JPH08157532A - Aqueous dispersion of ultra-microparticulate cross-linked allylic polymer and method of preparing the same - Google Patents

Aqueous dispersion of ultra-microparticulate cross-linked allylic polymer and method of preparing the same

Info

Publication number
JPH08157532A
JPH08157532A JP29845894A JP29845894A JPH08157532A JP H08157532 A JPH08157532 A JP H08157532A JP 29845894 A JP29845894 A JP 29845894A JP 29845894 A JP29845894 A JP 29845894A JP H08157532 A JPH08157532 A JP H08157532A
Authority
JP
Japan
Prior art keywords
diallyl
water
diallyl phthalate
persulfate
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29845894A
Other languages
Japanese (ja)
Other versions
JP3055411B2 (en
Inventor
Koji Aoki
宏二 青木
Katsuhiro Koide
克啓 小出
Akira Matsumoto
昭 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP6298458A priority Critical patent/JP3055411B2/en
Publication of JPH08157532A publication Critical patent/JPH08157532A/en
Application granted granted Critical
Publication of JP3055411B2 publication Critical patent/JP3055411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE: To obtain an aqueous dispersion of an ultra-microparticulate cross- linked diallyl phthalate polymer being excellent in solvent resistance, mechanical properties, and dimensional stability having good mixability and dispersibility in another resin and being desirable as a property modifier by polymerizing a monomer in the presence of a water-soluble polymerization initiator and in the absence of a surfactant and to obtain ultra-microparticles by drying the dispersion. CONSTITUTION: The polymerization is performed under conditions in which the concentration of diallyl phthalate in aqueous solution is 15wt.% or below, 7-30wt.%, based on the diallyl phthalate, water-soluble polymerization initiator is present, and no surfactant is present. According to this process, an aqueous dispersion of an ultra-microparticulate cross-linked diallyl phthalate of a particle diameter of 10-300nm can be obtained. Examples of the diallyl phthalates used include diallyl orthophthalate, diallyl isophthalate, and diallyl terephthalate. Desirable examples of the water-soluble polymerization initiators used include persulfates such as potassium persulfate, sodium persulfate and ammonium persulfates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゴムやプラスチック材
料の物性改良剤として、塗料やインキの添加剤として、
また反応性充填剤として有用な機能材料となる、粒子内
部が架橋構造を有するフタル酸ジアリル架橋高分子超微
粒子水分散体とこれを乾燥して得られる該超微粒子及び
その水分散体の製法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a physical property improving agent for rubber and plastic materials, an additive for paints and inks,
The present invention also relates to a diallyl phthalate crosslinked polymer ultrafine particle water dispersion having a crosslinked structure inside the particle, which is a functional material useful as a reactive filler, the ultrafine particles obtained by drying the same, and a method for producing the water dispersion thereof. .

【0002】[0002]

【従来の技術】フタル酸ジアリル(DAP)樹脂で代表
されるアリル樹脂は、熱安定性、電気的性質、寸法安定
性、耐溶剤性、機械的性質などに優れている非常に有用
な素材であり、現在、化粧板、成形材料等として幅広く
利用されている事は周知である。しかしながら、すでに
30有余年の歴史を持つDAP樹脂においても、その製
法上未だ多くの課題を残しており、その更なる発展のた
め革新的技術の創出が強く望まれている。DAP樹脂は
最終製品としては高度に架橋した不溶・不融の硬化物の
形で利用される事になるが、硬化物になる前段階にある
可溶性のプレポリマーとして製造する必要がある。とこ
ろで、DAPのように一分子中に2個の二重結合を有す
るモノマーのラジカル重合においては、重合初期にペン
ダント二重結合を持つ線状あるいは一部環構造を有する
プレポリマーが生成し、重合の進行と共に成長ラジカル
とプレポリマー中のペンダント二重結合の反応が活発化
し、プレポリマーは高分子量化するとともにその分岐が
高度化し、遂には不溶・不融の三次元網目構造を持つゲ
ルの形成に至ることはよく知られている。
2. Description of the Related Art Allyl resin represented by diallyl phthalate (DAP) resin is a very useful material having excellent thermal stability, electrical properties, dimensional stability, solvent resistance and mechanical properties. It is well known that it is widely used as a decorative board, a molding material, etc. at present. However, even DAP resin, which has a history of over 30 years, still has many problems in its production method, and creation of innovative technology is strongly desired for its further development. The DAP resin will be utilized in the form of a highly crosslinked insoluble and infusible cured product as a final product, but it needs to be produced as a soluble prepolymer in the stage before it becomes a cured product. By the way, in radical polymerization of a monomer having two double bonds in one molecule such as DAP, a prepolymer having a linear or partial ring structure having a pendant double bond is generated at the initial stage of the polymerization, and the polymerization is performed. As the reaction progresses, the reaction between the growing radical and the pendant double bond in the prepolymer becomes more active, the prepolymer becomes higher in molecular weight and its branching becomes more advanced, and finally a gel with an insoluble and infusible three-dimensional network structure is formed. It is well known that

【0003】DAP樹脂は熱可塑状態のプレポリマーに
ラジカル開始剤を添加して成形し、残存二重結合を架橋
反応させ硬化成形品として使用される。かような熱可塑
性プレポリマーを製造するには、通常原料モノマーの2
0〜30%の低重合率で重合を中止し、未反応モノマー
を除去してポリマーを得ている。このことは設備の複雑
さ、エネルギー多消費の面からきわめて非能率、非経済
的な物となっており経済的な製法が望まれている。上述
の問題点を解決すべき種々の方法が試みられて来たが、
いずれも工業的に成功していない。
The DAP resin is used as a cured molded product by adding a radical initiator to a prepolymer in a thermoplastic state and molding the resulting mixture to crosslink residual double bonds. In order to produce such a thermoplastic prepolymer, it is usually necessary to use 2
Polymerization was stopped at a low polymerization rate of 0 to 30%, and unreacted monomers were removed to obtain a polymer. This is extremely inefficient and uneconomical in terms of equipment complexity and energy consumption, and an economical manufacturing method is desired. Various methods have been tried to solve the above problems,
Neither has been industrially successful.

【0004】例えばプレポリマーを高重合率で得ようと
して溶液重合が試みられている。溶液重合ではゲル化点
は高重合率側へと移動し、プレポリマーの製造効率は上
昇する事になるが、その際に生成するプレポリマーは環
状構造を多く含む様になり、残存アリル基含量も低下す
る結果、成型時の硬化時間に長時間を要すのみならず硬
化物性が悪く実用化されていない。
For example, solution polymerization has been attempted in order to obtain a prepolymer with a high polymerization rate. In solution polymerization, the gel point moves to the higher polymerization rate side, and the production efficiency of the prepolymer increases, but the prepolymer generated at that time contains a large amount of cyclic structure and the residual allyl group content is high. As a result, the curing time at the time of molding requires a long time, and the physical properties of the cured product are poor, and it has not been put to practical use.

【0005】DAP系モノマーは重合の進行に伴いゲル
化し、重合系全体が硬化塊となり取り扱いが困難となり
それ以上重合反応を行う事は不可能であるが、出来るだ
け重合を進行させた物を取り出し粉砕し粒状にする事は
出来る。しかし通常の粉砕では0.1ミクロン以下にす
る事は容易でなく本発明が必要とする平均粒子径が30
0nm以下の粒径にする事は経済的にも困難である。
The DAP-based monomer gels as the polymerization progresses, and the entire polymerization system becomes a hardened mass, which makes it difficult to handle, and it is impossible to carry out a further polymerization reaction. It can be crushed into granules. However, it is not easy to reduce the particle size to 0.1 micron or less by ordinary crushing, and the average particle size required by the present invention is 30
It is economically difficult to make the particle diameter 0 nm or less.

【0006】微粒子ポリマーを乳化重合法により合成す
る事は既に試みられており、DAP系モノマーの乳化重
合も検討されているが、本発明が必要とする平均粒子径
が300nm以下の架橋高分子超微粒子得られていな
い。DAPの乳化重合については特公昭54−1759
号公報において開示された技術が知られている。特公昭
54−1759号公報には、水に界面活性剤を溶解し、
過硫酸塩を触媒としてDAPを乳化重合した後、メタノ
ールで未反応モノマーと水を除き熱溶融可能な顆粒状ポ
リマーを得る方法が開示されている。メタノールで抽出
し、DAPプレポリマー得ると言う従来の方法であり、
本発明が必要とする粒子径よりはるかに大きな顆粒状ポ
リマーを得る方法である。
[0006] It has already been attempted to synthesize a fine particle polymer by an emulsion polymerization method, and emulsion polymerization of a DAP-based monomer has also been investigated. However, the average particle diameter required for the present invention is not less than 300 nm and is a crosslinked polymer. No fine particles have been obtained. Regarding emulsion polymerization of DAP, Japanese Examined Patent Publication No. 54-1759
The technique disclosed in Japanese Patent Publication is known. JP-B-54-1759 discloses that a surfactant is dissolved in water,
A method of obtaining a heat-meltable granular polymer by removing unreacted monomer and water with methanol after emulsion-polymerizing DAP using a persulfate as a catalyst is disclosed. It is a conventional method of extracting with methanol to obtain a DAP prepolymer,
It is a method for obtaining a granular polymer having a particle size much larger than that required by the present invention.

【0007】一般に、乳化重合では反応場をミセル中に
閉じこめるため停止反応が抑制され、重合速度が速く、
かつ高分子量のポリマーが得られると言った特徴がある
が、DAPのようなアリル系多官能モノマーの重合では
モノマーへの退化性連鎖が本質的な停止反応となるた
め、本来の乳化重合の特徴が生かせない事になる。加え
てモノマーの比重が大きいこと、さらには多量の開始剤
(電解質)を必要とすることなどが阻害要因となって粒
子同志が凝集し易く、微粒子ポリマーエマルションは得
られていない。
Generally, in emulsion polymerization, since the reaction field is confined in the micelles, the termination reaction is suppressed and the polymerization rate is high.
In addition, there is a feature that a high molecular weight polymer can be obtained, but in the polymerization of an allylic polyfunctional monomer such as DAP, the degradable chain to the monomer becomes an essentially terminating reaction, so the original characteristics of emulsion polymerization Will not be utilized. In addition, since the specific gravity of the monomer is large and further, a large amount of the initiator (electrolyte) is required and the like, the particles are easily aggregated, and a fine particle polymer emulsion has not been obtained.

【0008】一方前述の欠点を克服するため高反応性の
ビニルモノマーと乳化共重合させ、重合速度を高めエマ
ルションの安定化を図ろうとした試みが、特公昭51−
31239号公報、特公昭52−6753号公報、特公
昭51−18475号公報等に開示されている。これら
一連の特許は、アニオン・ノニオン界面活性剤を用い、
DAPとアクリル酸エステルの乳化共重合を行い粒径が
0.1〜3μと粒径分布が大きいDAP−アクリルエス
テル共重合体を得る方法である。これらの方法は、全モ
ノマー中DAPが20重量%以上では重合反応系の安定
性が悪くなって粒子同志が癒着して凝集物が多くなり、
また重合率が25%を超えるとゲル化し凝集物が多くな
って重合安定性が悪くなるのでミクロン以下の高度に架
橋した微粒子ポリマーは得られ難い。従って、従来の乳
化重合による方法では平均粒子径が300nm以下で粒
子径分布の狭い架橋超微粒子ポリマーを得ることは不可
能である。
On the other hand, in order to overcome the above-mentioned drawbacks, an attempt was made to emulsion-copolymerize with a highly reactive vinyl monomer to increase the polymerization rate and stabilize the emulsion.
It is disclosed in Japanese Patent No. 31239, Japanese Patent Publication No. 52-6753, Japanese Patent Publication No. 51-18475. These series of patents use anionic and nonionic surfactants,
This is a method in which emulsion copolymerization of DAP and acrylic ester is carried out to obtain a DAP-acrylic ester copolymer having a large particle size distribution of 0.1 to 3 μm. In these methods, when DAP is 20% by weight or more in all the monomers, the stability of the polymerization reaction system is deteriorated, the particles adhere to each other, and aggregates increase,
Further, when the polymerization rate exceeds 25%, gelation occurs and the number of aggregates increases and the polymerization stability deteriorates. Therefore, it is difficult to obtain a highly crosslinked fine particle polymer having a particle size of micron or less. Therefore, it is impossible to obtain a crosslinked ultrafine particle polymer having an average particle diameter of 300 nm or less and a narrow particle diameter distribution by the conventional method by emulsion polymerization.

【0009】[0009]

【発明が解決しようとする課題】本発明者らは上記課題
を解決するための方策を鋭意検討した結果、プレポリマ
ーの製造効率を如何に上げるかと言った観点からは限界
があり、むしろゲルの積極的利用を考えると言った、根
本的な発想の転換を図る必要があると言う考えに至っ
た。すなわち高度に架橋した不溶・不融のゲルであって
もそのサイズが超微粒子のオーダーになれば超微粒子と
しての特性、透明性、大きな表面積などを利用する分
野、ゴム・プラスチック材料の物性改良剤、塗料・イン
キの添加剤、反応性充填剤への利用が期待されまた要求
されるからである。本発明は、このような要求を満足し
うるDAP架橋高分子超微粒子水分散体とこれを乾燥し
て得られる該超微粒子及びその水分散体の製法を提供す
ることを目的とする。
DISCLOSURE OF THE INVENTION As a result of diligent study of the measures for solving the above-mentioned problems, the present inventors have a limit from the viewpoint of how to improve the production efficiency of the prepolymer, and rather the gel I came up with the idea that it is necessary to make a fundamental shift in thinking, such as thinking of active use. In other words, even if a highly crosslinked insoluble / infusible gel is used, if its size is in the order of ultrafine particles, the field of utilizing the characteristics, transparency, and large surface area of ultrafine particles, the physical property improver for rubber / plastic materials It is expected and required to be used as an additive for paints and inks and a reactive filler. It is an object of the present invention to provide a DAP-crosslinked polymer ultrafine particle water dispersion that can satisfy such requirements, a method for producing the ultrafine particle obtained by drying the same, and an aqueous dispersion thereof.

【0010】[0010]

【課題を解決するための手段】本発明は、水溶性重合開
始剤の存在下、且つ界面活性剤の不存在下で重合して得
られた平均粒子径10nm〜300nmのフタル酸ジア
リル架橋高分子超微粒子水分散体及びこれを乾燥して得
られるフタル酸ジアリル架橋高分子超微粒子である。ま
た水系中フタル酸ジアリルの濃度15重量%以下及びフ
タル酸ジアリルに対し水溶性重合開始剤7〜30重量%
の存在下で、且つ界面活性剤の不存在下で重合を行うこ
とを特徴とする平均粒子径10nm〜300nmのフタ
ル酸ジアリル架橋高分子超微粒子水分散体の製法であ
る。
The present invention is directed to a diallyl phthalate crosslinked polymer having an average particle size of 10 nm to 300 nm obtained by polymerization in the presence of a water-soluble polymerization initiator and in the absence of a surfactant. It is an ultrafine particle water dispersion and a diallyl phthalate crosslinked polymer ultrafine particle obtained by drying the same. Further, the concentration of diallyl phthalate in the aqueous system is 15% by weight or less, and the water-soluble polymerization initiator is 7 to 30% by weight based on diallyl phthalate.
In the presence of a surfactant, and in the absence of a surfactant, the method for producing an aqueous dispersion of diallyl phthalate crosslinked polymer ultrafine particles having an average particle diameter of 10 nm to 300 nm.

【0011】本発明は通常の乳化重合とは全く逆の発想
の下になされたもので、界面活性剤不在下、多量の水溶
性開始剤を用いる事で、DAPの水相の重合で、末端に
解離基を有する反応性オリゴマーを生起させ、それらが
重合・合体・架橋する事によって多くの解離基を粒子表
面に持たせ、DAP架橋高分子超微粒子に分散安定性を
付与するものである。
The present invention was made based on a concept completely opposite to that of ordinary emulsion polymerization. In the absence of a surfactant, a large amount of a water-soluble initiator is used to polymerize the aqueous phase of DAP to obtain a terminal polymer. A reactive oligomer having a dissociative group is generated, and these are polymerized, united, and crosslinked to have many dissociative groups on the particle surface, thereby imparting dispersion stability to the DAP-crosslinked polymer ultrafine particles.

【0012】更に詳細に述べると、DAPの重合を種々
の条件下で鋭意検討した結果、モノマーへの連鎖移動の
ためオリゴマーしか得られないと言うアリル重合の欠点
を逆に生かすことにより、すなわち通常の乳化重合とは
全く逆の発想の下に、多量の開始剤を用いてDAPの重
合を行うと、界面活性剤不在下であっても安定な微粒子
が、それも開始剤量をモノマーに対し7重量%以上、好
ましくは10重量%以上、多くても30重量%以下に増
加させることにより分散粒子は超微粒子化し、均一な分
散液として得られることを見い出した。理由は明らかで
はないが、水相での重合において、末端に解離基を有
し、かつペンダントアリル基を持つ反応性オリゴマーが
生成し、それらが重合・合体・架橋する事によって多く
の解離基を粒子表面に持つ、分散安定性のある超微粒子
が形成され、高度に橋かけした粒子はモノマーを取り込
んで膨潤する事ができなくなり、さらにDAPモノマー
の水への溶解度は低いため生成粒子へのモノマー供給が
低下することと相俟って粒子の成長が止まり超微粒子ポ
リマーが生成するものと推察される。
[0012] More specifically, as a result of diligent studies on the polymerization of DAP under various conditions, the disadvantage of allyl polymerization that only an oligomer is obtained due to chain transfer to a monomer is used, namely, in general. Polymerization of DAP with a large amount of an initiator under the completely opposite idea to that of emulsion polymerization of does not produce stable fine particles even in the absence of a surfactant, but the amount of the initiator is different from that of the monomer. It has been found that by increasing the amount to 7% by weight or more, preferably 10% by weight or more, and at most 30% by weight or less, the dispersed particles become ultrafine particles and a uniform dispersion liquid is obtained. Although the reason is not clear, in the polymerization in the aqueous phase, a reactive oligomer having a dissociative group at the terminal and a pendant allyl group is produced, and many dissociative groups are generated by the polymerization, coalescence, and crosslinking of the reactive oligomers. Ultrafine particles with dispersion stability are formed on the surface of particles, and highly crosslinked particles cannot take in the monomer and swell, and the solubility of DAP monomer in water is low, so the monomer to be formed into particles. It is speculated that the growth of particles is stopped and the ultrafine particle polymer is generated in combination with the decrease of the supply.

【0013】DAPモノマーを界面活性剤存在下に重合
すると、ポリマー粒径が粗大になるのは、DAPモノマ
ーの水への溶解度が大きくなり、水相に多量のオリゴマ
ーが生起しこれらオリゴマーが多量に凝集しマクロ粒子
を生成するためと思われる。本発明の方法に水溶性溶剤
(メチルエチルケトン、アルコールなど)を加え、DA
Pの水分散重合すると、大きな粒子が生成し、ポリマー
の沈降が確認された。DAPのモノマーの溶解度を上昇
させる界面活性剤や溶剤の存在下では、本発明の要求す
る超微粒子架橋ポリマーは得ること困難である。
When the DAP monomer is polymerized in the presence of a surfactant, the particle size of the polymer becomes coarse because the solubility of the DAP monomer in water becomes large and a large amount of oligomers are generated in the water phase. This is probably because of agglomeration and generation of macro particles. A water-soluble solvent (methyl ethyl ketone, alcohol, etc.) is added to the method of the present invention, and DA
When P was water-dispersed and polymerized, large particles were generated, and precipitation of the polymer was confirmed. In the presence of a surfactant or a solvent that increases the solubility of the DAP monomer, it is difficult to obtain the ultrafine particle crosslinked polymer required by the present invention.

【0014】本発明のDAP架橋高分子超微粒子は水媒
体中で安定に分散しているため、撹拌、昇温、冷却など
取り扱いが容易であり、そのコロイド液をそのまま使用
しても良いし、また水分を蒸発除去し、濃厚コロイド、
または微粒子そのものを粉体で取り出しても使用する事
ができる。
Since the DAP-crosslinked polymer ultrafine particles of the present invention are stably dispersed in an aqueous medium, they are easy to handle such as stirring, heating and cooling, and the colloidal solution may be used as it is, In addition, water is removed by evaporation, concentrated colloid,
Alternatively, the fine particles themselves can be taken out as a powder and used.

【0015】本発明の超微粒子は平均粒子径10nm〜
300nmであり、好ましくは10nm〜200nm、
さらに好ましくは10nm〜100nmである。本発明
の超微粒子は、他の樹脂または他の樹脂エマルションと
の混合によって成形体を製造する際混合分散が極めて容
易になる特徴を有し、特に平均粒子径が100nm以下
においては該超微粒子は透明性を有している。しかも該
超微粒子が有機質であることにより、これを他の樹脂又
は他樹脂エマルションに混合使用するとき、これら他樹
脂との馴染みが無機質のものに比べて格段に優れている
こと、さらには本発明の超微粒子はDAP樹脂架橋体で
あり、このもの自体が持つ耐溶剤性、寸法安定性や機械
的特性を成形体に付与することができるという利点を有
している。しかし、本発明の超微粒子水分散体は、その
粒子径が300nmを超えるものは安定なコロイド状態
を保つことができない。
The ultrafine particles of the present invention have an average particle size of 10 nm to
300 nm, preferably 10 nm to 200 nm,
More preferably, it is 10 nm to 100 nm. The ultrafine particles of the present invention have the characteristic that mixing and dispersion are extremely facilitated when a molded product is produced by mixing with another resin or another resin emulsion, and particularly when the average particle size is 100 nm or less, the ultrafine particles are It has transparency. Moreover, since the ultrafine particles are organic, when they are mixed and used in other resins or other resin emulsions, the familiarity with these other resins is remarkably superior to the inorganic ones, and further, the present invention. The ultrafine particles are a cross-linked DAP resin, and have the advantage that they can impart the solvent resistance, dimensional stability, and mechanical properties that they themselves have to a molded product. However, the ultrafine particle water dispersion of the present invention cannot maintain a stable colloidal state when the particle diameter thereof exceeds 300 nm.

【0016】本発明において、DAP架橋高分子超微粒
子水分散体を製造する際に使用されるモノマーとしては
オルソフタル酸ジアリル、イソフタル酸ジアリル、テレ
フタル酸ジアリルが挙げられる。
In the present invention, examples of the monomer used for producing the DAP-crosslinked polymer ultrafine particle water dispersion include diallyl orthophthalate, diallyl isophthalate and diallyl terephthalate.

【0017】本発明において、超微粒子水分散体の粒子
の平均粒子径を300nm以下に保つためには原料モノ
マーの濃度を水系中15重量%以下にすることによって
達成される。この濃度より高いと水中で生成したオリゴ
マー粒子が集合もしくは合体し、最終的には300nm
をこえる平均粒子径の架橋微粒子となるので好ましくな
い。また平均粒子径を200nm以下に保つためには原
料モノマーの濃度を水系中10重量%以下にすることに
よって達成される。さらに平均粒子径を100nm以下
に保つためには水系中7.5重量%以下に原料モノマー
濃度を調整することによって達成される。しかし、原料
モノマー濃度1重量%より少ないと得られる分散液の超
微粒子濃度が低くすぎ経済性に乏しい。本発明におい
て、得られた超微粒子の平均粒子径の測定は光散乱法に
より行うことができる。
In the present invention, in order to keep the average particle diameter of the particles of the ultrafine particle water dispersion at 300 nm or less, the concentration of the raw material monomer is set to 15% by weight or less in the aqueous system. If the concentration is higher than this concentration, the oligomer particles generated in water will aggregate or coalesce, and finally 300 nm
The average particle diameter of the crosslinked fine particles is more than 100%, which is not preferable. Further, in order to keep the average particle diameter at 200 nm or less, it is achieved by setting the concentration of the raw material monomer at 10% by weight or less in the water system. Further, in order to keep the average particle size at 100 nm or less, it is achieved by adjusting the raw material monomer concentration to 7.5% by weight or less in the aqueous system. However, when the raw material monomer concentration is less than 1% by weight, the ultrafine particle concentration of the resulting dispersion is too low and the economy is poor. In the present invention, the average particle size of the obtained ultrafine particles can be measured by a light scattering method.

【0018】本発明において、界面活性剤の範疇には入
らないが重合中の粒子の凝集を防止する機能を有するス
ルホン酸基を有するモノマー、例えばスチレンスルホン
酸アルカリ金属塩、アリルスルホン酸アルカリ金属塩を
添加してもよい。添加量としては、水系中原料モノマー
に対し1〜10重量%、好ましくは1〜5重量%であ
る。
In the present invention, a monomer having a sulfonic acid group which does not fall into the category of a surfactant but has a function of preventing aggregation of particles during polymerization, such as an alkali metal salt of styrenesulfonic acid or an alkali metal salt of allylsulfonic acid. May be added. The addition amount is 1 to 10% by weight, preferably 1 to 5% by weight, based on the raw material monomer in the water system.

【0019】本発明に用いられる重合開始剤は水可溶型
のラジカル発生剤が好ましく、例えば過硫酸カリウム、
過硫酸ナトリウム、過硫酸アンモニウムなどの過硫酸塩
が挙げられる。重合開始剤の使用量は、原料モノマーに
対して7〜30重量%、好ましくは10〜20重量%で
ある。重合開始剤の使用量が7重量%未満では重合が完
結しないで未反応モノマーが残存するので好ましくな
い。また使用量が30重量%を超えることは経済的では
ない。重合に際しての反応温度は50〜95℃、好まし
くは70〜85℃である。また本発明における重合率は
85%以上がよく、好ましくは95%以上である。
The polymerization initiator used in the present invention is preferably a water-soluble type radical generator, such as potassium persulfate,
Examples thereof include persulfates such as sodium persulfate and ammonium persulfate. The amount of the polymerization initiator used is 7 to 30% by weight, preferably 10 to 20% by weight, based on the raw material monomer. If the amount of the polymerization initiator used is less than 7% by weight, the polymerization is not completed and unreacted monomers remain, which is not preferable. Moreover, it is not economical that the amount used exceeds 30% by weight. The reaction temperature during the polymerization is 50 to 95 ° C, preferably 70 to 85 ° C. The polymerization rate in the present invention is preferably 85% or more, preferably 95% or more.

【0020】本発明のDAP架橋高分子超微粒子水分散
体は、これをこのまま他のラテックスにブレンドしてラ
テックスの物性改良に使用できる。またこの水分散体を
スプレードライヤー、凍結乾燥などにより粉体として使
用することもできる。
The DAP-crosslinked polymer ultrafine particle water dispersion of the present invention can be used as it is for blending it with another latex to improve the physical properties of the latex. Further, this water dispersion can be used as a powder by a spray dryer, freeze drying or the like.

【0021】[0021]

【実施例】【Example】

実施例1 窒素ガス導入管、温度計、還流冷却器及びかき混ぜ器を
付した1リットルの5口セパラブルフラスコ中、イオン
交換水760重量部にオルソフタル酸ジアリル40重量
部を分散させ、フッ素樹脂製の半月型撹拌翼を用いて3
00rpmで撹拌しながら、窒素雰囲気下で85℃に加
熱した。過硫酸アンモニウム4重量部を添加し、85℃
に9時間保持しコロイド分散したDAP架橋高分子超微
粒子水分散体を得た。モノマーの重合率(重合液に標準
物質を添加し、ガスクロマトグラフィーにより残存モノ
マーより求めた)は98%で、光散乱法(大塚電子株式
会社製 LPA−3000)による測定で、平均粒子径
は44nm、分散度dw/dn(重量分布と個数分布の
比)は1.1で、臭素価は21.0であった。市販のエ
マルション(三井東圧化学社製「ポリラテックス75
5」SBR系合成ゴムラテックス、ゴム含量50重量
%)に上記水分散体をゴム量を基準として乾燥超微粒子
換算で20重量%添加し、これをガラス板に塗布し、1
00℃で30分熱処理すると、透明なフィルムが得られ
た。
Example 1 40 parts by weight of diallyl orthophthalate was dispersed in 760 parts by weight of ion-exchanged water in a 1-liter 5-neck separable flask equipped with a nitrogen gas inlet tube, a thermometer, a reflux condenser and a stirrer, and made of a fluororesin. 3 using the half-moon type stirring blade
Heated to 85 ° C. under nitrogen atmosphere with stirring at 00 rpm. Add 4 parts by weight of ammonium persulfate, 85 ° C
The mixture was kept for 9 hours and colloidally dispersed to obtain a DAP-crosslinked polymer ultrafine particle water dispersion. The polymerization rate of the monomer (the standard substance was added to the polymerization solution and determined from the residual monomer by gas chromatography) was 98%, and the average particle diameter was measured by the light scattering method (LPA-3000 manufactured by Otsuka Electronics Co., Ltd.). 44 nm, dispersity dw / dn (ratio of weight distribution and number distribution) was 1.1, and bromine number was 21.0. Commercially available emulsion ("Polylatex 75" manufactured by Mitsui Toatsu Chemicals, Inc.
5 "SBR synthetic rubber latex, rubber content 50% by weight), 20% by weight in terms of dry ultrafine particles of the above aqueous dispersion was added based on the amount of rubber, and this was applied to a glass plate, and 1
When heat-treated at 00 ° C. for 30 minutes, a transparent film was obtained.

【0022】実施例2 実施例1と同様の装置を用い、オルソフタル酸ジアリル
80重量部、イオン交換水720重量部、過硫酸アンモ
ニウム16重量部を反応器に仕込み撹拌し、窒素雰囲気
下で85℃で重合した。6時間後モノマーの重合率は9
9%で、得られた水分散体のDAP架橋高分子超微粒子
は光散乱法による測定で、平均粒子径は約180nm、
dw/dnは2.0、臭素価は18.0であった。市販
のエマルション(三井東圧化学社製「ポリラテックス5
25−8」NBR系合成ゴムラテックス、ゴム含量50
重量%)に上記水分散体をゴムを基準として乾燥超微粒
子換算で20重量%添加し、これをガラス板に塗布して
100℃で30分間熱処理すると指触による塗膜のタッ
ク性が改良された。
Example 2 Using the same apparatus as in Example 1, 80 parts by weight of diallyl orthophthalate, 720 parts by weight of deionized water, and 16 parts by weight of ammonium persulfate were placed in a reactor and stirred, and the mixture was stirred at 85 ° C. under a nitrogen atmosphere. Polymerized. After 6 hours, the polymerization rate of the monomer is 9
At 9%, the DAP-crosslinked polymer ultrafine particles of the obtained water dispersion had an average particle diameter of about 180 nm as measured by a light scattering method.
The dw / dn was 2.0 and the bromine number was 18.0. Commercially available emulsion ("Polylatex 5" manufactured by Mitsui Toatsu Chemicals, Inc.
25-8 "NBR synthetic rubber latex, rubber content 50
20% by weight in terms of dry ultrafine particles on the basis of rubber, which is applied to a glass plate and heat-treated at 100 ° C. for 30 minutes to improve the tackiness of the coating film by finger touch. It was

【0023】実施例3 実施例1と同様の装置を用い、オルソフタル酸ジアリル
60重量部、イオン交換水740重量部を反応容器に仕
込み撹拌下、窒素雰囲気下で85℃に加熱した。過硫酸
アンモニウム6重量部を添加し、85℃に8時間保持し
DAP架橋超微粒子ポリマー水分散体を得た。モノマー
の重合率は97%で、光散乱法による測定で、平均粒子
径は100nm、dw/dnは1.3、臭素価は20.
0であった。得られたコロイド溶液を放置し、水分を自
然蒸発させると脆い透明な薄シート状を形成した。
Example 3 Using the same apparatus as in Example 1, 60 parts by weight of diallyl orthophthalate and 740 parts by weight of ion-exchanged water were charged into a reaction vessel and heated to 85 ° C. under a nitrogen atmosphere while stirring. 6 parts by weight of ammonium persulfate was added and kept at 85 ° C. for 8 hours to obtain a DAP-crosslinked ultrafine particle polymer aqueous dispersion. The polymerization rate of the monomer was 97%, the average particle size was 100 nm, dw / dn was 1.3, and the bromine number was 20.
It was 0. When the obtained colloidal solution was left to stand for spontaneous evaporation of water, a brittle transparent thin sheet was formed.

【0024】比較例1 実施例1と同様の装置と条件下で、オルソフタル酸ジア
リル40重量部、界面活性剤(第一工業製薬社製 Y−
500)2重量部、イオン交換水760重量部を反応容
器に仕込み撹拌下、窒素雰囲気下で85℃に加熱し、過
硫酸アンモニウム4重量部を添加して重合を行ったが、
重合液は白濁、沈降の傾向を示し、得られたDAP架橋
粒子は1〜30μmの粒子径の大きなポリマーが生成し
た。
Comparative Example 1 Under the same equipment and conditions as in Example 1, 40 parts by weight of diallyl orthophthalate and a surfactant (Y-manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.)
500) 2 parts by weight and 760 parts by weight of ion-exchanged water were charged into a reaction vessel, heated to 85 ° C. under a nitrogen atmosphere under stirring, and 4 parts by weight of ammonium persulfate was added to carry out polymerization.
The polymerization liquid showed a tendency of clouding and sedimentation, and the obtained DAP crosslinked particles were a polymer having a large particle diameter of 1 to 30 μm.

【0025】比較例2 実施例1の装置を用い、オルソフタル酸ジアリル160
重量部、イオン交換水640重量部、過硫酸アンモニウ
ム16重量部を反応器に仕込み、撹拌しながら窒素雰囲
気下で85℃に重合した。得られた水分散体のDAP架
橋粒子ポリマーは光散乱法による測定で、平均粒子径は
900nm、dw/dnは12.5であった。
Comparative Example 2 Using the apparatus of Example 1, diallyl 160 orthophthalate was used.
Parts by weight, 640 parts by weight of ion-exchanged water, and 16 parts by weight of ammonium persulfate were charged in a reactor and polymerized at 85 ° C. under a nitrogen atmosphere while stirring. The DAP-crosslinked particle polymer of the obtained water dispersion had an average particle diameter of 900 nm and a dw / dn of 12.5 as measured by a light scattering method.

【0026】[0026]

【発明の効果】本発明のフタル酸ジアリル架橋高分子超
微粒子水分散体は、この分散体を形成する架橋高分子自
体が耐溶剤性、機械特性や寸法安定性に優れると共に粒
子自体が超微粒子からなるため、他樹脂との混合分散性
が良く、しかもこれより得られる成形体に透明性を与え
るなど物性改良材として好ましく用いることができる。
INDUSTRIAL APPLICABILITY The aqueous dispersion of diallyl phthalate cross-linked polymer ultrafine particles of the present invention is such that the cross-linked polymer itself forming this dispersion has excellent solvent resistance, mechanical properties and dimensional stability, and the particles themselves are ultrafine particles. Therefore, it can be preferably used as a material for improving physical properties such as good mixing and dispersibility with other resins and imparting transparency to a molded product obtained from the resin.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 水溶性重合開始剤の存在下、且つ界面活
性剤の不存在下で重合して得られた平均粒子径10nm
〜300nmのフタル酸ジアリル架橋高分子超微粒子水
分散体。
1. An average particle diameter of 10 nm obtained by polymerization in the presence of a water-soluble polymerization initiator and in the absence of a surfactant.
-300 nm diallyl phthalate cross-linked polymer ultrafine particle water dispersion.
【請求項2】 フタル酸ジアリル架橋高分子がオルソフ
タル酸ジアリル、イソフタル酸ジアリル及びテレフタル
酸ジアリルから選ばれたモノマーを重合して得られたも
のである請求項1に記載の水分散体。
2. The aqueous dispersion according to claim 1, wherein the diallyl phthalate crosslinked polymer is obtained by polymerizing a monomer selected from diallyl orthophthalate, diallyl isophthalate and diallyl terephthalate.
【請求項3】 水溶性重合開始剤が過硫酸塩である請求
項1又は2に記載の水分散体。
3. The water dispersion according to claim 1, wherein the water-soluble polymerization initiator is a persulfate salt.
【請求項4】 過硫酸塩が過硫酸カリウム、過硫酸ナト
リウム及び過硫酸アンモニウムから選ばれたものである
請求項3に記載の水分散体。
4. The aqueous dispersion according to claim 3, wherein the persulfate is selected from potassium persulfate, sodium persulfate and ammonium persulfate.
【請求項5】 フタル酸ジアリル架橋高分子超微粒子の
平均粒子径が10nm〜100nmである請求項1〜4
のいずれかに記載の水分散体。
5. The average particle diameter of the diallyl phthalate crosslinked polymer ultrafine particles is 10 nm to 100 nm.
The water dispersion according to any one of 1.
【請求項6】 請求項1〜5のいずれかに記載の水分散
体を乾燥して得られるフタル酸ジアリル架橋高分子超微
粒子。
6. A diallyl phthalate crosslinked polymer ultrafine particle obtained by drying the aqueous dispersion according to claim 1.
【請求項7】 水系中フタル酸ジアリルの濃度15重量
%以下及び水溶性重合開始剤をフタル酸ジアリルに対し
て7〜30重量%の存在下で、且つ界面活性剤の不存在
下で重合を行うことを特徴とする平均粒子径10nm〜
300nmのフタル酸ジアリル架橋高分子超微粒子水分
散体の製法。
7. Polymerization in the presence of a diallyl phthalate concentration of 15% by weight or less in a water system and a water-soluble polymerization initiator in the presence of 7 to 30% by weight based on diallyl phthalate, and in the absence of a surfactant. Average particle diameter of 10 nm
Process for producing 300 nm diallyl phthalate cross-linked polymer ultrafine particle water dispersion.
【請求項8】 フタル酸ジアリルがオルソフタル酸ジア
リル、イソフタル酸ジアリル及びテレフタル酸ジアリル
から選ばれたものである請求項6に記載の製法。
8. The method according to claim 6, wherein the diallyl phthalate is selected from diallyl orthophthalate, diallyl isophthalate and diallyl terephthalate.
【請求項9】 水溶性重合開始剤が過硫酸塩である請求
項6又は7に記載の製法。
9. The method according to claim 6, wherein the water-soluble polymerization initiator is persulfate.
【請求項10】 過硫酸塩が過硫酸カリウム、過硫酸ナ
トリウム及び過硫酸アンモニウムから選ばれたものであ
る請求項8に記載の製法。
10. The method according to claim 8, wherein the persulfate is selected from potassium persulfate, sodium persulfate and ammonium persulfate.
【請求項11】 フタル酸ジアリル架橋高分子超微粒子
の平均粒子径が10nm〜100nmである請求項6〜
9のいずれかに記載の製法。
11. The average particle size of the diallyl phthalate crosslinked polymer ultrafine particles is 10 nm to 100 nm.
9. The manufacturing method according to any one of 9.
JP6298458A 1994-12-01 1994-12-01 Allyl-based crosslinked polymer ultrafine particle aqueous dispersion and production method thereof Expired - Fee Related JP3055411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6298458A JP3055411B2 (en) 1994-12-01 1994-12-01 Allyl-based crosslinked polymer ultrafine particle aqueous dispersion and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6298458A JP3055411B2 (en) 1994-12-01 1994-12-01 Allyl-based crosslinked polymer ultrafine particle aqueous dispersion and production method thereof

Publications (2)

Publication Number Publication Date
JPH08157532A true JPH08157532A (en) 1996-06-18
JP3055411B2 JP3055411B2 (en) 2000-06-26

Family

ID=17859971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6298458A Expired - Fee Related JP3055411B2 (en) 1994-12-01 1994-12-01 Allyl-based crosslinked polymer ultrafine particle aqueous dispersion and production method thereof

Country Status (1)

Country Link
JP (1) JP3055411B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051744A1 (en) * 1997-05-12 1998-11-19 Daiso Co., Ltd. Epoxy resin composition
EP0949290A2 (en) * 1998-04-09 1999-10-13 Nippon Shokubai Co., Ltd. Crosslinked polymer particle and its production process and use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051744A1 (en) * 1997-05-12 1998-11-19 Daiso Co., Ltd. Epoxy resin composition
EP0949290A2 (en) * 1998-04-09 1999-10-13 Nippon Shokubai Co., Ltd. Crosslinked polymer particle and its production process and use
EP0949290A3 (en) * 1998-04-09 2001-01-17 Nippon Shokubai Co., Ltd. Crosslinked polymer particle and its production process and use
US6410616B1 (en) 1998-04-09 2002-06-25 Nippon Shokubai Co., Ltd Crosslinked polymer particle and its production process and use

Also Published As

Publication number Publication date
JP3055411B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
CN103554325B (en) A kind of preparation method of functional hollow polymer microballoon
JP2805334B2 (en) Suspension polymerization of 4-acetoxystyrene and hydrolysis to 4-hydroxystyrene polymer
Frank et al. Synthesis of divinylbenzene–maleic anhydride microspheres using precipitation polymerization
EP1484355B1 (en) High solids process for preparing polymeric nanoparticles
CN1096792A (en) The method for preparing low-molecular weight polymer
Zhao et al. Recent progress in polymerization‐induced self‐assembly: From the perspective of driving forces
KR100759188B1 (en) Method and apparatus for production of polyvinyl alcohol with high degree of polymerization
Lee et al. Preparation of highly cross-linked, monodisperse poly (methyl methacrylate) microspheres by dispersion polymerization; Part II. Semi-continuous processes
CN108329686B (en) Preparation method of high-performance nylon nano composite material
JPS59142213A (en) Manufacture of stable large grain size latex
Suppaibulsuk et al. Factorial design of nanosized polyisoprene synthesis via differential microemulsion polymerization
JP3055411B2 (en) Allyl-based crosslinked polymer ultrafine particle aqueous dispersion and production method thereof
JPH04106102A (en) Resin particle and its production
KR100513658B1 (en) Perparation of thermoplastic resin composition having excellent thermal stability and power properties
Wang et al. Study of the mechanism of the emulsifier-free emulsion polymerization of the styrene/4-vinylpyridine system
CN110698617A (en) Method for preparing rod-shaped nanoparticles by using liquid crystal fluorine-containing monomer
Zhou et al. Synthesis of fluorinated polyacrylate surfactant‐free core–shell latex by RAFT‐mediated polymerization‐induced self‐assembly: Effects of the concentration of hexafluorobutyl acrylate
Chernikova et al. Ternary copolymers of acrylic acid, N-isopropylacrylamide, and butyl acrylate: Synthesis and aggregative behavior in dilute solutions
TWI285212B (en) Liquid rubber composition and its preparation process and uses
Wang et al. Preparation and characterization of P (St‐co‐4VP) particles produced by using emulsifier‐free emulsion polymerization
Lee et al. Preparation of monodisperse poly (vinyl alcohol)(PVA) nanoparticles by dispersion polymerization and heterogeneous surface saponification
JPS63189413A (en) Production of crosslinked polymer particle
CN113845616B (en) PMMA copolymerized functional resin and preparation method thereof
JPH01315454A (en) Highly crosslinked polymer particle and production thereof
Kiatkamjornwong et al. Super-fine particles of poly (styrene-co-methyl methacrylate) by dispersion copolymerization

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees