JPH0816072B2 - Method of manufacturing olefin - Google Patents

Method of manufacturing olefin

Info

Publication number
JPH0816072B2
JPH0816072B2 JP59032554A JP3255484A JPH0816072B2 JP H0816072 B2 JPH0816072 B2 JP H0816072B2 JP 59032554 A JP59032554 A JP 59032554A JP 3255484 A JP3255484 A JP 3255484A JP H0816072 B2 JPH0816072 B2 JP H0816072B2
Authority
JP
Japan
Prior art keywords
catalyst
ferrierite
olefin
reaction
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59032554A
Other languages
Japanese (ja)
Other versions
JPS60178830A (en
Inventor
英一 菊地
和彦 関沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP59032554A priority Critical patent/JPH0816072B2/en
Publication of JPS60178830A publication Critical patent/JPS60178830A/en
Publication of JPH0816072B2 publication Critical patent/JPH0816072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明は炭化水素の接触分解によるオレフィンの製造
法に関するものである。更に詳しくは、軽質ナフサを特
定のゼオライト触媒と接触させ、高選択率で炭素数2〜
4(以下C2〜4と略称)のオレフィンを製造する方法
に関する。
The present invention relates to a process for producing olefins by catalytic cracking of hydrocarbons. More specifically, the light naphtha is brought into contact with a specific zeolite catalyst to obtain a high selectivity and a carbon number of 2 to 2
4 (hereinafter, abbreviated as C2-4 ).

石油精製等により、生産されるナフサは石油化学工業
に於ける基幹原料であるが、近年、石油及び石油化学を
巡る環境の大きな変化により、ナフサ特に軽質ナフサで
総称される比較的沸点の低いパラフィン,ナフテン等を
主成分とする炭化水素を芳香族炭化水素,オレフィン,
高オクタン価ガソリン等の高付加価格製品へ転する技術
が強く要望されている。
The naphtha produced by petroleum refining is a basic raw material in the petrochemical industry. In recent years, naphtha, which is a generic term for light naphtha, is a paraffin with a relatively low boiling point due to a great change in the environment surrounding petroleum and petrochemistry. , Hydrocarbons containing naphthene as the main component, aromatic hydrocarbons, olefins,
There is a strong demand for technology that can be converted to high-value-added products such as high-octane gasoline.

一方、種々の炭化水素留分を一般に酸性触媒特に結晶
性アルミノシリケートであるゼオライトのような固体酸
触媒を用い接触分解する技術は古くから公知であるが、
本発明の目的とする軽質ナフサより高選択率で、C
2〜4オレフィンに接触分解する満足すべき技術はいま
だ確立されていない。
On the other hand, a technique of catalytically decomposing various hydrocarbon fractions using a solid acid catalyst such as an acid catalyst, particularly a zeolite which is a crystalline aluminosilicate, has been known for a long time,
C with higher selectivity than light naphtha, which is the object of the present invention,
A satisfactory technique for catalytic cracking to 2-4 olefins has not yet been established.

例えば、特公昭56−42639号は、軽質ナフサより芳香
族化合物の製造を目的のするものであるが、ZSM−5ゼ
オライトを触媒とする分解が例示されている。本結果に
よるとオレフィンへの分解は著しく不満足な収率でしか
得られていない。
For example, Japanese Examined Patent Publication No. 56-42639 is intended for the production of aromatic compounds from light naphtha, and decomposition using ZSM-5 zeolite as a catalyst is exemplified. According to this result, the decomposition into olefins was obtained only in a remarkably unsatisfactory yield.

これらの事情に鑑み、本発明者らが鋭意検討した結
果、軽質留分の炭化水素をゼオライト触媒で接触分解す
る場合通常、生成オレフィンの重合等の副反応が併発
し、取得される生成分布は、触媒として用いるゼオライ
トの結晶及び細孔構造に著しく依存することが明らかと
なった。従って、各種のゼオライトについて、分解活
性,生成物の挙動等について詳細な検討を実施した結
果、フェリエライトを触媒とした場合、通常炭化水素の
接触分解に於いて、触媒として使用されるY型ゼオライ
トに比して、生成オレフィンの二次的な重合が著しく抑
制され、プロピレンを主成分とするC2〜4オレフィン
が高選択率で取得しうるという新規な事実を見出し本発
明を完成するに至った。
In view of these circumstances, as a result of diligent studies by the present inventors, when catalytically cracking a hydrocarbon of a light fraction with a zeolite catalyst, a side reaction such as polymerization of the produced olefin is usually generated, and the obtained production distribution is , It was clarified that it remarkably depends on the crystal and pore structure of zeolite used as a catalyst. Therefore, as a result of conducting a detailed study on the decomposition activity, the behavior of products, and the like of various zeolites, when ferrierite is used as a catalyst, Y-type zeolite usually used as a catalyst in the catalytic decomposition of hydrocarbons. In comparison with, the secondary polymerization of the produced olefin was significantly suppressed, and a new fact that C 2-4 olefin containing propylene as a main component can be obtained with a high selectivity was found, and the present invention was completed. It was

以上、本発明は軽質ナフサを接触分解によりオレフィ
ンに転化する際フェリエライトを触媒とすることを特徴
とするオレフィンの工業的製造法を提供するものであ
る。
As described above, the present invention provides an industrial olefin production method characterized by using ferrierite as a catalyst when converting light naphtha into olefin by catalytic cracking.

以下、本発明を更に詳しく説明する。 Hereinafter, the present invention will be described in more detail.

本発明の方法は、原料軽質ナフサを触媒ゼオライトと
接触させることによって実施される。本発明で使用され
るゼオライトは、フェリエライトである。本発明のフェ
リエライトは、酸化物のモル比によって、下記式の結晶
性アルミノケイ酸塩で近似される。
The process of the present invention is carried out by contacting the raw light naphtha with a catalytic zeolite. The zeolite used in the present invention is ferrierite. The ferrierite of the present invention is approximated by a crystalline aluminosilicate of the following formula by the molar ratio of oxides.

M2/nO・Al2O3・(5〜100)SiO2 但し、Mは原子価nの陽イオンを示し、通常、結晶水
を有している。
M 2 / nO · Al 2 O 3 · (5-100) SiO 2 However, M represents a cation having a valence of n, and usually has water of crystallization.

フェリエライトの結晶構造は、ジャーナル オブ キ
ャタリシス(Journal of Catalysis)第35巻 267頁〜2
72頁(1974年発行)などに示されている。即ちフェリエ
ライトは、有効細孔径約5Åの酸素原子10員環からなる
主空洞を有するゼオライトである。一般にこのようなゼ
オライトの結晶構造は、X線回折法により決定され、こ
の粉末X線回折パターンにより他のゼオライトと識別さ
れる。第1表にフェリエライトの代表的な粉末X線回折
パターンとして、前記引例に記載の測定結果を示す。
The crystal structure of ferrierite is described in Journal of Catalysis, Vol. 35, pp. 267-2.
It is shown on page 72 (issued in 1974). That is, ferrierite is a zeolite having a main cavity composed of a 10-membered oxygen atom ring with an effective pore size of about 5Å. Generally, the crystal structure of such a zeolite is determined by an X-ray diffraction method, and the powder X-ray diffraction pattern distinguishes it from other zeolites. Table 1 shows the measurement results described in the above-mentioned reference as a typical powder X-ray diffraction pattern of ferrierite.

フェリエライトは、天然品及び合成品のいずれでも良
いが、組成の均一性より、望ましくは合成品である。そ
の合成は公知技術によって、容易に実施しうる。例えば
フェリエライトは特願昭57−176077号によって、合成す
れば良い。
Ferrierite may be either a natural product or a synthetic product, but is preferably a synthetic product because of its uniform composition. The synthesis can be easily performed by known techniques. For example, ferrierite may be synthesized according to Japanese Patent Application No. 57-176077.

フェリエライトを、本発明の方法の触媒として使用す
るに際して、該ゼオライト構造中に含有される陽イオン
を水素イオン型に変換することが必要である。このため
には、例えば陽イオンとしてナトリウム,カリウム等の
金属イオンを含有するゼオライトに対しては、従来、良
く知られているイオン交換処理、即ち塩化アンモニウム
等の水溶液を用いて、該金属イオンをアンモニウムイオ
ンに交換後焼成あるいは塩酸等の鉱酸水溶液中で処理に
より容易に水素イオン型に変換することができる。な
お、合成方法によっては、有機アンモニウムイオン等を
合成取得時に含有するものがあるが、例えば、N−メチ
ルピリジン存在下で合成されたフェリエライト等は、こ
れらの含有有機カチオンを400〜700℃の範囲で空気焼
成、更に必要な場合は、引続き前記イオン交換処理によ
って水素イオン型に変換される。この水素イオンに変換
される量即ち水素イオン交換率は50%以上好ましくは70
%以上にすることが必要である。
When using ferrierite as a catalyst in the process of the invention, it is necessary to convert the cations contained in the zeolite structure to the hydrogen ion form. To this end, for example, for a zeolite containing a metal ion such as sodium or potassium as a cation, a conventionally well-known ion exchange treatment, that is, an aqueous solution of ammonium chloride or the like is used to remove the metal ion. It can be easily converted to the hydrogen ion type by calcination after exchange with ammonium ion or treatment in a mineral acid aqueous solution such as hydrochloric acid. Depending on the synthesis method, there are some that contain organic ammonium ions and the like at the time of synthesis acquisition. For example, ferrierite and the like synthesized in the presence of N-methylpyridine contain these contained organic cations at 400 to 700 ° C. In the range, it is converted into hydrogen ion type by air calcination and, if necessary, the ion exchange treatment. The amount converted into hydrogen ions, that is, the hydrogen ion exchange rate is 50% or more, preferably 70
% Or more is required.

一方その形態には特に制限なく、粉末状あるいは形状
化したものいずれかでも良い。なお、形状化する場合、
その成型方法としては、公知の方法、例えば圧縮成型
型、押出成型法、噴霧乾燥造粒法等が採用される。更
に、成型する場合、その機械的強度を高める等の目的
で、通常粘結剤あるいは成型助剤が使用されるが、本発
明の触媒に於いても、本発明の反応に対して、不活性な
物質を該目的のために使用しても何ら差し支えない。例
えばシリカ,粘度類,グラファイト,ステアリン酸,デ
ンプン,ポリビニルアルコール等を0〜80%好ましくは
2〜30%の範囲で添加できる。
On the other hand, its form is not particularly limited, and it may be either powdery or shaped. In addition, when shaping it,
As the molding method, a known method such as a compression molding method, an extrusion molding method, or a spray drying granulation method is adopted. Further, in the case of molding, a binder or a molding aid is usually used for the purpose of increasing its mechanical strength, but the catalyst of the present invention is also inert to the reaction of the present invention. Any substance can be used for this purpose. For example, silica, viscosities, graphite, stearic acid, starch, polyvinyl alcohol and the like can be added in the range of 0 to 80%, preferably 2 to 30%.

斯して、得られる本発明の触媒は、好ましくは空気中
で温度400〜800℃,1〜10時間焼成処理をして反応に供さ
れる。
Thus, the obtained catalyst of the present invention is preferably subjected to a calcination treatment in air at a temperature of 400 to 800 ° C. for 1 to 10 hours and then used for the reaction.

本発明の新規な方法で使用される供給原料は、炭素数
5(以下、C5と略称)から少なくとも50容積%が150℃
以下の沸点を有する留分までの沸点範囲を有する液状の
パラフィン,オレフィン,ナフテン等からなる炭化水素
であり、好ましくはC5〜約100℃の沸点を有する液状炭
化水素即ち、当該業界に於いて軽質ナフサと総称される
ものである。
The feedstock used in the novel process of the present invention has a carbon number of 5 (hereinafter abbreviated as C 5 ) to at least 50% by volume of 150 ° C.
A liquid hydrocarbon having a boiling point range up to the fraction having the following boiling points, which is composed of liquid paraffin, olefin, naphthene, etc., preferably a liquid hydrocarbon having a boiling point of C 5 to about 100 ° C, that is, in the art. It is collectively called light naphtha.

本発明の反応は、触媒上に原料炭化水素を導入して実
施されるが、該炭化水素はそのままあるいは希釈ガスと
混合して供給される。その際、使用される希釈ガスとし
ては、本反応に対して不活性であれば特に制限なく、通
常、窒素,ヘリウム等の不活性ガスが使用される。原料
炭化水素の濃度も特に制限ないが好ましくは、5〜100
容積%の範囲から選択される。
The reaction of the present invention is carried out by introducing a raw material hydrocarbon onto the catalyst, and the hydrocarbon is supplied as it is or as a mixture with a diluent gas. At this time, the diluent gas used is not particularly limited as long as it is inert to the reaction, and an inert gas such as nitrogen or helium is usually used. The concentration of the raw material hydrocarbon is not particularly limited, but is preferably 5 to 100.
It is selected from the range of volume%.

原料ガスの供給は、反応温度にもよるが、通常触媒時
間:W/F(g−cat・hr/、但し、:触媒重量g,F:原料
炭化水素のガス流量/hr)で表わして10〜50,000g−ca
t・hr/好ましくは20〜10,000g−cat・hr/の範囲か
ら選択される。
The supply of the raw material gas depends on the reaction temperature, but it is usually 10 times as a catalyst time: W / F (g-cat · hr /, where: catalyst weight g, F: gas flow rate of raw hydrocarbons / hr) ~ 50,000g-ca
t · hr / preferably selected from the range of 20 to 10,000 g-cat · hr /.

反応温度は300〜800℃の範囲であるが、通常、ゼオラ
イト触媒による接触分解に於いては、反応温度が低くな
るほど、生成オレフィンの重合などのため、オレフィン
の選択性が低下する傾向が見られる。一方、高温になる
と、生成オレフィンの逐次分解等により、メタンの生成
が増大する。従って、本発明の方法の好ましい温度範囲
は400〜700℃である。
The reaction temperature is in the range of 300 to 800 ° C. Usually, in catalytic cracking with a zeolite catalyst, the lower the reaction temperature, the more likely the olefin selectivity tends to decrease due to polymerization of the olefin produced. . On the other hand, when the temperature rises, the production of methane increases due to the sequential decomposition of the produced olefin. Therefore, the preferred temperature range for the process of the present invention is 400-700 ° C.

反応は加圧下で行うこともできるが、通常大気圧で実
施される。
The reaction can be carried out under pressure, but is usually carried out at atmospheric pressure.

本発明の実施に当って、用いられる装置の形式につい
ては、特に制限なく、固定床,流動床,移動床等の形式
から、適宜選択される。
The type of apparatus used in the practice of the present invention is not particularly limited and may be appropriately selected from fixed bed, fluidized bed, moving bed and the like.

以下に実施例により本発明を更に詳細に説明するが、
本発明はこれらの実施例のみに限定されるものではな
い。
Hereinafter, the present invention will be described in more detail with reference to Examples.
The invention is not limited to these examples only.

参 考 例 1. フェリエライトの合成 フェリエライトを特願昭57−176077号に記載されてい
る方法に従って合成した。即ち、撹拌機を備えたオーバ
ーフロータイプの反応槽に硫酸酸性硫酸アルミニウム水
溶液(Al2O3=4.44w/v%,H2SO4=25.69w/v%)と珪酸ナ
トリウム水溶液(Na2O=6.56w/v%,SiO2=20.00w/v%,A
l2O3=0.22w/v%)を、それぞれ0.25/hr及び0.75/h
rの供給速度で同時に且つ連続的に供給し、撹拌下にて
反応させた。反応スラリーの滞在時間は30分であり、該
スラリーのpH6.2反応温度32℃であった。
Reference Example 1. Synthesis of Ferrierite Ferrierite was synthesized according to the method described in Japanese Patent Application No. 57-176077. That is, in an overflow type reaction vessel equipped with a stirrer, an aqueous solution of sulfuric acid-acidified aluminum sulfate (Al 2 O 3 = 4.44 w / v%, H 2 SO 4 = 25.69 w / v%) and an aqueous sodium silicate solution (Na 2 O = 6.56w / v%, SiO 2 = 20.00w / v%, A
l 2 O 3 = 0.22w / v%), respectively 0.25 / hr and 0.75 / h
They were fed simultaneously and continuously at a feed rate of r and reacted under stirring. The residence time of the reaction slurry was 30 minutes, and the pH of the slurry was 6.2 and the reaction temperature was 32 ° C.

反応槽からオーバーフローしたスラリー状生成物を、
固液分離し、充分水洗後、下記組成の均一化合物を得
た。
The slurry product overflowing from the reaction tank,
After solid-liquid separation and sufficient washing with water, a uniform compound having the following composition was obtained.

Na2O:5.20wt%(ドライベース) Al2O3:7.13wt%(ドライベース) SiO2:87.7wt%(ドライベース) H2O:59.7wt%(ウェットベース) 次いで、0.89wt%濃度の水酸化ナトリウム水溶液505g
に、上記均一化合物355.6gを加えて撹拌し、このスラリ
ーをオートクレーブに仕込んだ。温度180℃及びその自
生圧下において、72時間保持して結晶化を行った。その
後、室温まで冷却し、生成した固体結晶を過,水洗し
た後乾燥した。取得された粉末のCuKα二重線による粉
末X線回折測定の結果、第3表に示すフェリエライトの
X線回折パターンが得られた。また、元素分析の結果、
下記の組成を有していた。
Na 2 O: 5.20 wt% (dry base) Al 2 O 3 : 7.13 wt% (dry base) SiO 2 : 87.7 wt% (dry base) H 2 O: 59.7 wt% (wet base) Next, 0.89 wt% concentration 505g of sodium hydroxide aqueous solution
To the above, 355.6 g of the above-mentioned homogeneous compound was added and stirred, and this slurry was charged into an autoclave. Crystallization was carried out at a temperature of 180 ° C. and its autogenous pressure for 72 hours. Then, the mixture was cooled to room temperature, the resulting solid crystals were washed with water, dried and then dried. As a result of powder X-ray diffraction measurement of the obtained powder by CuKα double ray, the X-ray diffraction pattern of ferrierite shown in Table 3 was obtained. Also, as a result of elemental analysis,
It had the following composition:

1.03Na2O・Al2O3・19.3SiO2 2. 触媒の調製 触媒として使用したゼオライトは、イオン交換処理に
より水素イオン型とした。即ちNH4Cl溶液中80℃で8時
間、6回イオン交換処理を行った。これを過,水洗を
施し、乾燥後、540℃で2時間空気焼成し水素イオン型
とした。
1.03Na 2 O ・ Al 2 O 3・ 19.3SiO 2 2. Preparation of catalyst The zeolite used as a catalyst was made into a hydrogen ion type by an ion exchange treatment. That is, ion exchange treatment was performed 6 times at 80 ° C. for 8 hours in a NH 4 Cl solution. This was filtered, washed with water, dried, and then air-baked at 540 ° C. for 2 hours to obtain a hydrogen ion type.

イオン交換率は、イオン交換後の液中のNa+あるい
はK+量を炎光分析により測定又は元素分析より求めた。
The ion exchange rate was determined by measuring the amount of Na + or K + in the liquid after ion exchange by flame photometry or by elemental analysis.

斯して得られた水素イオン型ゼオライトは32〜80メッ
シュに整粒し、触媒として用いた。
The hydrogen ion-type zeolite thus obtained was sized to 32 to 80 mesh and used as a catalyst.

実施例−1〜3 参考例で得たフェリエライトを触媒として、ノルマル
ペンタン(以下、n−ペンタンと略称)の分解反応を行
った。即ち通常の固定床常圧反応器(石英ガラス製内径
120×長さ350mm)に触媒0.1〜2gの範囲で充填した。ま
ず空気流通下、所定温度で、1時間焼成した後、空気に
かえて窒素ガス流通下に所定反応温度とした。次いで、
原料炭化水素としてn−ペンタンを反応器に導入し反応
を実施した。その際n−ペンタンは、窒素ガスを−25℃
に保持したn−ペンタン飽和器に通し、20%のガス濃度
に設定した。反応生成ガスは、直接ガスクロマトグラフ
に導入し、生成物の分析を行った。第5表に反応条件と
結果を示した。
Examples -1 to 3 The decomposition reaction of normal pentane (hereinafter abbreviated as n-pentane) was performed using the ferrierite obtained in Reference Example as a catalyst. That is, a normal fixed-bed atmospheric pressure reactor (quartz glass inner diameter
120 × 350 mm length) was loaded with catalyst in the range of 0.1-2 g. First, after firing for 1 hour at a predetermined temperature under air flow, the temperature was changed to air and the reaction temperature was adjusted to a predetermined reaction temperature under nitrogen gas flow. Then
As a raw material hydrocarbon, n-pentane was introduced into the reactor to carry out the reaction. At that time, n-pentane was nitrogen gas at -25 ° C.
It was passed through an n-pentane saturator maintained at 20 ° C. and set to a gas concentration of 20%. The reaction product gas was directly introduced into the gas chromatograph to analyze the product. Table 5 shows the reaction conditions and the results.

比較例−1 市販のY型ゼオライト(SiO2/Al2O3=5.2)を参考例
の方法に従って、水素イオン型に変換した。これを触媒
とし実施例−1と同様にして反応を実施した。第5表に
結果を示した。
Comparative Example 1 Commercially available Y-type zeolite (SiO 2 / Al 2 O 3 = 5.2) according to the method of Reference Example was converted to a hydrogen ion form. Using this as a catalyst, the reaction was carried out in the same manner as in Example-1. The results are shown in Table 5.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特公 昭45−15372(JP,B1) 特公 昭44−26365(JP,B1) 米国特許3039953(US,A) 米国特許3354078(US,A) 米国特許4021332(US,A) 米国特許4116813(US,A) 米国特許3894940(US,A) 「化学総説No.34 触媒設計」昭和57 年8月1日 株式会社 学会出版センター 発行 p.105〜106 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References Japanese Patent Publication No. 45-15372 (JP, B1) Japanese Patent Publication No. 44-26365 (JP, B1) US Patent 3039953 (US, A) US Patent 3354078 (US, A) U.S. Patent 4021332 (US, A) U.S. Patent 4116813 (US, A) U.S. Patent 3894940 (US, A) "Chemical Review No. 34 Catalyst Design" August 1, 1982 Published by Academic Publishing Center, Inc. p. 105 ~ 106

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭素数5から少なくとも50容積%が150℃
以下の沸点を有する留分までの沸点範囲を有するパラフ
ィン,オレフィン及び/又はナフテンなどからなる炭化
水素を接触分解によりオレフィンに転化するに際し、フ
ェリエライトを触媒として用いることを特徴とするオレ
フィンの製造方法。
1. From 5 carbon atoms to at least 50% by volume of 150 ° C.
A method for producing an olefin characterized by using ferrierite as a catalyst when converting a hydrocarbon having a boiling point range up to a fraction having a boiling point below, which comprises a paraffin, an olefin and / or naphthene, into an olefin by catalytic cracking. .
【請求項2】フェリエライトの交換可能な陽イオンの少
なくとも50%以上が水素イオンである特許請求の範囲第
1項記載の方法。
2. The method according to claim 1, wherein at least 50% or more of the exchangeable cations of ferrierite are hydrogen ions.
JP59032554A 1984-02-24 1984-02-24 Method of manufacturing olefin Expired - Fee Related JPH0816072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59032554A JPH0816072B2 (en) 1984-02-24 1984-02-24 Method of manufacturing olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59032554A JPH0816072B2 (en) 1984-02-24 1984-02-24 Method of manufacturing olefin

Publications (2)

Publication Number Publication Date
JPS60178830A JPS60178830A (en) 1985-09-12
JPH0816072B2 true JPH0816072B2 (en) 1996-02-21

Family

ID=12362139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59032554A Expired - Fee Related JPH0816072B2 (en) 1984-02-24 1984-02-24 Method of manufacturing olefin

Country Status (1)

Country Link
JP (1) JPH0816072B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222428A (en) * 1984-04-19 1985-11-07 Res Assoc Util Of Light Oil Catalytic conversion of hydrocarbon
US5177518A (en) * 1988-05-16 1993-01-05 Minolta Camera Kabushiki Kaisha Film cartridge support in a camera
US5043522A (en) * 1989-04-25 1991-08-27 Arco Chemical Technology, Inc. Production of olefins from a mixture of Cu+ olefins and paraffins
JP5023637B2 (en) * 2006-09-27 2012-09-12 三菱化学株式会社 Propylene production method
WO2021130686A1 (en) * 2019-12-27 2021-07-01 Ptt Global Chemical Public Company Limited A catalyst for producing light olefins from catalytic cracking of hydrocarbon having 4 to 7 carbon atoms

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3039953A (en) 1958-09-17 1962-06-19 Exxon Research Engineering Co Selective conversion of normal paraffins with a crystalline zeolite
US3354078A (en) 1965-02-04 1967-11-21 Mobil Oil Corp Catalytic conversion with a crystalline aluminosilicate activated with a metallic halide
US3894940A (en) 1973-11-15 1975-07-15 Grace W R & Co Hydrocarbon cracking catalysts with promoter mixtures
US4021332A (en) 1975-06-12 1977-05-03 Mobil Oil Corporation Hydrocarbon conversion over activated erionite
US4116813A (en) 1976-11-04 1978-09-26 Mobil Oil Corporation Hydrocarbon conversion with crystalline zeolite ZSM-34

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3039953A (en) 1958-09-17 1962-06-19 Exxon Research Engineering Co Selective conversion of normal paraffins with a crystalline zeolite
US3354078A (en) 1965-02-04 1967-11-21 Mobil Oil Corp Catalytic conversion with a crystalline aluminosilicate activated with a metallic halide
US3894940A (en) 1973-11-15 1975-07-15 Grace W R & Co Hydrocarbon cracking catalysts with promoter mixtures
US4021332A (en) 1975-06-12 1977-05-03 Mobil Oil Corporation Hydrocarbon conversion over activated erionite
US4116813A (en) 1976-11-04 1978-09-26 Mobil Oil Corporation Hydrocarbon conversion with crystalline zeolite ZSM-34

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
「化学総説No.34触媒設計」昭和57年8月1日株式会社学会出版センター発行p.105〜106

Also Published As

Publication number Publication date
JPS60178830A (en) 1985-09-12

Similar Documents

Publication Publication Date Title
US5360774A (en) Method for recharging a spend fluid catalytic cracking process catalyst
EP0057049B1 (en) Crystalline alumino silicates and their use as catalysts
CA1084532A (en) Selective production of p-dialkyl benzenes
JP2527583B2 (en) Novel method for synthesizing ferric silicate type zeolite, obtained substance and use thereof
JPS61501926A (en) Method for producing hydrocarbons from hetero-substituted methane
JPS60114344A (en) Zeolite catalyst having enhanced catalytic activity, its production and use
JPS58208131A (en) High silica zeolite beta and manufacture
JPH032128A (en) Production of monocyclic aromatic-containing hydrocarbon
GB2092134A (en) Process for the production of carboxylic acid esters
EP0134058A2 (en) Process for the preparation of an aromatic hydrocarbon mixture
JPH0781146B2 (en) Continuous fluid contact cracking method
EP0152485B1 (en) Binder-free zeolite catalyst, process for its preparation, and catalytic reaction using same
US3873632A (en) Alkylaromatic hydrocarbon isomerization process
JPH0816072B2 (en) Method of manufacturing olefin
EP0113116A1 (en) A crystalline aluminosilicate, a process for producing the same, and a catalyst comprising the crystalline aluminosilicate
JPS6144805B2 (en)
EP0131986B1 (en) Catalyst compositions
JPH0788319B2 (en) Method for producing m-benzyltoluene
JPH04227066A (en) Garoalmino silicate latalyst and its usage in aromatization of 2-7 c hydrocarbon
JPH02233624A (en) Production of dibenzylbenzenes
KR900000895B1 (en) Dewaxing process of hydrocarbon remains (dregs)
US5215736A (en) Mordenite type zeolite and its preparation process
JPH0417165B2 (en)
WO2022186010A1 (en) Complex catalyst, method for producing complex catalyst, and method for producing lower olefin
US4707500A (en) Synthetic crystalline ferroborosilicate compositions, the preparation thereof and their use in the conversion of synthesis gas to low molecular weight hydrocarbons

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees