JPH08159653A - Method and device for manufacturing liquid hydrogen - Google Patents

Method and device for manufacturing liquid hydrogen

Info

Publication number
JPH08159653A
JPH08159653A JP6299994A JP29999494A JPH08159653A JP H08159653 A JPH08159653 A JP H08159653A JP 6299994 A JP6299994 A JP 6299994A JP 29999494 A JP29999494 A JP 29999494A JP H08159653 A JPH08159653 A JP H08159653A
Authority
JP
Japan
Prior art keywords
hydrogen
liquid
gas
ortho
liquid hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6299994A
Other languages
Japanese (ja)
Other versions
JP3521360B2 (en
Inventor
Kazuho Iwamoto
一帆 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP29999494A priority Critical patent/JP3521360B2/en
Publication of JPH08159653A publication Critical patent/JPH08159653A/en
Application granted granted Critical
Publication of JP3521360B2 publication Critical patent/JP3521360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE: To high-efficiently and economically manufacture liquid hydrogen by a method wherein hydrogen gas is introduced to an expansion turbine arranged at a cooling liquefying system for hydrogen and expanded to a pressure higher than a critical pressure for output. CONSTITUTION: Hydrogen gas in a supercritical pressure state outputted from a third heat-exchanger 33 is introduced in an expansion turbine 51, wherein the hydrogen gas undergoes adiabatic expansion to a critical pressure to generate cold. The hydrogen gas in a supercritical state after expansion is adiabatically processed by an ortho-to-para converter 44, and continuously cooled and processed in the passage of an ortho-to-para converter 45 of a heat- exchanger 34. Joule-Thomson expansion is effected by a JT valve 61 to generate hydrogen in a gas-liquid phase. The liquid hydrogen in a gas-liquid phase is further cooled in a liquid hydrogen reservoir 81 and after the liquid hydrogen is further converted by an ortho-to-para converter 46 located in the liquid hydrogen reservoir 81, the liquid hydrogen is taken out as product liquid hydrogen from a liquid hydrogen sampling route 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体水素の製造方法及
び装置に関し、詳しくは、圧縮機で圧縮した水素ガスを
熱交換器で冷却しながらオルソ−パラ変換を行い、ジュ
ールトムソン膨張させて液体水素を製造する方法及び装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for producing liquid hydrogen, and more specifically, it performs ortho-para conversion while cooling hydrogen gas compressed by a compressor with a heat exchanger and expands it by Joule-Thomson expansion. A method and apparatus for producing liquid hydrogen.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来か
ら、液体水素を製造する方式として、ヘリウムの寒冷を
利用したヘリウムブライトン方式と、水素自体から寒冷
を得るクロード方式とが知られている。前記ヘリウムブ
ライトン方式は、ヘリウムガスを圧縮後、膨張タービン
で断熱膨張させて寒冷を発生させ、この寒冷により水素
を冷却し、ジュールトムソン膨張によって液体水素を生
成させるもので、クロード方式は、圧縮した水素ガスを
膨張タービンで断熱膨張させて得た寒冷と、ジュールト
ムソン膨張によって発生した寒冷とを利用して水素を冷
却し、ジュールトムソン膨張によって液体水素を生成す
るものである。
2. Description of the Related Art Conventionally, as a method for producing liquid hydrogen, there are known a helium brighton method which utilizes the cold of helium and a Claude method which obtains the cold from hydrogen itself. The helium brighton method is a method in which helium gas is compressed, adiabatic expansion is performed by an expansion turbine to generate cold, and hydrogen is cooled by this cold, and liquid hydrogen is generated by Joule-Thomson expansion, and the Claude method is compressed. The cold is obtained by adiabatically expanding hydrogen gas with an expansion turbine and the cold generated by the Joule-Thomson expansion is used to cool the hydrogen to generate liquid hydrogen by the Joule-Thomson expansion.

【0003】このような液体水素の製造において、水素
の臨界圧力は、ヘリウムに比べて非常に高い約13気圧
であり、また、比熱が最大となる圧力も約15気圧付近
で、その値もヘリウム等に比べて著しく大きくなる。こ
のような水素の特性から、原料水素ガスの供給圧力は、
20〜40気圧とするのが一般的である。また、水素を
液化するに際しては、冷却過程でオルソ−パラ変換を行
ってパラ水素に変換する必要がある。
In the production of such liquid hydrogen, the critical pressure of hydrogen is about 13 atm, which is much higher than that of helium, and the pressure at which the specific heat becomes maximum is about 15 atm, which is also the value of helium. It will be significantly larger than the above. From such characteristics of hydrogen, the supply pressure of the raw material hydrogen gas is
It is generally set to 20 to 40 atm. Further, when liquefying hydrogen, it is necessary to perform ortho-para conversion in the cooling process to convert it into para hydrogen.

【0004】しかし、従来の液化法では、オルソ−パラ
変換を必要とする水素の冷却液化系統において、ジュー
ルトムソン膨張による寒冷の発生に頼るだけで、水素ガ
スの高い供給圧力の効果的な利用がなされておらず、そ
の結果、リサイクル側の流量が多くなり、圧縮動力及び
電力費の増加につながっていた。
However, in the conventional liquefaction method, in a hydrogen cooling liquefaction system requiring ortho-para conversion, effective use of high supply pressure of hydrogen gas can be achieved only by relying on generation of cold due to Joule-Thomson expansion. This was not done, and as a result, the flow rate on the recycle side increased, leading to an increase in compression power and power costs.

【0005】一方、特公平3−19471号公報に記載
された水素の液化方法では、水素の冷却液化系統に濃密
流体エクスパンダーを設けて水素を液化することが記載
されている。しかし、この濃密流体エクスパンダーにお
ける入口側の水素は超臨界状態であるが、出口側は気液
二層流である。ところが、このような気液二層流用の膨
張タービンは、タービンの構造上、破損し易く、実用装
置には一般的でなく採用し難い。さらに、気液二層流
は、一般に、状態が不安定であり、熱交換器等の構成機
器の設計,製作に困難を伴う場合が多い。
On the other hand, in the method for liquefying hydrogen described in JP-B-3-19471, it is described that a dense fluid expander is provided in a cooling liquefaction system for hydrogen to liquefy hydrogen. However, although hydrogen on the inlet side of this dense fluid expander is in a supercritical state, gas-liquid two-layer flow is present on the outlet side. However, such an expansion turbine for gas-liquid two-layer flow is apt to be damaged due to the structure of the turbine, and is not common to practical devices and is difficult to employ. Furthermore, the gas-liquid two-layer flow is generally in an unstable state, and it is often difficult to design and manufacture component equipment such as a heat exchanger.

【0006】そこで本発明は、冷却液化系統に供給され
る水素が有する高い圧力を有効に利用し、効率良く、経
済的に液体水素を製造することができる方法及び装置を
提供することを目的としている。
Therefore, an object of the present invention is to provide a method and an apparatus capable of efficiently and economically producing liquid hydrogen by effectively utilizing the high pressure of hydrogen supplied to a cooling liquefaction system. There is.

【0007】[0007]

【課題を解決するための手段】上記した目的を達成する
ため、本発明の液体水素の製造方法は、臨界圧力以上に
圧縮した水素ガスを冷却後、膨張させて液化する液体水
素の製造方法であって、水素の冷却液化系統に設けた膨
張タービンに前記水素ガスを導入し、臨界圧力以上の圧
力に膨張させて導出することを特徴とし、さらに、前記
膨張タービンを導出した水素ガスを断熱オルソ−パラ変
換することを特徴としている。
In order to achieve the above object, the method for producing liquid hydrogen of the present invention is a method for producing liquid hydrogen in which hydrogen gas compressed to a critical pressure or higher is cooled and then expanded and liquefied. It is characterized in that the hydrogen gas is introduced into an expansion turbine provided in a cooling and liquefaction system of hydrogen, and the hydrogen gas is introduced by expanding it to a pressure equal to or higher than a critical pressure. -It is characterized by para conversion.

【0008】また、本発明の液体水素の製造装置は、臨
界圧力以上に圧縮した水素ガスを冷却後、膨張させて液
化する液体水素の製造装置であって、水素の冷却液化系
統に、前記水素ガスを臨界圧力以上の圧力に膨張させる
膨張タービンを設けたことを特徴とし、さらに、前記膨
張タービンの出口に、断熱オルソ−パラ変換器を設けた
ことを特徴としている。
The liquid hydrogen producing apparatus of the present invention is a liquid hydrogen producing apparatus for cooling hydrogen gas compressed to a critical pressure or higher and then expanding and liquefying the hydrogen gas. An expansion turbine for expanding the gas to a pressure equal to or higher than the critical pressure is provided, and further, an adiabatic ortho-para converter is provided at the outlet of the expansion turbine.

【0009】[0009]

【作 用】上記構成によれば、冷却液化系統に供給され
た水素の高い圧力を、膨張タービンで寒冷として取出す
ことができる。このとき、膨張タービン出口側の圧力
(吐出圧力)を臨界圧力以上に保つことにより、気液二
層流にはならないので、安定した状態で水素を取出すこ
とができ、膨張タービン等の機器の設計,製作も容易に
行うことができる。
[Operation] According to the above configuration, the high pressure of hydrogen supplied to the cooling liquefaction system can be taken out as cold by the expansion turbine. At this time, by keeping the pressure (discharge pressure) on the outlet side of the expansion turbine above the critical pressure, a gas-liquid two-layer flow does not occur, so hydrogen can be taken out in a stable state, and the design of equipment such as the expansion turbine , It can be easily manufactured.

【0010】[0010]

【実施例】以下、本発明を、図面に示す一実施例に基づ
いてさらに詳細に説明する。図1は、本発明方法を適用
した液体水素製造装置の一実施例を示すもので、この液
体水素製造装置は、原料水素供給経路11に連続する水
素冷却液化系統21に、原料水素ガスを冷却するための
複数の熱交換器31,32,33,34と、各冷却段階
に応じて水素のオルソ−パラ変換を行うための複数のオ
ルソ−パラ変換器41,42,43,44,45,46
と、水素ガスを断熱膨張させる膨張タービン51と、水
素ガスをジュールトムソン膨張させて過冷状態の液体水
素を生成するジュールトムソン弁(JT弁)61と、原
料水素ガスを冷却するための液体窒素溜71と、JT弁
61で生成した気液二層流状態の水素を凝縮し、冷却
し、オルソ−パラ変換を行うための液体水素溜81とが
設けられるとともに、この水素冷却液化系統21から分
岐した水素を利用して寒冷を発生させるための設備とし
て、2台の膨張タービン52,53と、前記液体水素溜
81の液体水素を発生させるためのJT弁62と、膨張
タービン52,53及び液体水素溜81から寒冷源とし
て循環する水素を圧縮して原料水素に合流させるための
直列に接続された低圧用及び高圧用の2台の循環圧縮機
91,92とにより構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in more detail based on an embodiment shown in the drawings. FIG. 1 shows an embodiment of a liquid hydrogen production apparatus to which the method of the present invention is applied. This liquid hydrogen production apparatus cools a raw hydrogen gas to a hydrogen cooling liquefaction system 21 continuous to a raw hydrogen supply path 11. A plurality of heat exchangers 31, 32, 33, 34, and a plurality of ortho-para converters 41, 42, 43, 44, 45 for performing ortho-para conversion of hydrogen according to each cooling stage. 46
An expansion turbine 51 that adiabatically expands hydrogen gas, a Joule-Thomson valve (JT valve) 61 that expands hydrogen gas by Joule-Thomson to produce liquid hydrogen in a supercooled state, and liquid nitrogen for cooling the raw material hydrogen gas. A reservoir 71 and a liquid hydrogen reservoir 81 for condensing and cooling hydrogen in a gas-liquid two-layer flow state generated by the JT valve 61 and performing ortho-para conversion are provided, and from this hydrogen cooling liquefaction system 21 As equipment for generating cold using branched hydrogen, two expansion turbines 52, 53, a JT valve 62 for generating liquid hydrogen in the liquid hydrogen reservoir 81, expansion turbines 52, 53, and By two circulating compressors 91, 92 for low pressure and for high pressure connected in series for compressing hydrogen circulating as a cold source from the liquid hydrogen reservoir 81 and joining it with the raw material hydrogen. It has been made.

【0011】図示しない圧縮機により臨界圧力以上の所
定の圧力、例えば30気圧まで圧縮されて原料水素供給
経路11から供給される原料水素ガスは、循環圧縮機9
1,92で圧縮された循環水素ガスと合流して水素冷却
液化系統21に導入され、最初に、第1の熱交換器31
で、後述の戻り水素及び液体窒素溜71からの低温窒素
ガスと熱交換を行い、液体窒素温度程度(約80K)ま
で冷却される。第1の熱交換器31を導出した水素ガス
は、ここで循環用の水素ガスが経路22に分岐し、残り
の水素ガスは、液体窒素溜71内に設けられた第1のオ
ルソ−パラ変換器41に導入され、液体窒素温度に応じ
たオルソ−パラ変換が行われる。
The raw material hydrogen gas, which is compressed to a predetermined pressure higher than the critical pressure, for example, 30 atmospheres by a compressor (not shown) and is supplied from the raw material hydrogen supply path 11, is circulated compressor 9.
It is introduced into the hydrogen cooling liquefaction system 21 by merging with the circulating hydrogen gas compressed by 1, 92, and first, the first heat exchanger 31.
Then, heat is exchanged with return hydrogen and low temperature nitrogen gas from the liquid nitrogen reservoir 71, which will be described later, and the liquid nitrogen is cooled to about the liquid nitrogen temperature (about 80 K). In the hydrogen gas discharged from the first heat exchanger 31, the circulating hydrogen gas branches into the path 22, and the remaining hydrogen gas is the first ortho-para conversion provided in the liquid nitrogen reservoir 71. Introduced into the vessel 41, the ortho-para conversion depending on the liquid nitrogen temperature is performed.

【0012】上記オルソ−パラ変換器41を導出した水
素ガスは、第2,第3の熱交換器32,33に設けたオ
ルソ−パラ変換器42,43の通路を通り、戻り水素に
より更に冷却されるとともに、冷却温度に応じて連続オ
ルソ−パラ変換が行われる。
The hydrogen gas discharged from the ortho-para converter 41 passes through passages of the ortho-para converters 42 and 43 provided in the second and third heat exchangers 32 and 33, and is further cooled by returning hydrogen. At the same time, the continuous ortho-para conversion is performed depending on the cooling temperature.

【0013】第3の熱交換器33を導出した超臨界圧力
状態の水素ガスは、膨張タービン51に導入され、ここ
で臨界圧力の約13気圧付近まで断熱膨張して寒冷を発
生する。膨張後の超臨界状態の水素ガスは、断熱オルソ
−パラ変換器44で断熱オルソ−パラ変換した後、熱交
換器34のオルソ−パラ変換器45の通路で更に冷却さ
れるとともに連続オルソ−パラ変換され、JT弁61で
約1.2気圧までジュールトムソン膨張を行い、気液二
層混合状態の水素が生成する。
The supercritical hydrogen gas discharged from the third heat exchanger 33 is introduced into the expansion turbine 51, where it adiabatically expands to a critical pressure of about 13 atm to generate cold. The expanded hydrogen gas in the supercritical state is subjected to adiabatic ortho-para conversion in the adiabatic ortho-para converter 44, and then further cooled in the passage of the ortho-para converter 45 of the heat exchanger 34 and is continuously ortho-para-converted. After being converted, the JT valve 61 performs Joule-Thomson expansion up to about 1.2 atmospheres to generate hydrogen in a gas-liquid two-layer mixed state.

【0014】生成した気液二層混合状態の液体水素は、
液体水素溜81で更に冷却され、液体水素溜81内に設
けられたオルソ−パラ変換器46で更にオルソ−パラ変
換した後、液体水素採取経路12から製品液体水素とし
て取出される。
The produced liquid hydrogen in a gas-liquid two-layer mixed state is
The liquid hydrogen is further cooled in the liquid hydrogen reservoir 81, further ortho-para converted by the ortho-para converter 46 provided in the liquid hydrogen reservoir 81, and then taken out from the liquid hydrogen collecting path 12 as product liquid hydrogen.

【0015】一方、第1の熱交換器31を導出して経路
22に分岐した水素ガスは、更にその一部が経路23に
分岐して膨張タービン52に導入され、約4気圧まで断
熱膨張して寒冷を発生する。また、第2の熱交換器32
の出口で更に一部の水素ガスが経路24に分岐し、膨張
タービン53に導入されて約4気圧まで断熱膨張し、寒
冷を発生する。膨張タービン52,53で寒冷を発生し
た水素ガスは、熱交換器を逆方向に戻って寒冷を原料水
素ガスに与えた後、循環圧縮機92に吸引されて圧縮さ
れ、原料水素供給経路11からの原料水素ガスと合流す
る。
On the other hand, the hydrogen gas that has led out the first heat exchanger 31 and branched into the path 22 is further partially branched into the path 23 and introduced into the expansion turbine 52, where it is adiabatically expanded to approximately 4 atmospheres. Generate cold. In addition, the second heat exchanger 32
At the outlet of a part of the hydrogen gas is further branched to the path 24, introduced into the expansion turbine 53 and adiabatically expanded to about 4 atm to generate cold. The hydrogen gas that has generated cold in the expansion turbines 52 and 53 returns to the heat exchanger in the opposite direction to supply cold to the raw material hydrogen gas, and then is sucked and compressed by the circulation compressor 92 and is supplied from the raw material hydrogen supply path 11. It joins with the raw material hydrogen gas.

【0016】また、経路22から熱交換器32,33,
34を経た水素ガスは、JT弁62で約1.1気圧まで
ジュールトムソン膨張を行い、気液二層流となって液体
水素溜81内に流入する。液体水素溜81内の飽和水素
ガスは、経路25に導出されて熱交換器34,33,3
2,31を順次戻り、寒冷を原料水素ガスに与えた後、
循環圧縮機91,92で圧縮されて循環する。
From the path 22, heat exchangers 32, 33,
The hydrogen gas that has passed through 34 undergoes Joule-Thomson expansion up to about 1.1 atm by the JT valve 62 and becomes a gas-liquid two-layer flow and flows into the liquid hydrogen reservoir 81. The saturated hydrogen gas in the liquid hydrogen reservoir 81 is led out to the path 25 to be transferred to the heat exchangers 34, 33, 3
After returning to No. 2 and 31 in sequence and supplying cold to the raw material hydrogen gas,
The circulation compressors 91 and 92 compress and circulate.

【0017】なお、熱交換器32,33,34に設けた
オルソ−パラ変換器42,43,45は、熱交換器通路
内にオルソ−パラ変換触媒を充填したものである。ま
た、液体窒素溜71には、経路72から液体窒素が供給
されている。
The ortho-para converters 42, 43, 45 provided in the heat exchangers 32, 33, 34 have the ortho-para conversion catalyst filled in the heat exchanger passages. Liquid nitrogen is supplied to the liquid nitrogen reservoir 71 from a path 72.

【0018】上述のように、水素冷却液化系統21に、
超臨界圧力状態の水素ガスを超臨界圧力状態に保持した
まま臨界圧力付近まで断熱膨張させる膨張タービン51
を設けたことにより、原料水素ガスが有する圧力を有効
に利用して寒冷を発生させることができ、原料水素ガス
を冷却するために必要な寒冷量、すなわち、水素冷却液
化系統21から分岐して膨張タービン52,53に向か
う水素ガス及びJT弁62を経て液体水素溜81に向か
う水素量を低減することができ、原料水素供給経路11
から供給される原料水素ガスを効率良く、経済的に液化
することができる。
As described above, in the hydrogen cooling liquefaction system 21,
Expansion turbine 51 for adiabatically expanding hydrogen gas in a supercritical pressure state to near the critical pressure while maintaining the supercritical pressure state
By providing the above, it is possible to effectively use the pressure of the raw material hydrogen gas to generate cold, and to cool the raw material hydrogen gas, that is, to branch from the hydrogen cooling liquefaction system 21. The hydrogen gas toward the expansion turbines 52 and 53 and the hydrogen amount toward the liquid hydrogen reservoir 81 via the JT valve 62 can be reduced, and the raw material hydrogen supply path 11
The raw material hydrogen gas supplied from can be liquefied efficiently and economically.

【0019】さらに、膨張タービン51の出口側に断熱
オルソ−パラ変換器44を設けて断熱オルソ−パラ変換
することにより、後段の熱交換器34における熱交換を
確実に行うことができる。すなわち、膨張タービン51
を導出した水素ガスは、膨張タービン51導入前のパラ
濃度のままであり、このまま後段の熱交換器34に流入
した場合、パラ濃度が膨張後の温度に対応した平衡パラ
濃度になっていないため、この熱交換器34での熱交換
に支障を来すことがあるが、膨張タービン51の出口側
でオルソ−パラ変換を行って平衡パラ濃度とすることに
より、多少の温度上昇はあるものの安定した状態での熱
交換を行うことができる。
Further, by providing the adiabatic ortho-para converter 44 on the outlet side of the expansion turbine 51 and performing the adiabatic ortho-para conversion, the heat exchange in the heat exchanger 34 in the subsequent stage can be reliably performed. That is, the expansion turbine 51
The hydrogen gas that has been discharged remains at the para concentration before the expansion turbine 51 is introduced, and when it flows into the heat exchanger 34 at the latter stage as it is, the para concentration does not reach the equilibrium para concentration corresponding to the temperature after expansion. The heat exchange in the heat exchanger 34 may be hindered, but the ortho-para conversion is performed on the outlet side of the expansion turbine 51 to obtain the equilibrium para concentration, but the temperature is slightly increased, but stable. It is possible to perform heat exchange under the condition.

【0020】なお、本明細書においては、膨張機として
近年一般的に使用されている膨張タービンを用いている
が、従来の往復式膨張機を用いることも可能である。ま
た、循環用水素の分岐位置は、上記実施例に限らず、例
えば、第1の熱交換器に導入する前に分岐することもで
きる。
In this specification, an expansion turbine that has been generally used in recent years is used as the expander, but a conventional reciprocating expander can also be used. Further, the branching position of the hydrogen for circulation is not limited to the above-mentioned embodiment, but may be branched before being introduced into the first heat exchanger, for example.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
水素冷却液化系統に設けた膨張タービンで水素ガスを臨
界圧力付近まで断熱膨張させて寒冷を発生させるので、
水素冷却液化系統に供給される原料水素ガスが有する高
い圧力を寒冷として有効に取出すことができ、効果的に
利用することができる。これにより、プロセスの効率が
向上し、より少ない動力で水素を液化することが可能と
なる。
As described above, according to the present invention,
Since the expansion turbine installed in the hydrogen cooling liquefaction system adiabatically expands the hydrogen gas to near the critical pressure to generate cold,
The high pressure of the raw material hydrogen gas supplied to the hydrogen cooling liquefaction system can be effectively taken out as cold and can be effectively used. This improves the efficiency of the process and makes it possible to liquefy hydrogen with less power.

【0022】また、断熱膨張後の圧力を臨界圧力以上に
したことにより、不安定な気液二層流となることがな
く、安定した状態の流体となるので、プロセスの設計
上、また、装置の設計,製作上、取扱いが容易であり、
本発明の超臨界タービンを採用することにより、長期間
使用可能な実用装置の製作が可能になる。
Further, since the pressure after the adiabatic expansion is set to the critical pressure or higher, an unstable gas-liquid two-layer flow does not occur and a fluid in a stable state is obtained. Therefore, in designing the process and in the apparatus. It is easy to handle in designing and manufacturing
By adopting the supercritical turbine of the present invention, it becomes possible to manufacture a practical device that can be used for a long period of time.

【0023】さらに、膨張タービンの出口で断熱的にオ
ルソ−パラ変換を行うことにより、後段の熱交換器での
熱交換を効率よく行うことができる。
Further, by performing adiabatic ortho-para conversion at the outlet of the expansion turbine, it is possible to efficiently perform heat exchange in the heat exchanger in the subsequent stage.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す系統図である。FIG. 1 is a system diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…原料水素供給経路、21…水素冷却液化系統、3
1,32,33,34…熱交換器、41,42,43,
44,45,46…オルソ−パラ変換器、51,52,
53…膨張タービン、61,62…ジュールトムソン弁
(JT弁)、71…液体窒素溜、81…液体水素溜、9
1,92…循環圧縮機
11 ... Raw material hydrogen supply route, 21 ... Hydrogen cooling liquefaction system, 3
1, 32, 33, 34 ... Heat exchanger, 41, 42, 43,
44, 45, 46 ... Ortho-Para converter, 51, 52,
53 ... Expansion turbine, 61, 62 ... Joule Thomson valve (JT valve), 71 ... Liquid nitrogen reservoir, 81 ... Liquid hydrogen reservoir, 9
1,92 ... Circulation compressor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 臨界圧力以上に圧縮した水素ガスを冷却
後、膨張させて液化する液体水素の製造方法であって、
水素の冷却液化系統に設けた膨張タービンに前記水素ガ
スを導入し、臨界圧力以上の圧力に膨張させて導出する
ことを特徴とする液体水素の製造方法。
1. A method for producing liquid hydrogen, comprising cooling hydrogen gas compressed to a critical pressure or higher and then expanding and liquefying it.
A method for producing liquid hydrogen, which comprises introducing the hydrogen gas into an expansion turbine provided in a cooling and liquefying system of hydrogen, expanding the hydrogen gas to a pressure equal to or higher than a critical pressure, and discharging the hydrogen.
【請求項2】 前記膨張タービンを導出した水素ガスを
断熱オルソ−パラ変換することを特徴とする請求項1記
載の液体水素の製造方法。
2. The method for producing liquid hydrogen according to claim 1, wherein the hydrogen gas discharged from the expansion turbine is subjected to adiabatic ortho-para conversion.
【請求項3】 臨界圧力以上に圧縮した水素ガスを冷却
後、膨張させて液化する液体水素の製造装置であって、
水素の冷却液化系統に、前記水素ガスを臨界圧力以上の
圧力に膨張させる膨張タービンを設けたことを特徴とす
る液体水素の製造装置。
3. An apparatus for producing liquid hydrogen, comprising cooling hydrogen gas compressed to a critical pressure or higher and then expanding and liquefying it.
An apparatus for producing liquid hydrogen, wherein an expansion turbine for expanding the hydrogen gas to a pressure equal to or higher than a critical pressure is provided in a hydrogen cooling liquefaction system.
【請求項4】 前記膨張タービンの出口に、断熱オルソ
−パラ変換器を設けたことを特徴とする請求項3記載の
液体水素の製造装置。
4. The apparatus for producing liquid hydrogen according to claim 3, wherein an adiabatic ortho-para converter is provided at the outlet of the expansion turbine.
JP29999494A 1994-12-02 1994-12-02 Method and apparatus for producing liquid hydrogen Expired - Fee Related JP3521360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29999494A JP3521360B2 (en) 1994-12-02 1994-12-02 Method and apparatus for producing liquid hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29999494A JP3521360B2 (en) 1994-12-02 1994-12-02 Method and apparatus for producing liquid hydrogen

Publications (2)

Publication Number Publication Date
JPH08159653A true JPH08159653A (en) 1996-06-21
JP3521360B2 JP3521360B2 (en) 2004-04-19

Family

ID=17879465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29999494A Expired - Fee Related JP3521360B2 (en) 1994-12-02 1994-12-02 Method and apparatus for producing liquid hydrogen

Country Status (1)

Country Link
JP (1) JP3521360B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015188808A1 (en) * 2014-06-13 2015-12-17 Technische Universität Dresden Method and device for adjusting concentration ratios of orthohydrogen to parahydrogen
CN108444213A (en) * 2018-05-28 2018-08-24 张家港富瑞氢能装备有限公司 Purifier in liquefaction of hydrogen device
CN108744870A (en) * 2018-05-28 2018-11-06 张家港富瑞氢能装备有限公司 Hydrogen purification technique during liquefaction of hydrogen
WO2019189409A1 (en) * 2018-03-29 2019-10-03 川崎重工業株式会社 Liquid hydrogen production facility and hydrogen gas production facility
JP2020024067A (en) * 2018-08-07 2020-02-13 川崎重工業株式会社 Liquid hydrogen producing facility
CN113503692A (en) * 2021-07-01 2021-10-15 中国科学院理化技术研究所 Hydrogen liquefaction system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319471B2 (en) * 1987-01-07 1991-03-15 Air Prod & Chem
JPH05180558A (en) * 1990-10-26 1993-07-23 L'air Liquide Method of liquefying gas and refrigerating plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319471B2 (en) * 1987-01-07 1991-03-15 Air Prod & Chem
JPH05180558A (en) * 1990-10-26 1993-07-23 L'air Liquide Method of liquefying gas and refrigerating plant

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015188808A1 (en) * 2014-06-13 2015-12-17 Technische Universität Dresden Method and device for adjusting concentration ratios of orthohydrogen to parahydrogen
WO2019189409A1 (en) * 2018-03-29 2019-10-03 川崎重工業株式会社 Liquid hydrogen production facility and hydrogen gas production facility
CN111919077A (en) * 2018-03-29 2020-11-10 川崎重工业株式会社 Liquid hydrogen production apparatus and hydrogen production apparatus
CN108444213A (en) * 2018-05-28 2018-08-24 张家港富瑞氢能装备有限公司 Purifier in liquefaction of hydrogen device
CN108744870A (en) * 2018-05-28 2018-11-06 张家港富瑞氢能装备有限公司 Hydrogen purification technique during liquefaction of hydrogen
CN108744870B (en) * 2018-05-28 2019-05-21 张家港富瑞氢能装备有限公司 Hydrogen purification process during liquefaction of hydrogen
CN108444213B (en) * 2018-05-28 2023-09-26 江苏国富氢能技术装备股份有限公司 Purifying device in hydrogen liquefying device
JP2020024067A (en) * 2018-08-07 2020-02-13 川崎重工業株式会社 Liquid hydrogen producing facility
CN113503692A (en) * 2021-07-01 2021-10-15 中国科学院理化技术研究所 Hydrogen liquefaction system

Also Published As

Publication number Publication date
JP3521360B2 (en) 2004-04-19

Similar Documents

Publication Publication Date Title
CA1142846A (en) Method of and system for refrigerating a fluid to be cooled down to a low temperature
EP3368631B1 (en) Method using hydrogen-neon mixture refrigeration cycle for large-scale hydrogen cooling and liquefaction
JPH0481103B2 (en)
JP2020098092A5 (en)
US4346563A (en) Super critical helium refrigeration process and apparatus
US3735601A (en) Low temperature refrigeration system
JP2017223436A (en) Method and apparatus for cooling in liquefaction process
JP3521360B2 (en) Method and apparatus for producing liquid hydrogen
JP3486786B2 (en) Method and apparatus for producing liquid hydrogen
US6170290B1 (en) Refrigeration process and plant using a thermal cycle of a fluid having a low boiling point
JP4429552B2 (en) Liquid hydrogen production system
JP4142559B2 (en) Gas liquefaction apparatus and gas liquefaction method
CN216384787U (en) Hydrogen liquefaction equipment and system
US20220290919A1 (en) System and method for precooling in hydrogen or helium liquefaction processing
KR20200130252A (en) Cooling system
JP2001141359A (en) Air separator
JPH09303954A (en) Method and device for liquefying hydrogen by using neon
JPH06241647A (en) Hydrogen liquefying equipment and slush hydrogen producing equipment
KR20230104898A (en) Facility and method for generating hydrogen at cryogenic temperatures
JP2023548010A (en) Plant and method for producing hydrogen at cryogenic temperatures
JPS6131871A (en) Method and device for liquefying low boiling-point gas
JPH02171579A (en) Method of liquefying hydrogen
JPH0668430B2 (en) Liquid air production equipment
RU2073181C1 (en) Gas liquefaction system
JPH09170834A (en) Helium refrigerating system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040129

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees