thickness of 50 μm and a pore size of 1
A conductive air-permeable sheet having a micrometer and a porosity of 78% was obtained. This sheet was bonded to a Teflon-impregnated carbon paper having a thickness of 0.2 mm by hot pressing to form a gas diffusion layer using the carbon paper as a current collector.

【0030】これとは別に、白金25重量%担持したカ
ーボンブラック(以後白金カーボンとする)をIPAに
分散させた後パーフロロスルフォン酸樹脂溶液を加え更
に分散させて白金カーボン70に対しパーフロロスルフ
ォン酸樹脂30の割合で含む、インク状溶液を準備し
た。この溶液を前記ガス拡散層の上に塗布した後、溶媒
を風乾により除去して触媒層を形成して高分子固体電解
質型燃料電池の電極を作製した。この時の白金量は0.
3mg/cm2 であった。
Separately from this, carbon black supporting 25% by weight of platinum (hereinafter referred to as platinum carbon) is dispersed in IPA, and then a perfluororosulphonic acid resin solution is added to further disperse the perfluorosulphone to platinum carbon 70. An ink-like solution containing the acid resin 30 was prepared. After coating this solution on the gas diffusion layer, the solvent was removed by air-drying to form a catalyst layer, and an electrode for a polymer electrolyte fuel cell was prepared. At this time, the amount of platinum is 0.
It was 3 mg / cm 2 .

【0031】次に、この電極の触媒層の上に膜厚20μ
m、空隙率89%の延伸多孔質PTFEシートを固定し
た後その表面に濃度5%のパーフロロスルフォン酸樹脂
溶液を塗布した後風乾した。この塗布−風乾を5回繰り
返して、延伸多孔質PTFE膜の空隙部及び表面にパー
フロロスルフォンサン樹脂が充填された、半透明の膜を
形成した。こうして得られた成形体を130℃24時間
加熱して本発明の接合体Aを得た。
Next, a film thickness of 20 μm is formed on the catalyst layer of this electrode.
An expanded porous PTFE sheet having m and a porosity of 89% was fixed, a 5% concentration perfluorosulphonic acid resin solution was applied to the surface thereof, and then air-dried. This coating-air drying was repeated 5 times to form a semi-transparent film in which the expanded porous PTFE film was filled with perfluorosulphone sun resin in the voids and on the surface. The molded body thus obtained was heated at 130 ° C. for 24 hours to obtain a bonded body A of the present invention.

【0032】実施例3 膜厚15μmの実施例2で使用したのと同じ延伸多孔質
PTFEシートの4辺を固定した後、濃度5%のパーフ
ロロスルフォン酸樹脂溶液を塗布含浸乾燥した。これを
3回くりかえして、完全に半透明の延伸多孔質PTFE
/パーフロロスルフォン酸樹脂複合膜を得た後、更にパ
ーフロロスルフォン酸樹脂溶液を塗布し、直後に実施例
2で使用したのと同じ高分子固体電解質型燃料電池の電
極を接着した後溶媒を除去し、さらに130℃24時間
加熱して本発明の接合体Bを得た。
Example 3 After fixing the four sides of the same stretched porous PTFE sheet as used in Example 2 having a film thickness of 15 μm, a perfluorosulphonic acid resin solution having a concentration of 5% was applied and impregnated and dried. Repeat this 3 times to obtain completely translucent expanded porous PTFE
/ Perfluorosulphonic acid resin composite membrane was obtained, then a perfluorosulphonic acid resin solution was further applied, and immediately after the same electrode of the polymer electrolyte fuel cell as used in Example 2 was adhered, a solvent was added. It was removed and further heated at 130 ° C. for 24 hours to obtain a joined body B of the present invention.

【0033】実施例4 実施例3に於いて最後にパーフロロスルフォン酸樹脂溶
液を塗布する代わりに、電極にIPAを塗布し、直後に
延伸多孔質PTFE/パーフロロスルフォン酸樹脂複合
膜に接着した他は同様にして本発明の接合体Cを得た。 実施例5 実施例2で作製した接合体Aを2枚用意し、その内の1
枚のパーフロロスルフォン酸樹脂膜の表面に濃度2%の
パーフロロスルフォン酸樹脂溶液を塗布した後、間に空
気の入らないように2枚をパーフロロスルフォン酸樹脂
膜面をつき合わせて圧着し、風乾により溶剤を除去した
後130℃24時間加熱して本発明の電極/膜/膜/電
極接合体AAを得た。
Example 4 Instead of finally applying the perfluororosulphonic acid resin solution in Example 3, IPA was applied to the electrode and immediately after that, it was adhered to the expanded porous PTFE / perfluorosulphonic acid resin composite film. Others were similarly obtained and the joined body C of this invention was obtained. Example 5 Two bonded bodies A prepared in Example 2 were prepared.
After applying a 2% perfluorosulphonic acid resin solution to the surface of one perfluorosulphonic acid resin film, press the two perfluorosulphonic acid resin film surfaces together with no air in between. After removing the solvent by air-drying, it was heated at 130 ° C. for 24 hours to obtain the electrode / membrane / membrane / electrode assembly AA of the present invention.

【0034】実施例6 膜厚30μmの延伸多孔質PTFEを使用した他は、実
施例3と同様にして延伸多孔質PTFE/パーフロロス
ルフォン酸樹脂を得た後更にその両面に濃度2%のパー
フロロスルフォン酸樹脂溶液を塗布し、続いて実施例2
で使用したのと同じ高分子固体電解質燃料電池の電極2
枚で挟み込むようにして圧接し、続いて風乾により溶媒
を除去した後、130℃24時間加熱して、本発明の電
極/膜/電極接合体を得た。
Example 6 An expanded porous PTFE / perfluorosulphonic acid resin was obtained in the same manner as in Example 3 except that an expanded porous PTFE having a film thickness of 30 μm was used. Fluorosulphonic acid resin solution was applied, followed by Example 2
Electrode 2 of the same solid polymer electrolyte fuel cell as used in
The sheets were sandwiched and pressed together, and the solvent was removed by air drying, followed by heating at 130 ° C. for 24 hours to obtain an electrode / membrane / electrode assembly of the present invention.

【0035】実施例7 実施例2で作成したのと同じ高分子固体電解質燃料電池
の電極の上に、厚さ40μm、空隙率92%の延伸多孔
質PTFEを固定した後、濃度5%のパーフロロスルフ
ォン酸樹脂溶液を塗布乾燥した。これを3回繰り返した
後、4回目を塗布した後乾燥せずに、もう1枚の電極を
圧接し、風乾により溶媒を除去し、130℃24時間加
熱して本発明の電極/膜/電極接合体を得た。
Example 7 An expanded porous PTFE having a thickness of 40 μm and a porosity of 92% was fixed on the electrode of the same solid polymer electrolyte fuel cell as that prepared in Example 2, and then a concentration of 5% was applied. The fluorosulphonic acid resin solution was applied and dried. After repeating this 3 times, the fourth electrode was applied and then not dried, and then another electrode was pressure-contacted, the solvent was removed by air drying, and the electrode / membrane / electrode of the present invention was heated at 130 ° C. for 24 hours. A joined body was obtained.

【0036】実施例8 実施例5で得た接合体AAを使用してその片面に加湿し
た水素を供給し、もう1方の面に酸素を供給し、80℃
加熱下で燃料電池として作動させたところ1A/cm2
0.78Vの性能が得られた。
Example 8 The joined body AA obtained in Example 5 was used to supply humidified hydrogen to one surface thereof and oxygen to the other surface thereof, and the temperature was changed to 80 ° C.
When operated as a fuel cell under heating, a performance of 0.78 V was obtained at 1 A / cm 2 .

【0037】[0037]

【発明の効果】本発明の、電極の表面に、延伸多孔質P
TFEとその多孔質空隙部に含有された高分子固体電解
質樹脂とからなる高分子固体電解質を一体に形成した高
分子固体電解質・電極接合体によれば、電極の物性を損
なうことなく、電極との接触抵抗を低く確保しながら、
かつ必ずしもヒートプレス工程を必要としないで、高分
子固体電解質膜の厚さを薄くすることができるので、電
気化学装置のエネルギー効率及び電流密度を向上させる
ことが可能である。
EFFECT OF THE INVENTION Stretched porous P on the surface of the electrode of the present invention.
According to the polymer solid electrolyte / electrode assembly in which the polymer solid electrolyte composed of TFE and the polymer solid electrolyte resin contained in the porous void portion is integrally formed, the electrode can be formed without impairing the physical properties of the electrode. While ensuring low contact resistance of
Moreover, since the thickness of the solid polymer electrolyte membrane can be reduced without necessarily requiring a heat pressing step, it is possible to improve the energy efficiency and current density of the electrochemical device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の高分子固体電解質/電極接合
体(A)及び電極/高分子固体電解質/電極接合体
(B)の断面図である。
FIG. 1 is a cross-sectional view of a polymer solid electrolyte / electrode assembly (A) and an electrode / polymer solid electrolyte / electrode assembly (B) of an example of the present invention.

【図2】燃料電池の例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a fuel cell.

【符号の説明】[Explanation of symbols]

1…高分子固体電解質複合膜 2,3…電極 4…微小結節 5…微細繊維 7,8…集電体 9,10…セパレータ 11,12…ガス供給溝 1 ... Polymer solid electrolyte composite membrane 2, 3 ... Electrode 4 ... Micro nodule 5 ... Fine fiber 7, 8 ... Current collector 9, 10 ... Separator 11, 12 ... Gas supply groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極の表面に、延伸多孔質ポリテトラフ
ルオロエチレンとその多孔質空隙部に含有された高分子
固体電解質樹脂とからなる高分子固体電解質を一体に形
成したことを特徴とする高分子固体電解質・電極接合
体。
1. A polymer solid electrolyte comprising a stretched porous polytetrafluoroethylene and a polymer solid electrolyte resin contained in the porous voids is integrally formed on the surface of the electrode. Molecular solid electrolyte / electrode assembly.
【請求項2】 前記高分子固体電解質の両面に電極を一
体に形成したことを特徴とする請求項1記載の高分子固
体電解質・電極接合体。
2. The polymer solid electrolyte / electrode assembly according to claim 1, wherein electrodes are integrally formed on both surfaces of the polymer solid electrolyte.
JP30367294A 1994-12-07 1994-12-07 Method for producing polymer solid electrolyte / electrode assembly for polymer electrolyte fuel cell Expired - Lifetime JP3555999B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP30367294A JP3555999B2 (en) 1994-12-07 1994-12-07 Method for producing polymer solid electrolyte / electrode assembly for polymer electrolyte fuel cell
US08/568,100 US6054230A (en) 1994-12-07 1995-12-06 Ion exchange and electrode assembly for an electrochemical cell
EP95308882A EP0718903B1 (en) 1994-12-07 1995-12-07 An ion exchange membrane and electrode assembly for an electrochemical cell
EP01129420A EP1217680B1 (en) 1994-12-07 1995-12-07 Method for producing a unitary assembly for an electrochemical cell
DE69527033T DE69527033T2 (en) 1994-12-07 1995-12-07 Ion exchange membrane electrode assembly for an electrochemical cell
US10/372,961 US7125626B2 (en) 1994-12-07 2003-02-26 Ion exchange assembly for an electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30367294A JP3555999B2 (en) 1994-12-07 1994-12-07 Method for producing polymer solid electrolyte / electrode assembly for polymer electrolyte fuel cell

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2002220324A Division JP2003142122A (en) 2002-07-29 2002-07-29 High polymer solid electrolyte-electrode united body for high polymer electrolyte type fuel cell
JP2002220329A Division JP4262942B2 (en) 2002-07-29 2002-07-29 Polymer solid electrolyte / electrode assembly for lithium battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08162132A true JPH08162132A (en) 1996-06-21
JP3555999B2 JP3555999B2 (en) 2004-08-18

Family

ID=17923846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30367294A Expired - Lifetime JP3555999B2 (en) 1994-12-07 1994-12-07 Method for producing polymer solid electrolyte / electrode assembly for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3555999B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520445A (en) * 1997-10-10 2001-10-30 ミネソタ マイニング アンド マニュファクチャリング カンパニー Membrane electrode assembly
JP2001520446A (en) * 1997-10-10 2001-10-30 ミネソタ マイニング アンド マニュファクチャリング カンパニー Manufacturing method of membrane electrode
WO2002026883A1 (en) * 2000-09-27 2002-04-04 Asahi Kasei Kabushiki Kaisha Perfluorocarbon copolymer dispersion composition
US6444359B1 (en) 1998-12-18 2002-09-03 Nec Corporation Liquid electrolyte solution including a halogenated and aliphatic polyolefin dissolved therein and secondary battery
JP2002539587A (en) * 1999-03-06 2002-11-19 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Manufacture of tubular fuel cells, fuel cell modules, basic elements and ion exchange membranes
EP1304754A1 (en) * 2000-07-06 2003-04-23 Matsushita Electric Industrial Co., Ltd. Method for producing electrolyte film-electrode joint
WO2003068853A1 (en) 2002-02-15 2003-08-21 Toyo Boseki Kabushiki Kaisha Cluster ion exchange membrane, and electrolyte membrane electrode connection body
JP2003272664A (en) * 2002-03-18 2003-09-26 Asahi Kasei Corp Impregnated film and its manufacturing method
US6723464B2 (en) 2000-05-31 2004-04-20 Japan Gore-Tex, Inc. Membrane-electrode-assembly with solid polymer electrolyte
WO2004088678A1 (en) * 2003-03-28 2004-10-14 Sumitomo Chemical Company, Limited Continuous process for producing polymer electrolyte membrane and apparatus therefor
JP2005235413A (en) * 2004-02-17 2005-09-02 Seiko Epson Corp Manufacturing method of solid polymer electrolyte membrane, solid polymer electrolyte membrane, and fuel cell
US6977234B2 (en) 2001-01-19 2005-12-20 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell electrolyte film-electrode bond
JP2006502855A (en) * 2002-10-16 2006-01-26 アクアテック インターナショナル コーポレイション Method for producing ion exchange medium
JP2006032004A (en) * 2004-07-13 2006-02-02 Toyota Motor Corp Manufacturing method for fuel cell
JP2006147257A (en) * 2004-11-17 2006-06-08 Toyota Motor Corp Manufacturing method of membrane-electrode junction, membrane-electrode junction, and fuel cell
US7172829B2 (en) 2002-10-10 2007-02-06 Matsushita Electric Industrial Co., Ltd. Fuel cell and process for the production of same
JP2007109657A (en) * 2005-10-14 2007-04-26 Gm Global Technology Operations Inc Multi-layered polymeric electrolyte membrane for fuel cell
WO2008001923A1 (en) * 2006-06-26 2008-01-03 Toyota Jidosha Kabushiki Kaisha Porous film for electrolyte film in fuel cell and process for producing the same
JP2008084576A (en) * 2006-09-26 2008-04-10 Toyota Motor Corp Manufacturing method of porous membrane for fuel cell electrolyte membrane
JP2008117775A (en) * 2006-11-03 2008-05-22 Gm Global Technology Operations Inc Improved edge design for eptfe reinforcement film for pem fuel cell
JP2008130416A (en) * 2006-11-22 2008-06-05 Toyota Motor Corp Manufacturing method of membrane electrode assembly
WO2008102851A1 (en) 2007-02-21 2008-08-28 Asahi Kasei E-Materials Corporation Polyelectrolyte composition, polyelectrolyte membrane, membrane electrode assembly, and solid polymer electrolyte fuel cell
JP2008214462A (en) * 2007-03-02 2008-09-18 Honda Motor Co Ltd Composite porous membrane and its production method
JP2009084694A (en) * 2001-09-07 2009-04-23 Itm Power Ltd Hydrophilic polymer and its use in electrochemical cell
US20100190089A1 (en) * 2009-01-23 2010-07-29 Takashi Akiyama Fuel cell
US7781535B2 (en) 2004-03-03 2010-08-24 Honda Motor Co., Ltd. Proton conductor
WO2011034179A1 (en) 2009-09-18 2011-03-24 旭化成イーマテリアルズ株式会社 Electrolyte emulsion and process for producing same
JP2012021099A (en) * 2010-07-15 2012-02-02 Astom:Kk Method for manufacturing ion exchange membrane
US8785060B2 (en) 2006-11-02 2014-07-22 Hyundai Motor Company Method of manufacturing multilayer electrolyte reinforced composite membrane
US9847533B2 (en) 2005-09-26 2017-12-19 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
US10644339B2 (en) 2013-11-29 2020-05-05 Asahi Kasei Kabushiki Kaisha Polymer electrolyte membrane
US10688448B2 (en) 2013-11-29 2020-06-23 Daikin Industries, Ltd. Porous body, polymer electrolyte membrane, filter material for filter, and filter unit
US10944121B2 (en) * 2013-11-29 2021-03-09 Asahi Kasei Kabushiki Kaisha Polymer electrolyte film
US11084895B2 (en) 2013-11-29 2021-08-10 Daikin Industries, Ltd. Modified polytetrafluoroethylene fine powder and uniaxially stretched porous body

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4739516B2 (en) * 1997-10-10 2011-08-03 スリーエム カンパニー Fabrication method of membrane electrode
JP2001520446A (en) * 1997-10-10 2001-10-30 ミネソタ マイニング アンド マニュファクチャリング カンパニー Manufacturing method of membrane electrode
JP2001520445A (en) * 1997-10-10 2001-10-30 ミネソタ マイニング アンド マニュファクチャリング カンパニー Membrane electrode assembly
JP2011108658A (en) * 1997-10-10 2011-06-02 3M Co Manufacturing method of membrane electrode
US6444359B1 (en) 1998-12-18 2002-09-03 Nec Corporation Liquid electrolyte solution including a halogenated and aliphatic polyolefin dissolved therein and secondary battery
JP2002539587A (en) * 1999-03-06 2002-11-19 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Manufacture of tubular fuel cells, fuel cell modules, basic elements and ion exchange membranes
US6723464B2 (en) 2000-05-31 2004-04-20 Japan Gore-Tex, Inc. Membrane-electrode-assembly with solid polymer electrolyte
EP1304754A1 (en) * 2000-07-06 2003-04-23 Matsushita Electric Industrial Co., Ltd. Method for producing electrolyte film-electrode joint
EP1304754A4 (en) * 2000-07-06 2007-03-21 Matsushita Electric Ind Co Ltd Method for producing electrolyte film-electrode joint
JP5258137B2 (en) * 2000-09-27 2013-08-07 旭化成イーマテリアルズ株式会社 Dispersion composition containing perfluorocarbon copolymer
WO2002026883A1 (en) * 2000-09-27 2002-04-04 Asahi Kasei Kabushiki Kaisha Perfluorocarbon copolymer dispersion composition
US7045044B2 (en) 2000-09-27 2006-05-16 Asahi Kasei Chemicals Corporation Dispersion composition containing perfluorocarbon-based copolymer
USRE41651E1 (en) * 2001-01-19 2010-09-07 Panasonic Corporation Method for manufacturing fuel cell electrolyte film-electrode bond
EP2009720A2 (en) 2001-01-19 2008-12-31 Panasonic Corporation Electrolyte membrane-electrode assembly for fuel cell
US6977234B2 (en) 2001-01-19 2005-12-20 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell electrolyte film-electrode bond
US9447217B2 (en) 2001-09-07 2016-09-20 Itm Power (Research) Limited Method for producing a membrane electrode including forming the membrane in situ
JP2009084694A (en) * 2001-09-07 2009-04-23 Itm Power Ltd Hydrophilic polymer and its use in electrochemical cell
WO2003068853A1 (en) 2002-02-15 2003-08-21 Toyo Boseki Kabushiki Kaisha Cluster ion exchange membrane, and electrolyte membrane electrode connection body
US7537852B2 (en) 2002-02-15 2009-05-26 Toyo Boseki Kabushiki Kaisha Composite ion exchange membrane and electrolyte membrane electrode assembly
JP2003272664A (en) * 2002-03-18 2003-09-26 Asahi Kasei Corp Impregnated film and its manufacturing method
US7172829B2 (en) 2002-10-10 2007-02-06 Matsushita Electric Industrial Co., Ltd. Fuel cell and process for the production of same
JP2006502855A (en) * 2002-10-16 2006-01-26 アクアテック インターナショナル コーポレイション Method for producing ion exchange medium
WO2004088678A1 (en) * 2003-03-28 2004-10-14 Sumitomo Chemical Company, Limited Continuous process for producing polymer electrolyte membrane and apparatus therefor
US7862921B2 (en) 2003-03-28 2011-01-04 Sumitomo Chemical Company, Limited Process for continuously producing polymer electrolyte membrane and producing apparatus therefor
JP2005235413A (en) * 2004-02-17 2005-09-02 Seiko Epson Corp Manufacturing method of solid polymer electrolyte membrane, solid polymer electrolyte membrane, and fuel cell
US7781535B2 (en) 2004-03-03 2010-08-24 Honda Motor Co., Ltd. Proton conductor
JP2006032004A (en) * 2004-07-13 2006-02-02 Toyota Motor Corp Manufacturing method for fuel cell
JP2006147257A (en) * 2004-11-17 2006-06-08 Toyota Motor Corp Manufacturing method of membrane-electrode junction, membrane-electrode junction, and fuel cell
US9847533B2 (en) 2005-09-26 2017-12-19 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
JP2007109657A (en) * 2005-10-14 2007-04-26 Gm Global Technology Operations Inc Multi-layered polymeric electrolyte membrane for fuel cell
JP2008004500A (en) * 2006-06-26 2008-01-10 Toyota Motor Corp Porous membrane for fuel cell electrolyte membrane and its manufacturing method
WO2008001923A1 (en) * 2006-06-26 2008-01-03 Toyota Jidosha Kabushiki Kaisha Porous film for electrolyte film in fuel cell and process for producing the same
JP2008084576A (en) * 2006-09-26 2008-04-10 Toyota Motor Corp Manufacturing method of porous membrane for fuel cell electrolyte membrane
US8785060B2 (en) 2006-11-02 2014-07-22 Hyundai Motor Company Method of manufacturing multilayer electrolyte reinforced composite membrane
JP2008117775A (en) * 2006-11-03 2008-05-22 Gm Global Technology Operations Inc Improved edge design for eptfe reinforcement film for pem fuel cell
JP2008130416A (en) * 2006-11-22 2008-06-05 Toyota Motor Corp Manufacturing method of membrane electrode assembly
US8304134B2 (en) 2007-02-21 2012-11-06 Asahi Kasei E-Materials Corporation Polymer electrolyte composition, polymer electrolyte membrane, membrane electrode assembly and solid polymer electrolyte-based fuel cell
WO2008102851A1 (en) 2007-02-21 2008-08-28 Asahi Kasei E-Materials Corporation Polyelectrolyte composition, polyelectrolyte membrane, membrane electrode assembly, and solid polymer electrolyte fuel cell
US8114511B2 (en) 2007-03-02 2012-02-14 Honda Motor Co., Ltd. Composite porous membrane and method for producing the same
JP2008214462A (en) * 2007-03-02 2008-09-18 Honda Motor Co Ltd Composite porous membrane and its production method
US20100190089A1 (en) * 2009-01-23 2010-07-29 Takashi Akiyama Fuel cell
WO2011034179A1 (en) 2009-09-18 2011-03-24 旭化成イーマテリアルズ株式会社 Electrolyte emulsion and process for producing same
JP2012021099A (en) * 2010-07-15 2012-02-02 Astom:Kk Method for manufacturing ion exchange membrane
US10644339B2 (en) 2013-11-29 2020-05-05 Asahi Kasei Kabushiki Kaisha Polymer electrolyte membrane
US10688448B2 (en) 2013-11-29 2020-06-23 Daikin Industries, Ltd. Porous body, polymer electrolyte membrane, filter material for filter, and filter unit
US10944121B2 (en) * 2013-11-29 2021-03-09 Asahi Kasei Kabushiki Kaisha Polymer electrolyte film
US11084895B2 (en) 2013-11-29 2021-08-10 Daikin Industries, Ltd. Modified polytetrafluoroethylene fine powder and uniaxially stretched porous body

Also Published As

Publication number Publication date
JP3555999B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
JP3555999B2 (en) Method for producing polymer solid electrolyte / electrode assembly for polymer electrolyte fuel cell
JP3481010B2 (en) Polymer solid electrolyte membrane / electrode integrated body and method for producing the same
JP3773325B2 (en) Gas diffusion layer material for polymer electrolyte fuel cell and its joined body
EP0718903B1 (en) An ion exchange membrane and electrode assembly for an electrochemical cell
JP4974403B2 (en) Solid polymer electrolyte fuel cell
JP4334618B2 (en) Gas diffusion electrode for polymer electrolyte membrane fuel cell
EP2154743A1 (en) Process for producing membrane electrode assembly, membrane electrode assembly, apparatus for producing membrane electrode assembly, and fuel cell
JPWO2004093228A1 (en) Solid polymer electrolyte membrane, membrane electrode assembly for solid polymer fuel cell, and method for producing solid polymer electrolyte membrane
JP2000090944A (en) Manufacture of catalyst layer-electrolyte film joint body and solid polymer electrolyte fuel cell using the joint body
JP3504021B2 (en) Electrode for electrochemical device and method for producing the same
JP3807038B2 (en) POLYMER ELECTROLYTE MEMBRANE-GAS DIFFUSION ELECTRODE AND METHOD FOR PRODUCING THE SAME
JP4780814B2 (en) Fuel cell
JP2001085019A (en) High polymer solid fuel cell and manufacture of electrode therefor
WO2003081707A1 (en) Electrolyte membrane/electrode union for fuel cell and process for producing the same
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JP2003331852A (en) Membrane-electrode assembly for fuel cell and its manufacturing method
JP2005276847A (en) Polymer solid electrolyte-electrode junction
JP4262942B2 (en) Polymer solid electrolyte / electrode assembly for lithium battery and method for producing the same
JPH06251779A (en) Formation of joined body of solid polymer electrolyte layer and electrode for fuel cell
JP2001057217A (en) Polymer electrolyte type fuel cell
JPH0620709A (en) Manufacture of gas diffusion electrode for fuel cell
JP2005353534A (en) Electrolyte film for fuel cell, manufacturing method for the film, and fuel cell
JP2003282093A (en) Electrolyte membrane-electrode junction for fuel cell and production process thereof
JP2003142122A (en) High polymer solid electrolyte-electrode united body for high polymer electrolyte type fuel cell
JP2004296409A (en) Manufacturing method of polymeric electrolyte composite film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term