JPH08157265A - Aluminum nitride sintered compact, laminated substrate and its production - Google Patents

Aluminum nitride sintered compact, laminated substrate and its production

Info

Publication number
JPH08157265A
JPH08157265A JP6329265A JP32926594A JPH08157265A JP H08157265 A JPH08157265 A JP H08157265A JP 6329265 A JP6329265 A JP 6329265A JP 32926594 A JP32926594 A JP 32926594A JP H08157265 A JPH08157265 A JP H08157265A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
raw material
substrate
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6329265A
Other languages
Japanese (ja)
Inventor
Jun Monma
旬 門馬
Norio Nakayama
憲隆 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6329265A priority Critical patent/JPH08157265A/en
Publication of JPH08157265A publication Critical patent/JPH08157265A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE: To produce an AlN sintered compact excellent especially in surface smoothness at a low cost and to obtain a laminated substrate. CONSTITUTION: At least one face of this AlN sintered compact has luster and the lustrous face is made of a c-axis oriented AlN polycrystal. When the lustrous face is analyzed by X-ray diffraction, the peak intensity of diffracted X-rays from the (002) faces of the AlN polycrystal is >=2-fold that from the (100) faces. The surface roughness Rmax of the lustrous face is <=10μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化アルミニウム焼結
体、複合基板およびその製造方法に係り、特に表面平滑
性に優れ、安価に製造することが可能な窒化アルミニウ
ム焼結体、複合基板およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride sintered body, a composite substrate and a method for producing the same, and more particularly to an aluminum nitride sintered body, a composite substrate and the same which have excellent surface smoothness and can be produced at low cost. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】近年、半導体産業の急速な技術革新によ
り、IC、LSIをはじめとする大規模集積回路では、
高集積化および高出力化が進展し、これに伴う半導体素
子の単位面積当りの発熱量が大幅に増加する傾向があ
る。特にパワーICや高周波トランジスタ等の大電流を
必要とする半導体素子においては、通電動作による発熱
のため、半導体素子の正常な動作が阻害される問題が生
じている。そのため半導体素子を搭載するセラミックス
基板として、熱伝導性が良好な絶縁性基板材料が要求さ
れている。
2. Description of the Related Art In recent years, due to rapid technological innovation in the semiconductor industry, in large-scale integrated circuits such as IC and LSI,
With the progress of higher integration and higher output, the amount of heat generated per unit area of the semiconductor element tends to increase significantly. In particular, in a semiconductor element such as a power IC or a high frequency transistor that requires a large current, the heat generated by the energizing operation causes a problem that the normal operation of the semiconductor element is disturbed. Therefore, an insulating substrate material having good thermal conductivity is required as a ceramic substrate on which a semiconductor element is mounted.

【0003】従来、上記の絶縁性基板材料としては一般
にアルミナ(Al2 3 )焼結体が最も広く使用されて
いた。しかしながらアルミナ焼結体の熱伝導率は20〜
25w/(m・k)と低く、半導体素子の高出力化、高
集積化に伴う発熱量の増加に十分に対応できず、熱放散
性が低い欠点があった。
Conventionally, alumina (Al 2 O 3 ) sintered bodies have generally been most widely used as the insulating substrate material. However, the thermal conductivity of the alumina sintered body is 20 to
It is as low as 25 w / (m · k), and cannot fully cope with the increase in the amount of heat generated due to the higher output and higher integration of semiconductor elements, and has a drawback of low heat dissipation.

【0004】一方、上記アルミナ焼結体の欠点を解消す
るセラミックス焼結体として、熱伝導率が高く、半導体
素子と近似した熱膨張係数を有し、強度および絶縁性に
も優れた窒化アルミニウム(AlN)焼結体が注目を集
めている。窒化アルミニウム焼結体は、熱伝導率が高く
放熱性に優れているため、放熱性と絶縁性とを必要とす
る高放熱性基板材料として普及している。
On the other hand, as a ceramics sintered body that eliminates the above-mentioned drawbacks of the alumina sintered body, aluminum nitride (which has a high thermal conductivity, a thermal expansion coefficient similar to that of a semiconductor element, and is excellent in strength and insulation properties). The AlN) sintered body is drawing attention. Since the aluminum nitride sintered body has high thermal conductivity and excellent heat dissipation, it is widely used as a highly heat-dissipative substrate material that requires heat dissipation and insulation.

【0005】従来、上記窒化アルミニウム焼結体は、高
純度の窒化アルミニウム原料粉末に焼結助剤を配合した
原料混合体を成形焼成して形成される。ところが窒化ア
ルミニウムは難焼結性材料であるため、緻密な焼結体を
得ることが困難である。そこで焼結を促進する焼結助剤
を添加し、常圧焼結法やホットプレス法を使用して、緻
密な窒化アルミニウム焼結体を製造する方法が一般に採
用されている。
Conventionally, the above-mentioned aluminum nitride sintered body is formed by molding and firing a raw material mixture in which a sintering aid is mixed with high-purity aluminum nitride raw material powder. However, since aluminum nitride is a material that is difficult to sinter, it is difficult to obtain a dense sintered body. Therefore, a method of manufacturing a dense aluminum nitride sintered body by using a normal pressure sintering method or a hot pressing method by adding a sintering aid that promotes sintering is generally adopted.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、窒化ア
ルミニウムは窒化物であるため、アルミナなどの酸化物
と比較して原料粉末の価格が高い難点があり、その原料
粉末を焼結して得られるAlN焼結体の原価も必然的に
高くなり、その普及速度が遅くなる一要因となってい
た。
However, since aluminum nitride is a nitride, the price of the raw material powder is higher than that of oxides such as alumina, and AlN obtained by sintering the raw material powder is disadvantageous. The cost of the sintered body was inevitably high, which was one of the factors that slowed down the diffusion rate.

【0007】また難焼結性を有するため、高温度で液相
を介して焼結を進行させる必要がある。そのために、焼
結後においてAlN焼結体の表面に液相の染み出しや粒
子の成長が部分的に発生し易く、表面粗さが大きくなる
問題点があった。そして表面粗さが大きい焼結体表面に
薄膜を形成したり、メタライズ層を形成して回路基板を
製造しようとすると、薄膜やメタライズ層の形成が困難
になり、また一旦、接合されても剥離を生じ易い等の問
題が発生していた。
Further, since it is difficult to sinter, it is necessary to proceed with the sintering at a high temperature through the liquid phase. Therefore, after the sintering, the exudation of the liquid phase and the growth of particles are likely to occur partially on the surface of the AlN sintered body, and there is a problem that the surface roughness becomes large. When a thin film is formed on the surface of a sintered body having a large surface roughness or a metallized layer is formed to manufacture a circuit board, it becomes difficult to form the thin film or the metallized layer. There was a problem such as easy occurrence.

【0008】また焼結体表面に放熱フイン等のヒートシ
ンク(冷却部品)を接合して放熱特性の改善を図ること
が、一般に実施されているが、焼結後の表面粗さが大き
いと、放熱部品と焼結体との密着性が悪化し、接触抵抗
が高くなるため、放熱特性が低下する問題点があった。
Further, it is generally practiced to join a heat sink (cooling component) such as a heat radiating fin to the surface of the sintered body to improve the heat radiating characteristic. There is a problem in that the adhesion between the component and the sintered body is deteriorated and the contact resistance is increased, so that the heat dissipation characteristic is deteriorated.

【0009】従って上記粗い表面を解消し、表面の平滑
性を得るためには、別途にAlN焼結体の表面を研磨す
る工程が必須となり、製造工数の増大に伴うコスト上昇
が不可避となる問題点があった。
Therefore, in order to eliminate the above-mentioned rough surface and obtain the smoothness of the surface, a separate step of polishing the surface of the AlN sintered body is indispensable, and the cost increase due to the increase of manufacturing man-hours is inevitable. There was a point.

【0010】本発明は上記問題点を解決するためになさ
れたものであり、特に表面平滑性に優れ、安価に製造す
ることが可能な窒化アルミニウム焼結体、複合基板およ
びその製造方法を提供することを目的とする。
The present invention has been made to solve the above problems, and provides an aluminum nitride sintered body, a composite substrate, and a method for producing the same which are excellent in surface smoothness and can be produced at low cost. The purpose is to

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明者らは、高純度の窒化アルミニウム原料粉末
に代替できる種々の安価な原料を用いてAlN焼結体を
形成し、その表面性状や結晶配列構造の差異を比較研究
した。その結果、特に安価な水酸化アルミニウム(Al
(OH)3 )粉末を窒化アルミニウム原料粉末中に所定
量配合し、焼結すると、水酸化アルミニウム粉末が窒化
アルミニウムに変換されると同時に、C軸方向に配向し
たAlN多結晶体が形成され、光沢を発するような平滑
性を有する表面がAlN焼結体に形成されることが判明
した。
In order to achieve the above object, the inventors of the present invention formed an AlN sintered body by using various inexpensive raw materials that can substitute for high-purity aluminum nitride raw material powder, and formed the surface thereof. A comparative study was made on the differences in properties and crystal arrangement structures. As a result, particularly inexpensive aluminum hydroxide (Al
When a predetermined amount of (OH) 3 ) powder is mixed in aluminum nitride raw material powder and sintered, the aluminum hydroxide powder is converted into aluminum nitride and, at the same time, an AlN polycrystal oriented in the C-axis direction is formed, It was found that a smooth surface having a glossy surface was formed on the AlN sintered body.

【0012】また上記水酸化アルミニウム粉末を配合し
た窒化アルミニウム粉末で成形体を形成し、このAlN
成形体と窒化ほう素(BN)基板とを重ねて積層体と
し、この積層体を窒素雰囲気中で温度1500〜195
0℃の範囲で焼成したときに、表面平滑性が優れ、BN
基板とAlN焼結体とが強固に直接接合した高強度の複
合基板が得られるという知見を得た。本発明は上記知見
に基づいて完成されたものである。
A molded body is formed from aluminum nitride powder mixed with the above-mentioned aluminum hydroxide powder.
The molded body and the boron nitride (BN) substrate are stacked to form a laminated body, and the laminated body is heated in a nitrogen atmosphere at a temperature of 1500 to 195.
Excellent surface smoothness when fired in the range of 0 ° C
It has been found that a high-strength composite substrate in which the substrate and the AlN sintered body are directly and strongly bonded can be obtained. The present invention has been completed based on the above findings.

【0013】すなわち本発明に係る窒化アルミニウム焼
結体は、焼結体の少くとも1つの表面が光沢を有し、光
沢を有する焼結体の表面がC軸に配向した窒化アルミニ
ウム多結晶体から成り、光沢を有する表面をX線回析分
析を行った場合に、窒化アルミニウム多結晶体の(00
2)面からの回析X線強度のピーク値が、(100)面
からの回析X線強度のピーク値の2倍以上であることを
特徴とする。
That is, the aluminum nitride sintered body according to the present invention is made of an aluminum nitride polycrystal in which at least one surface of the sintered body has gloss, and the surface of the sintered body having gloss is oriented in the C axis. When an X-ray diffraction analysis was performed on the surface having a gloss, the (00
The peak value of the diffraction X-ray intensity from the (2) plane is at least twice the peak value of the diffraction X-ray intensity from the (100) plane.

【0014】ここで上記窒化アルミニウム多結晶体の
(002)面からの回析X線強度のピーク値が(10
0)面からの回析X線強度のピーク値の2倍未満である
場合には、C軸方向への配向度が不十分であり、光沢を
有し、平滑性が優れた窒化アルミニウム焼結体を得るこ
とが困難となる。
Here, the peak value of the diffraction X-ray intensity from the (002) plane of the aluminum nitride polycrystal is (10
When the value is less than twice the peak value of the diffracted X-ray intensity from the (0) plane, the degree of orientation in the C-axis direction is insufficient, the aluminum nitride sintered product has gloss and is excellent in smoothness. It is difficult to get a body.

【0015】また本発明に係る窒化アルミニウム焼結体
の製造方法は、窒化アルミニウム原料粉末に、水酸化ア
ルミニウム粉末と、焼結助剤としてのIIa族元素および
IIIa族元素から選択される少くとも1種の化合物とを
配合し、得られた原料混合体を成形し、得られた成形体
を窒素雰囲気中において温度1500〜1950℃で焼
成することを特徴とする。ここで上記製造方法におい
て、窒化アルミニウム原料粉末に対する水酸化アルミニ
ウム粉末の配合量は5〜70重量%に設定するとよい。
また、窒化アルミニウム原料粉末と水酸化アルミニウム
粉末との混合体100重量部に対して焼結助剤を5〜3
0重量部配合するとよい。さらに好ましくは10〜30
重量部配合するとよい。
Further, the method for producing an aluminum nitride sintered body according to the present invention is characterized in that aluminum nitride raw material powder, aluminum hydroxide powder, and a group IIa element as a sintering aid and
And mixing at least one compound selected from Group IIIa elements, molding the obtained raw material mixture, and firing the obtained molded body at a temperature of 1500 to 1950 ° C. in a nitrogen atmosphere. To do. Here, in the above manufacturing method, the compounding amount of the aluminum hydroxide powder with respect to the aluminum nitride raw material powder may be set to 5 to 70% by weight.
Further, the sintering aid is added in an amount of 5 to 3 with respect to 100 parts by weight of the mixture of the aluminum nitride raw material powder and the aluminum hydroxide powder.
It is recommended to add 0 part by weight. More preferably 10 to 30
It is advisable to blend by weight.

【0016】水酸化アルミニウム粉末は、窒素雰囲気中
にて1500℃以上の高温度で焼成されると、雰囲気の
窒素ガスと反応して窒化アルミニウムを形成する。現時
点において、水酸化アルミニウム粉末の価格は、窒化ア
ルミニウム粉末と比較して1/5程度と安価である。そ
のため、AlN原料粉末中に水酸化アルミニウム粉末を
配合し、原料粉末中に占めるAlN原料粉末の絶対量を
低減することにより、AlN焼結体の原料価格を大幅に
節減することが可能となる。
When aluminum hydroxide powder is fired at a high temperature of 1500 ° C. or higher in a nitrogen atmosphere, it reacts with nitrogen gas in the atmosphere to form aluminum nitride. At the present time, the price of aluminum hydroxide powder is low, about 1/5 that of aluminum nitride powder. Therefore, by blending the aluminum hydroxide powder into the AlN raw material powder to reduce the absolute amount of the AlN raw material powder in the raw material powder, the raw material price of the AlN sintered body can be significantly reduced.

【0017】なお、焼結助剤を添加せず、ゲル状態の水
酸化アルミニウムをそのまま高温度に加熱することによ
り、窒化アルミニウム焼結体が形成されることが報告さ
れている。しかしながら、ゲル状態の水酸化アルミニウ
ムは、一般的に成形が困難であり、取扱いも煩雑な難点
がある。しかもゲル状態の水酸化アルミニウムは該して
高価であり、窒化アルミニウム焼結体の製造コストを低
減する効果は少ない。
It is reported that an aluminum nitride sintered body is formed by heating aluminum hydroxide in a gel state as it is without adding a sintering aid. However, gelled aluminum hydroxide is generally difficult to form and is complicated to handle. Moreover, gelled aluminum hydroxide is extremely expensive, and the effect of reducing the manufacturing cost of the aluminum nitride sintered body is small.

【0018】そのため本願では安価な水酸化アルミニウ
ム粉末を、窒化アルミニウム原料粉末に配合したことを
大きな特徴としている。窒化アルミニウム原料粉末に対
する水酸化アルミニウム粉末の配合量は5〜70重量%
の範囲に設定される。
For this reason, the present invention is characterized in that inexpensive aluminum hydroxide powder is mixed with aluminum nitride raw material powder. The compounding amount of the aluminum hydroxide powder with respect to the aluminum nitride raw material powder is 5 to 70% by weight.
It is set to the range of.

【0019】上記配合量が5%未満の場合には、原料価
格の低減効果が少ない一方、配合量が70重量%を超え
ると、焼結体の熱伝導率が30w/(m・k)以下と小
さくなり、AlN焼結体本来の高放熱特性が阻害され
る。従って水酸化アルミニウムの配合量は上記範囲に設
定されるが、10〜30重量%の範囲がより好ましい。
When the content is less than 5%, the effect of reducing the raw material price is small, while when the content exceeds 70% by weight, the thermal conductivity of the sintered body is 30 w / (m · k) or less. As a result, the original high heat dissipation characteristic of the AlN sintered body is hindered. Therefore, the blending amount of aluminum hydroxide is set within the above range, but the range of 10 to 30% by weight is more preferable.

【0020】焼結体助剤は液相を形成し、焼結体の緻密
化と表面の平滑化とを図るために必要であり、Mg,C
a,Sr,BaなどのIIa族元素およびY,希土類元素
などのIII a族元素から選択される少くとも1種の元素
の化合物から成る。上記焼結助剤の添加量は、通常のA
lN焼結体を形成する場合と比較してやや多量に配合さ
れる。すなわち窒化アルミニウム原料粉末と水酸化アル
ミニウム粉末との混合体100重量部に対して5〜30
重量部配合される。配合量が5重量部未満の場合には、
液相の生成量が不十分となり緻密で表面が平滑な焼結体
が得られない。一方、配合量が30重量部を超えると、
熱抵抗が大きい液相凝固部の割合が多くなり、AlN焼
結体本来の高熱伝導性が損われる。
The sintered body auxiliary agent is necessary for forming a liquid phase and for densifying the sintered body and smoothing the surface.
It is composed of a compound of at least one element selected from Group IIa elements such as a, Sr and Ba and Group IIIa elements such as Y and rare earth elements. The addition amount of the above-mentioned sintering aid is
It is mixed in a slightly larger amount as compared with the case of forming the 1N sintered body. That is, 5 to 30 per 100 parts by weight of a mixture of the aluminum nitride raw material powder and the aluminum hydroxide powder.
It is blended by weight. If the amount is less than 5 parts by weight,
The amount of liquid phase produced is insufficient and a dense sintered body with a smooth surface cannot be obtained. On the other hand, if the blending amount exceeds 30 parts by weight,
The proportion of the liquid-phase solidified portion having a large thermal resistance increases, and the original high thermal conductivity of the AlN sintered body is impaired.

【0021】上記製造方法に従い、窒化アルミニウム原
料粉末に安価な水酸化アルミニウム粉末を5〜70重量
%と、上記焼結助剤とを配合して原料混合体とし、この
原料混合体から形成した成形体を窒素雰囲気中で150
0〜1950℃で焼成することにより、全体が窒化アル
ミニウム粒子と液相凝固部とから成り、表面に光沢を有
し表面粗さがRmax (JISの最大表面粗さ)基準で1
0μm以下の窒化アルミニウム焼結体が安価に製造でき
る。特に水酸化アルミニウム粉末の配合量を10〜30
重量%とし、焼結温度を1800〜1900℃とした場
合において、表面平滑性がさらに優れ、かつAlN原料
粉末と水酸化アルミニウム粉末との混合による原価低減
効果が良好なAlN焼結体が得られる。
According to the above-mentioned manufacturing method, aluminum nitride raw material powder is mixed with inexpensive aluminum hydroxide powder in an amount of 5 to 70% by weight and the above-mentioned sintering aid to prepare a raw material mixture, and molding is performed from this raw material mixture. 150 in a nitrogen atmosphere
By firing at 0 to 1950 ° C., the whole consists of aluminum nitride particles and liquid phase solidified part, and the surface has gloss and the surface roughness is 1 based on Rmax (JIS maximum surface roughness).
An aluminum nitride sintered body of 0 μm or less can be manufactured at low cost. Particularly, the amount of aluminum hydroxide powder blended is 10 to 30.
When the weight percent is set and the sintering temperature is set to 1800 to 1900 ° C., an AlN sintered body having further excellent surface smoothness and a good cost reduction effect by mixing the AlN raw material powder and the aluminum hydroxide powder is obtained. .

【0022】上記AlN焼結体によれば、表面粗さが1
0μm−Rmax 以下と平滑性に優れているため、表面に
薄膜やメタライズ層を形成し易く、また基板材料として
使用した場合に、放熱フイン等のヒートシンク(冷却手
段)との密着性が優れ、接触抵抗を小さくできる。従っ
て半導体素子の高出力化に対応した高放熱性を有する基
板材料として利用できる。
According to the above AlN sintered body, the surface roughness is 1
Since it has a smoothness of 0 μm-Rmax or less, it is easy to form a thin film or a metallized layer on the surface, and when it is used as a substrate material, it has excellent adhesion to a heat sink (cooling means) such as a heat dissipation fin, so that contact can be made. Resistance can be reduced. Therefore, it can be used as a substrate material having a high heat dissipation property corresponding to the high output of a semiconductor element.

【0023】また焼結体を構成するAlN多結晶体がC
軸方向に配向しているため、マイクロ波誘電体として利
用できる可能性がある。すなわちAlN焼結体に電気的
な振動を与えた場合に、C軸方向に各多結晶体の固有振
動数が揃い、所定波長のマイクロ波を放出する誘電体と
なる。
Further, the AlN polycrystal forming the sintered body is C
Since it is oriented in the axial direction, it may be used as a microwave dielectric. That is, when electric vibrations are applied to the AlN sintered body, the natural frequencies of the polycrystalline bodies are aligned in the C-axis direction, and the dielectric body emits microwaves of a predetermined wavelength.

【0024】なお従来、上記のように結晶方位が一定の
軸方向に配向した誘電体は、一般に化学的蒸着法(CV
D法)を使用して長時間をかけて小規模で実験的に製造
されていたが、本願発明によれば、上記のような製造方
法に従って誘電体としてのAlN焼結体を効率的に量産
することができる。
Conventionally, the dielectric material in which the crystal orientation is oriented in the constant axial direction as described above is generally a chemical vapor deposition (CV) method.
Although it has been experimentally manufactured on a small scale for a long time using the D method), according to the present invention, the AlN sintered body as a dielectric is efficiently mass-produced according to the manufacturing method as described above. can do.

【0025】また本発明に係る複合基板は、焼結体の少
なくとも1つの表面が光沢を有し、光沢を有する焼結体
の表面がC軸に配向した窒化アルミニウム多結晶体から
成り、光沢を有する表面をX線回析分析を行った場合
に、窒化アルミニウム多結晶体の(002)面からの回
析X線強度のピーク値が、(100)面からの回析X線
強度のピーク値の2倍以上である窒化アルミニウム焼結
体と、窒化ほう素基板とを直接接合したことを特徴とす
る。
In the composite substrate according to the present invention, at least one surface of the sintered body has luster, and the surface of the sintered body having luster is made of an aluminum nitride polycrystal oriented in the C-axis, and has a luster. When X-ray diffraction analysis is performed on the surface having the same, the peak value of the diffraction X-ray intensity from the (002) plane of the aluminum nitride polycrystal is the peak value of the diffraction X-ray intensity from the (100) plane. It is characterized in that the aluminum nitride sintered body, which is more than twice as large as the above, and the boron nitride substrate are directly bonded.

【0026】さらに上記複合基板の製造方法は、窒化ア
ルミニウム原料粉末に、水酸化アルミニウム粉末と、焼
結助剤としてのIIa族元素およびIII a族元素から選択
される少くとも1種の化合物とを配合し、得られた原料
混合体を成形し、得られた成形体と窒化ほう素基板とを
積層して積層体を形成し、得られた積層体を窒素雰囲気
中において温度1500〜1950℃で焼成することを
特徴とする。
Further, in the method for producing the composite substrate, the aluminum nitride raw material powder is mixed with aluminum hydroxide powder and at least one compound selected from the group IIa element and the group IIIa element as a sintering aid. The raw material mixture obtained by blending is molded, the obtained molded body and a boron nitride substrate are laminated to form a laminated body, and the obtained laminated body is heated in a nitrogen atmosphere at a temperature of 1500 to 1950 ° C. It is characterized by firing.

【0027】ここで上記AlN焼結体に一体に直接接合
される窒化ほう素(BN)基板は、一般に六方晶窒化ほ
う素(h−BN)または立方晶窒化ほう素(c−BN)
から成り、特にc−BNは高い熱伝導性を備えた基板材
料である。またBN基板は誘電率が低いため、特に半導
体素子の信号高速化に対応し得る絶縁基板として有効で
ある。
Here, the boron nitride (BN) substrate integrally directly bonded to the AlN sintered body is generally hexagonal boron nitride (h-BN) or cubic boron nitride (c-BN).
In particular, c-BN is a substrate material having high thermal conductivity. In addition, since the BN substrate has a low dielectric constant, it is particularly effective as an insulating substrate that can cope with high-speed signal processing of semiconductor elements.

【0028】上記複合基板およびその製造方法におい
て、AlN成形体を製造するまでの工程および処理条件
は、前記AlN焼結体の製造方法と同一である。すなわ
ち AlN原料粉末に配合する水酸化アルミニウム粉末の配
合量は5〜70重量%であり、AlN原料粉末と水酸化
アルミニウム粉末との混合体100重量部に対して添加
する焼結助剤量は5〜30重量部である。
In the above composite substrate and the manufacturing method thereof, the steps and processing conditions until the AlN molded body is manufactured are the same as those of the AlN sintered body manufacturing method. That is, the blending amount of the aluminum hydroxide powder to be blended with the AlN raw material powder is 5 to 70% by weight, and the amount of the sintering aid added to 100 parts by weight of the mixture of the AlN raw material powder and the aluminum hydroxide powder is 5%. ~ 30 parts by weight.

【0029】そして前記水酸化アルミニウム粉末と焼結
助剤とを含有するAlN成形体とBN基板との積層体を、
窒素雰囲気中で温度1500〜1950℃の範囲で焼成
すると、発生した液相によってAlN成形体の焼結が進
行すると同時に一部の液相が接合面を経てBN基板内に
浸透し、接合面における両者の接合強度を高める結果、
AlN焼結体とBN基板とが強固に接合したAlN−B
N複合基板が形成される。
Then, a laminate of an AlN compact containing the aluminum hydroxide powder and a sintering aid and a BN substrate is prepared.
When firing in a nitrogen atmosphere at a temperature in the range of 1500 to 1950 ° C., the generated liquid phase advances the sintering of the AlN compact, and at the same time, a part of the liquid phase penetrates into the BN substrate through the bonding surface, As a result of increasing the joint strength of both,
AlN-B in which AlN sintered body and BN substrate are firmly joined
An N composite substrate is formed.

【0030】なお窒化アルミニウム原料粉末に対する水
酸化アルミニウム粉末の配合量を10〜20重量%に設
定した原料混合体からAlN成形体を形成し、このAl
N成形体とBN基板との積層体を1800〜1900℃
の焼結温度で焼成することにより、AlN焼結体とBN
基板との接合強度が、より向上した複合基板が得られ
る。
An AlN compact was formed from a raw material mixture in which the amount of aluminum hydroxide powder mixed with the aluminum nitride raw material powder was set to 10 to 20% by weight.
Laminated body of N molded body and BN substrate is 1800 to 1900 ° C.
By firing at the sintering temperature of AlN sintered body and BN
It is possible to obtain a composite substrate having improved bonding strength with the substrate.

【0031】上記のように製造された複合基板は、表面
平滑性に優れたBN基板部を一体に有しているため、A
lN焼結体とBN基板との複合効果およびBN基板特有
の効果を発揮できる。すなわち、破壊靭性値は高いが強
度は低いBN基板と、相対的に破壊靭性値は低いが強度
が高いAlN焼結体とを強固が一体に接合しているた
め、複合基板全体として両者の特性を補うことになり、
適用できる用途を拡大することができる。
Since the composite substrate manufactured as described above integrally has the BN substrate portion having excellent surface smoothness,
The combined effect of the 1N sintered body and the BN substrate and the effect unique to the BN substrate can be exhibited. That is, since a BN substrate having a high fracture toughness value but a low strength and an AlN sintered body having a relatively low fracture toughness value but a high strength are firmly joined together, the characteristics of both composite substrate as a whole are improved. Will be compensated for
The applicable applications can be expanded.

【0032】またBN基板上にはメタライズ層を形成し
にくい難点があるが、複合基板のAlN焼結体側の平滑
な表面上にはメタライズ層が形成し易く、容易に回路形
成することが可能ある。
Further, although it is difficult to form the metallized layer on the BN substrate, the metallized layer is easily formed on the smooth surface of the composite substrate on the side of the AlN sintered body, and the circuit can be easily formed. .

【0033】さらにBN基板は本来的に表面平滑性が優
れている一方、水酸化アルミニウムを配合し焼成して形
成したAlN焼結体の表面平滑性も優れているため、ヒ
ートシンクなどの放熱部品を密着させて取付けることが
可能であり、高出力化に対応した高放熱性絶縁基板とし
ても好適である。
Further, while the BN substrate is originally excellent in surface smoothness, the AlN sintered body formed by mixing aluminum hydroxide and firing is also excellent in surface smoothness. Since it can be attached in close contact, it is also suitable as a high heat dissipation insulating substrate corresponding to higher output.

【0034】またBN基板は誘電率が低い性質を有する
ため、特に信号の高速化に対応した絶縁基板としても有
効である。
Further, since the BN substrate has a property of having a low dielectric constant, it is also effective as an insulating substrate especially for high-speed signals.

【0035】さらにBN焼結体の硬度が大きく耐摩耗特
性に優れるとともに、滑りが良好であるため、上記複合
基板のBN基板表面を摺動面とする摺動部材として利用
することも可能である。
Further, since the BN sintered body has a large hardness and excellent wear resistance and has a good sliding property, it can be used as a sliding member having the BN substrate surface of the above composite substrate as a sliding surface. .

【0036】また六方晶形窒化ほう素(h−BN)基板
の熱伝導率は60〜70w/(m・k)程度であるが、
立方晶形窒化ほう素(c−BN)基板の熱伝導率は10
00〜1500w/(m・k)と極めて大きいため、特
に高い放熱特性を要求される場合には、c−BN基板を
一体に接合した複合基板を使用することが望ましい。
The heat conductivity of the hexagonal boron nitride (h-BN) substrate is about 60 to 70 w / (m · k),
The cubic boron nitride (c-BN) substrate has a thermal conductivity of 10
Since it is as large as 00 to 1500 w / (m · k), it is desirable to use a composite substrate in which the c-BN substrates are integrally bonded, especially when high heat dissipation characteristics are required.

【0037】[0037]

【作用】上記構成に係る窒化アルミニウム焼結体および
その製造方法によれば、焼成時に窒化アルミニウムとな
る安価な水酸化アルミニウム粉末を高価な窒化アルミニ
ウム原料粉末の代替原料として所定割合で使用している
ため、原料コストを大幅に低減でき安価な窒化アルミニ
ウム焼結体を提供することができる。
According to the aluminum nitride sintered body and the method for producing the same having the above-described structure, inexpensive aluminum hydroxide powder which becomes aluminum nitride during firing is used at a predetermined ratio as a substitute raw material for expensive aluminum nitride raw material powder. Therefore, the raw material cost can be significantly reduced and an inexpensive aluminum nitride sintered body can be provided.

【0038】また、水酸化アルミニウム粉末を配合して
いるため、焼成中に窒化アルミニウムの溶融が進み、十
分な液相が発生するため、焼結体表面の平滑化が促進さ
れ、表面平滑性に優れた窒化アルミニウム焼結体が得ら
れる。従って窒化アルミニウム焼結体表面に薄膜やメタ
ライズ層を形成することが容易であり、また基板材料と
して使用した場合に、ヒートシンクなどの部品として密
着性が良好であり、放熱性に優れた基板材料として使用
できる。
Further, since aluminum hydroxide powder is blended, the melting of aluminum nitride progresses during firing and a sufficient liquid phase is generated, so that smoothing of the surface of the sintered body is promoted and surface smoothness is improved. An excellent aluminum nitride sintered body can be obtained. Therefore, it is easy to form a thin film or a metallized layer on the surface of the aluminum nitride sintered body, and when it is used as a substrate material, it has good adhesion as a component such as a heat sink and a substrate material with excellent heat dissipation. Can be used.

【0039】さらに上記構成に係る複合基板およびその
製造方法によれば、水酸化アルミニウムと焼結助剤とを
含有するAlN成形体とBN基板との積層体を窒素雰囲
気中で焼成して形成されているため、焼成時に水酸化ア
ルミニウム粉末がAlNに変換されて焼結が進行すると
同時に、液相がBN基板内に浸透して接合面における両
者の接合強度を高める結果、AlN焼結体とBN基板と
が強固に接合した複合基板が得られる。
Further, according to the composite substrate and the method for manufacturing the same having the above-mentioned structure, it is formed by firing a laminated body of an AlN compact containing aluminum hydroxide and a sintering aid and a BN substrate in a nitrogen atmosphere. As a result, the aluminum hydroxide powder is converted to AlN during firing and the sintering progresses, and at the same time, the liquid phase permeates into the BN substrate to increase the bonding strength between the two, resulting in the AlN sintered body and the BN A composite substrate can be obtained in which the substrate and the substrate are firmly joined.

【0040】[0040]

【実施例】次に本発明の実施例について添付図面を参照
して、より具体的に説明する。
Embodiments of the present invention will now be described more specifically with reference to the accompanying drawings.

【0041】実施例1〜5 平均粒径が1μmで純度が99.99%の水酸化アルミ
ニウム粉末を、平均粒径が1μmの窒化アルミニウム原
料粉末に対して、表1に示すように10〜40重量%の
範囲で配合してそれぞれ混合体を調製した。得られた各
混合体100重量部に対して表1に示すような焼結助剤
を所定量添加して原料混合体とし、さらにバインダーと
してのアクリル樹脂を3重量部添加し、トルエン−エタ
ノールの混合溶剤を加えてボールミルにて24時間混合
して各原料スラリーとした。
Examples 1 to 5 As shown in Table 1, aluminum hydroxide powder having an average particle size of 1 μm and a purity of 99.99% was used as shown in Table 1 for aluminum nitride raw material powder having an average particle size of 1 μm. Blends were prepared by blending in the range of% by weight. A predetermined amount of a sintering aid as shown in Table 1 was added to 100 parts by weight of each obtained mixture to prepare a raw material mixture, and 3 parts by weight of an acrylic resin as a binder was further added to prepare a toluene-ethanol mixture. The mixed solvent was added and mixed in a ball mill for 24 hours to prepare each raw material slurry.

【0042】次に各原料スラリーをスプレードライヤー
によって造粒し、得られた造粒粉を、一軸プレスを使用
して1ton /cm2 の成形圧力で成形し板状のAlN成形
体を調製した。
Next, each raw material slurry was granulated with a spray dryer, and the obtained granulated powder was molded with a molding pressure of 1 ton / cm 2 using a uniaxial press to prepare a plate-shaped AlN compact.

【0043】次に得られた各AlN成形体を、窒素気流
中にて温度700℃で脱脂した後に、窒素ガス雰囲気中
にて表1に示す温度および時間の条件で焼成し、実施例
1〜5に係る窒化アルミニウム焼結体を調製した。
Next, each AlN compact thus obtained was degreased in a nitrogen stream at a temperature of 700 ° C. and then fired in a nitrogen gas atmosphere under the conditions of temperature and time shown in Table 1 to obtain Examples 1 to 1. An aluminum nitride sintered body according to No. 5 was prepared.

【0044】比較例1 一方、実施例1〜5において使用した窒化アルミニウム
原料粉末と水酸化アルミニウム粉末との混合体に代え
て、窒化アルミニウム原料粉末を使用せずに水酸化アル
ミニウム粉末を100重量%とした点以外は、実施例3
と同様な条件で、焼結助剤を添加し、原料混合、造粒、
成形、脱脂、焼結処理を行って比較例1に係る窒化アル
ミニウム焼結体を調製した。
Comparative Example 1 On the other hand, instead of the mixture of the aluminum nitride raw material powder and the aluminum hydroxide powder used in Examples 1 to 5, 100% by weight of aluminum hydroxide powder was used without using the aluminum nitride raw material powder. Example 3 except that
Under the same conditions as above, add the sintering aid, mix the raw materials, granulate,
Molding, degreasing and sintering were performed to prepare an aluminum nitride sintered body according to Comparative Example 1.

【0045】比較例2 一方、実施例1〜5において使用した窒化アルミニウム
原料粉末と水酸化アルミニウム粉末との混合体に代え
て、水酸化アルミニウム粉末を使用せずに窒化アルミニ
ウム粉末を100重量%とした点以外は、実施例3と同
様な条件で、焼結助剤を添加し、原料混合、造粒、成
形、脱脂、焼結処理を行って比較例2に係る窒化アルミ
ニウム焼結体を調製した。
Comparative Example 2 On the other hand, instead of the mixture of the aluminum nitride raw material powder and the aluminum hydroxide powder used in Examples 1 to 5, the aluminum nitride powder was 100% by weight without using the aluminum hydroxide powder. A sintering aid was added and raw material mixing, granulation, molding, degreasing, and sintering were performed under the same conditions as in Example 3 except for the above-mentioned conditions, to prepare an aluminum nitride sintered body according to Comparative Example 2. did.

【0046】こうして調製した各実施例および比較例に
係るAlN焼結体の特性を評価するため、各焼結体の表
面についてX線回析分析を実施してAlN多結晶体の
(002)面からの回析X線強度のピーク値と(10
0)面からの回析X線強度のピーク値とを測定して、両
者の倍率を算出した。また、各焼結体の表面粗さを測定
するとともに、レーザーフラッシュ法を使用して焼結体
の熱伝導率を測定した。測定結果を下記表1に示す。
In order to evaluate the characteristics of the AlN sintered bodies according to the respective Examples and Comparative Examples thus prepared, X-ray diffraction analysis was carried out on the surface of each sintered body, and the (002) plane of the AlN polycrystalline body was analyzed. X-ray intensity peak value from (10
The peak value of the diffraction X-ray intensity from the (0) plane was measured, and the magnification of both was calculated. Further, the surface roughness of each sintered body was measured, and the thermal conductivity of the sintered body was measured by using the laser flash method. The measurement results are shown in Table 1 below.

【0047】[0047]

【表1】 [Table 1]

【0048】表1に示す結果から明らかなように、Al
N原料粉末に所定量の水酸化アルミニウム粉末を配合し
て製造した各実施例に係るAlN焼結体においては、い
ずれも表面部分が光沢を有し、表面粗さが2〜5μm−
Rmax であり、優れた表面平滑性を有していることが確
認された。また熱伝導率も50〜75w/(m・k)と
高い値を示し、高放熱用基板材料として好適であること
が判明した。
As is clear from the results shown in Table 1, Al
In the AlN sintered bodies according to the respective examples, which are manufactured by mixing the N raw material powder with a predetermined amount of aluminum hydroxide powder, the surface portion has gloss and the surface roughness is 2 to 5 μm-.
It was Rmax, and it was confirmed to have excellent surface smoothness. Further, the thermal conductivity also showed a high value of 50 to 75 w / (m · k), and it was found that it is suitable as a substrate material for high heat dissipation.

【0049】なお上記熱伝導率は、通常のAlN焼結体
の熱伝導率(100〜200w/(m・k))と比較し
て低い値ではあるが、従来汎用のAl2 3 焼結体の熱
伝導率(約20w/(m・k)程度)やSi3 4 焼結
体の熱伝導率(20〜30w/(m・k))と比較して
も十分に優位性を有する値である。
Although the above-mentioned thermal conductivity is lower than the thermal conductivity (100 to 200 w / (m · k)) of a normal AlN sintered body, it is a conventional general-purpose Al 2 O 3 sintered body. Compared with the thermal conductivity of the body (about 20 w / (m · k)) and the thermal conductivity of the Si 3 N 4 sintered body (20-30 w / (m · k)), it has a sufficient advantage. It is a value.

【0050】一方比較例に係るAlN焼結体において
は、表面粗さが増大することが判明した。
On the other hand, it was found that the surface roughness was increased in the AlN sintered body according to the comparative example.

【0051】図1は実施例3に係るAlN焼結体表面の
X線回析図形である。図1に示すようにC軸方向に配向
したAlN多結晶体の強いピークおよびA軸方向に配向
した六方晶形の酸化イットリウム(h−Y2 3 )のピ
ークが検出されており、(002)方向のAlN多結晶
体のピーク高さは(100)方向のピークの50倍近く
に達しており、C軸配向したAlN多結晶体の割合が高
くなっている。さらに焼結体の裏面について同様にX線
回析分析を行ったところ、イットリアアルミネートの割
合が大きい窒化アルミニウム組織となっていることが判
明した。
FIG. 1 is an X-ray diffraction pattern of the surface of the AlN sintered body according to Example 3. As shown in FIG. 1, a strong peak of the AlN polycrystal oriented in the C-axis direction and a peak of hexagonal yttrium oxide (h-Y 2 O 3 ) oriented in the A-axis direction were detected, and (002) The peak height of the AlN polycrystal in the direction reaches nearly 50 times the peak in the (100) direction, and the proportion of the C-axis oriented AlN polycrystal is high. Further, when X-ray diffraction analysis was performed on the back surface of the sintered body in the same manner, it was found that the structure had an aluminum nitride structure with a large proportion of yttria aluminate.

【0052】一方、図2は比較例1に係るAlN焼結体
表面のX線回析図形である。図2に示すように、三窒化
アルミニウムと、イットリアアルミネート、酸化イット
リウム等の種々の液相凝固相からのピークが多数検出さ
れ、所定方向に配向した窒化アルミニウム多結晶体のピ
ークは、確認できなかった。
On the other hand, FIG. 2 is an X-ray diffraction pattern of the surface of the AlN sintered body according to Comparative Example 1. As shown in FIG. 2, many peaks from aluminum trinitride and various liquid phase solidified phases such as yttria aluminate and yttrium oxide were detected, and the peaks of the aluminum nitride polycrystal oriented in a predetermined direction were confirmed. There wasn't.

【0053】図3は実施例3に係るAlN焼結体の表面
の結晶組織を示す走査型電子顕微鏡(SEM)写真であ
る。図3に示すように、粒径が5〜20μm程度のAl
N多結晶粒子(灰色部)と多量の液相凝固部(黒色部)
とが混在した結晶組織が形成されており、この多量の液
相凝固部の存在により表面に緻密で光沢を有する平滑面
が形成される。
FIG. 3 is a scanning electron microscope (SEM) photograph showing the crystal structure of the surface of the AlN sintered body according to Example 3. As shown in FIG. 3, Al having a particle size of about 5 to 20 μm
N polycrystalline particles (gray part) and a large amount of liquid phase solidification part (black part)
A crystal structure in which and are mixed is formed, and due to the presence of this large amount of liquid phase solidification portion, a dense and glossy smooth surface is formed on the surface.

【0054】このように本実施例に係るAlN焼結体に
よれば、水酸化アルミニウム粉末を窒化アルミニウム原
料粉末に配合し、窒素ガス雰囲気中で焼成して形成され
ているため、安価で表面平滑性に優れたAlN焼結体を
提供することができる。
As described above, according to the AlN sintered body of the present embodiment, the aluminum hydroxide powder is mixed with the aluminum nitride raw material powder and the mixture is fired in the nitrogen gas atmosphere. It is possible to provide an AlN sintered body having excellent properties.

【0055】次に上記水酸化アルミニウム粉末を配合し
て形成したAlN焼結体とBN基板とを一体に接合した
複合基板の実施例について説明する。
Next, an example of a composite substrate in which an AlN sintered body formed by blending the aluminum hydroxide powder and a BN substrate are integrally bonded will be described.

【0056】実施例6〜10 実施例1〜5と同様に、平均粒径が1μmで純度が9
9.99%の水酸化アルミニウム粉末を、平均粒径が1
μmの窒化アルミニウム原料粉末に対して、10〜40
重量%の範囲で配合してそれぞれ混合体を調製した。得
られた各混合体100重量部に対して焼結助剤を所定量
添加して原料混合体とし、さらにバインダーとしてのア
クリル樹脂を3重量部添加し、トルエン−エタノールの
混合溶剤を加えてボールミルにて24時間混合して各原
料スラリーとした。
Examples 6 to 10 Similar to Examples 1 to 5, the average particle size is 1 μm and the purity is 9
Aluminum hydroxide powder of 9.99% with an average particle size of 1
10-40 with respect to the aluminum nitride raw material powder of μm
Blends were prepared by blending in the range of% by weight. A predetermined amount of a sintering aid is added to 100 parts by weight of each obtained mixture to make a raw material mixture, 3 parts by weight of an acrylic resin as a binder is further added, and a mixed solvent of toluene-ethanol is added to the ball mill. Was mixed for 24 hours to prepare each raw material slurry.

【0057】次に各原料スラリーをスプレードライヤー
によって造粒し、得られた造粒粉を、一軸プレスを使用
して1ton /cm2 の成形圧力で成形し板状のAlN成形
体を調製した。
Next, each raw material slurry was granulated with a spray dryer, and the obtained granulated powder was molded with a molding pressure of 1 ton / cm 2 using a uniaxial press to prepare a plate-shaped AlN compact.

【0058】次に得られた各AlN成形体を、空気気流
中にて温度700℃で脱脂した後に、表面が平滑なh−
BN基板上に載置して積層体とし、この積層体を窒素ガ
ス雰囲気中にて実施例1〜5と同様な温度および時間の
条件で焼成し、実施例6〜10に係るAlN−BN複合
基板を調製した。
Next, each AlN compact thus obtained was degreased in an air stream at a temperature of 700 ° C., and then h-
The laminated body was placed on a BN substrate to form a laminated body, and the laminated body was fired in a nitrogen gas atmosphere under the same temperature and time conditions as in Examples 1 to 5 to obtain the AlN-BN composites according to Examples 6 to 10. A substrate was prepared.

【0059】得られた各実施例に係るAlN−BN複合
基板の接合強度を評価するために剥離試験を実施したと
ころ剥離圧力はいずれも50〜100MPa程度であ
り、AlN焼結体とBN基板とは強固に接合しているこ
とが確認できた。
A peeling test was carried out to evaluate the bonding strength of the obtained AlN-BN composite substrates according to the respective examples. The peeling pressure was about 50 to 100 MPa, and the AlN sintered body and the BN substrate were It was confirmed that was firmly bonded.

【0060】図4および図5はそれぞれ実施例8に係る
複合基板接合部の結晶組織を示す走査型電子顕微鏡(S
EM)写真(倍率500倍)および同接合部の粒子構造
を示す光学顕微鏡写真(倍率25倍)である。図4に示
すように、中央の接合界面において、上部のBN基板お
よび下部のAlN焼結体の空隙部に液相凝固部がからみ
合うように形成されており、これらのからみ合いにより
BN基板とAlN焼結体との強固な接合が達成されてい
る。
FIG. 4 and FIG. 5 are scanning electron microscopes (S) showing the crystal structure of the joint portion of the composite substrate according to Example 8, respectively.
An EM photograph (magnification: 500 times) and an optical microscope photograph (magnification: 25 times) showing a grain structure of the same junction. As shown in FIG. 4, the liquid phase solidified portion is formed so as to be entangled with the void portion of the upper BN substrate and the lower AlN sintered body at the central joint interface, and the BN substrate and the BN substrate are formed by these entanglements. A strong bond with the AlN sintered body is achieved.

【0061】また図5からも明らかなように、下方のA
lN焼結体側から上部のBN基板内に液相が浸透してい
る様子が明確に観察できる。この液相浸透部が形成され
ることによって、相互の接合強度が高まるものと考えら
れる。
As is clear from FIG. 5, the lower A
It can be clearly observed that the liquid phase permeates into the upper BN substrate from the 1N sintered body side. It is considered that the formation of the liquid phase permeation portion enhances the mutual bonding strength.

【0062】このように本実施例に係るAlN−BN複
合基板によれば、水酸化アルミニウム粉末と焼結助剤と
を窒化アルミニウム原料粉末に配合して形成したAlN
成形体と平滑なBN基板との積層体を窒素雰囲気中で焼
成して形成されているため、焼成時に水酸化アルミニウ
ム粉末がAlNに変換されて焼結が進行すると同時に、
液相がBN基板内に浸透して接合面における両者の接合
強度を高めている。従ってAlN焼結体の特性とBN基
板の特性とを併有した複合基板を提供できる。
As described above, according to the AlN-BN composite substrate of this embodiment, the AlN formed by mixing the aluminum hydroxide powder and the sintering aid with the aluminum nitride raw material powder.
Since the laminated body of the molded body and the smooth BN substrate is formed by firing in a nitrogen atmosphere, the aluminum hydroxide powder is converted to AlN during firing and the sintering proceeds at the same time.
The liquid phase penetrates into the BN substrate to enhance the bonding strength between the two on the bonding surface. Therefore, it is possible to provide a composite substrate having both the characteristics of the AlN sintered body and the characteristics of the BN substrate.

【0063】[0063]

【発明の効果】以上説明の通り、本発明に係る窒化アル
ミニウム焼結体およびその製造方法によれば、焼成時に
窒化アルミニウムとなる安価な水酸化アルミニウム粉末
を高価な窒化アルミニウム原料粉末の代替原料として所
定割合で使用しているため、原料コストを大幅に低減で
き安価な窒化アルミニウム焼結体を提供することができ
る。
As described above, according to the aluminum nitride sintered body and the method for producing the same according to the present invention, inexpensive aluminum hydroxide powder which becomes aluminum nitride during firing is used as a substitute raw material for expensive aluminum nitride raw material powder. Since it is used at a predetermined ratio, the raw material cost can be significantly reduced and an inexpensive aluminum nitride sintered body can be provided.

【0064】また、水酸化アルミニウム粉末を配合して
いるため、焼成中に窒化アルミニウムの溶融が進み、十
分な液相が発生するため、焼結体表面の平滑化が促進さ
れ、表面平滑性に優れた窒化アルミニウム焼結体が得ら
れる。従って窒化アルミニウム焼結体表面に薄膜やメタ
ライズ層を形成することが容易であり、また基板材料と
して使用した場合に、ヒートシンクなどの部品として密
着性が良好であり、放熱性に優れた基板材料として使用
できる。
Further, since aluminum hydroxide powder is blended, melting of aluminum nitride progresses during firing, and a sufficient liquid phase is generated, so that smoothing of the surface of the sintered body is promoted and surface smoothness is improved. An excellent aluminum nitride sintered body can be obtained. Therefore, it is easy to form a thin film or a metallized layer on the surface of the aluminum nitride sintered body, and when it is used as a substrate material, it has good adhesion as a component such as a heat sink and a substrate material with excellent heat dissipation. Can be used.

【0065】さらに本発明に係る複合基板およびその製
造方法によれば、水酸化アルミニウムと焼結助剤とを含
有するAlN成形体とBN基板との積層体を窒素雰囲気
中で焼成して形成されているため、焼成時に水酸化アル
ミニウム粉末がAlNに変換されて焼結が進行すると同
時に、液相がBN基板内に浸透して接合面における両者
の接合強度を高める結果、AlN焼結体とBN基板とが
強固に接合した複合基板が得られる。
Further, according to the composite substrate and the method for manufacturing the same of the present invention, a laminate of an AlN compact containing aluminum hydroxide and a sintering aid and a BN substrate is formed by firing in a nitrogen atmosphere. As a result, the aluminum hydroxide powder is converted to AlN during firing and the sintering progresses, and at the same time, the liquid phase permeates into the BN substrate to increase the bonding strength between the two, resulting in the AlN sintered body and the BN A composite substrate can be obtained in which the substrate and the substrate are firmly joined.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例3に係るAlN焼結体表面のX線回析図
形。
1 is an X-ray diffraction pattern of the surface of an AlN sintered body according to Example 3. FIG.

【図2】比較例1に係るAlN焼結体表面のX線回析図
形。
2 is an X-ray diffraction pattern on the surface of an AlN sintered body according to Comparative Example 1. FIG.

【図3】実施例3に係るAlN焼結体表面の結晶組織を
示す電子顕微鏡写真。
FIG. 3 is an electron micrograph showing a crystal structure of a surface of an AlN sintered body according to Example 3.

【図4】実施例8に係る複合基板の接合部の結晶組織を
示す電子顕微鏡写真。
FIG. 4 is an electron micrograph showing a crystal structure of a bonded portion of a composite substrate according to Example 8.

【図5】実施例8に係る複合基板の接合部の粒子構造を
示す光学顕微鏡写真。
5 is an optical micrograph showing a particle structure of a bonded portion of a composite substrate according to Example 8. FIG.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 焼結体の少くとも1つの表面が光沢を有
し、光沢を有する焼結体の表面がC軸に配向した窒化ア
ルミニウム多結晶体から成り、光沢を有する表面をX線
回析分析を行った場合に、窒化アルミニウム多結晶体の
(002)面からの回析X線強度のピーク値が、(10
0)面からの回析X線強度のピーク値の2倍以上である
ことを特徴とする窒化アルミニウム焼結体。
1. At least one surface of the sintered body has a gloss, and the surface of the sintered body having a gloss is composed of an aluminum nitride polycrystal oriented in the C axis, and the surface having the gloss is subjected to X-ray diffraction. When diffraction analysis was performed, the peak value of the diffraction X-ray intensity from the (002) plane of the aluminum nitride polycrystal was (10
The aluminum nitride sintered body is characterized in that it is at least twice the peak value of the diffraction X-ray intensity from the 0) plane.
【請求項2】 焼結体の光沢を有する表面の粗さがRma
x で10μm以下であることを特徴とする請求項1記載
の窒化アルミニウム焼結体。
2. The roughness of the glossy surface of the sintered body is Rma.
The aluminum nitride sintered body according to claim 1, wherein x is 10 μm or less.
【請求項3】 窒化アルミニウム原料粉末に、水酸化ア
ルミニウム粉末と、焼結助剤としてのIIa族元素および
III a族元素から選択される少くとも1種の化合物とを
配合し、得られた原料混合体を成形し、得られた成形体
を窒素雰囲気中において温度1500〜1950℃で焼
成することを特徴とする窒化アルミニウム焼結体の製造
方法。
3. A raw material powder of aluminum nitride, aluminum hydroxide powder, and a group IIa element as a sintering aid, and
Characterizing by mixing at least one compound selected from Group IIIa elements, shaping the obtained raw material mixture, and firing the obtained shaped body at a temperature of 1500 to 1950 ° C. in a nitrogen atmosphere. And a method for producing an aluminum nitride sintered body.
【請求項4】 窒化アルミニウム原料粉末に対する水酸
化アルミニウム粉末の配合量を5〜70重量%に設定す
ることを特徴とする請求項3記載の窒化アルミニウム焼
結体の製造方法。
4. The method for producing an aluminum nitride sintered body according to claim 3, wherein the compounding amount of the aluminum hydroxide powder with respect to the aluminum nitride raw material powder is set to 5 to 70% by weight.
【請求項5】 窒化アルミニウム原料粉末と水酸化アル
ミニウム粉末との混合体100重量部に対して焼結助剤
を5〜30重量部配合することを特徴とする請求項3記
載の窒化アルミニウム焼結体の製造方法。
5. The aluminum nitride sintered product according to claim 3, wherein 5 to 30 parts by weight of a sintering aid is mixed with 100 parts by weight of a mixture of the aluminum nitride raw material powder and the aluminum hydroxide powder. Body manufacturing method.
【請求項6】 焼結体の少くとも1つの表面が光沢を有
し、光沢を有する焼結体の表面がC軸に配向した窒化ア
ルミニウム多結晶体から成り、光沢を有する表面をX線
回析分析を行った場合に、窒化アルミニウム多結晶体の
(002)面からの回析X線強度のピーク値が、(10
0)面からの回析X線強度のピーク値の2倍以上である
窒化アルミニウム焼結体と、窒化ほう素基板とを直接接
合したことを特徴とする複合基板。
6. At least one surface of the sintered body has a gloss, and the surface of the sintered body having a gloss is composed of an aluminum nitride polycrystal oriented in the C-axis, and the surface having the gloss is subjected to X-ray diffraction. When diffraction analysis was performed, the peak value of the diffraction X-ray intensity from the (002) plane of the aluminum nitride polycrystal was (10
A composite substrate obtained by directly bonding an aluminum nitride sintered body having a peak value of the diffracted X-ray intensity from the (0) plane to twice or more and a boron nitride substrate.
【請求項7】 窒化アルミニウム焼結体の光沢を有する
表面の粗さがRmaxで10μm以下であることを特徴と
する請求項6記載の複合基板。
7. The composite substrate according to claim 6, wherein the roughness of the glossy surface of the aluminum nitride sintered body is 10 μm or less in Rmax.
【請求項8】 窒化ほう素基板の表面粗さがRmax で1
0μm以下であることを特徴とする請求項6記載の複合
基板。
8. The surface roughness of the boron nitride substrate is 1 at Rmax.
The composite substrate according to claim 6, which has a thickness of 0 μm or less.
【請求項9】 窒化アルミニウム原料粉末に、水酸化ア
ルミニウム粉末と、焼結助剤としてのIIa族元素および
III a族元素から選択される少くとも1種の化合物とを
配合し、得られた原料混合体を成形し、得られた成形体
と窒化ほう素基板とを積層して積層体を形成し、得られ
た積層体を窒素雰囲気中において温度1500〜195
0℃で焼成することを特徴とする複合基板の製造方法。
9. An aluminum nitride raw material powder, an aluminum hydroxide powder, and a Group IIa element as a sintering aid, and
At least one compound selected from Group IIIa elements is blended, the resulting raw material mixture is shaped, and the obtained shaped body and a boron nitride substrate are laminated to form a laminate, The obtained laminated body is heated in a nitrogen atmosphere at a temperature of 1500 to 195.
A method for manufacturing a composite substrate, which comprises firing at 0 ° C.
【請求項10】 窒化アルミニウム原料粉末に対する水
酸化アルミニウム粉末の配合量を5〜70重量%に設定
することを特徴とする請求項9記載の複合基板の製造方
法。
10. The method for producing a composite substrate according to claim 9, wherein the compounding amount of the aluminum hydroxide powder with respect to the aluminum nitride raw material powder is set to 5 to 70% by weight.
【請求項11】 窒化アルミニウム原料粉末と水酸化ア
ルミニウム粉末との混合体100重量部に対して焼結助
剤を5〜30重量部配合することを特徴とする請求項9
記載の複合基板の製造方法。
11. The sintering aid is mixed in an amount of 5 to 30 parts by weight with respect to 100 parts by weight of a mixture of the aluminum nitride raw material powder and the aluminum hydroxide powder.
A method for manufacturing the composite substrate described.
JP6329265A 1994-12-05 1994-12-05 Aluminum nitride sintered compact, laminated substrate and its production Pending JPH08157265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6329265A JPH08157265A (en) 1994-12-05 1994-12-05 Aluminum nitride sintered compact, laminated substrate and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6329265A JPH08157265A (en) 1994-12-05 1994-12-05 Aluminum nitride sintered compact, laminated substrate and its production

Publications (1)

Publication Number Publication Date
JPH08157265A true JPH08157265A (en) 1996-06-18

Family

ID=18219520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6329265A Pending JPH08157265A (en) 1994-12-05 1994-12-05 Aluminum nitride sintered compact, laminated substrate and its production

Country Status (1)

Country Link
JP (1) JPH08157265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189378A1 (en) * 2018-03-27 2019-10-03 日本碍子株式会社 Aluminum nitride sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189378A1 (en) * 2018-03-27 2019-10-03 日本碍子株式会社 Aluminum nitride sheet
WO2019189377A1 (en) * 2018-03-27 2019-10-03 日本碍子株式会社 Aluminum nitride sheet
JPWO2019189377A1 (en) * 2018-03-27 2020-10-22 日本碍子株式会社 Aluminum nitride plate
JPWO2019189378A1 (en) * 2018-03-27 2020-10-22 日本碍子株式会社 Aluminum nitride plate
CN111868011A (en) * 2018-03-27 2020-10-30 日本碍子株式会社 Aluminum nitride plate
CN111868011B (en) * 2018-03-27 2022-03-11 日本碍子株式会社 Aluminum nitride plate
US11383981B2 (en) 2018-03-27 2022-07-12 Ngk Insulators, Ltd. Aluminum nitride plate

Similar Documents

Publication Publication Date Title
TWI600634B (en) Dense composite material, method for manufacturing the same, joined body, and member for semiconductor manufacturing apparatuses
US4960734A (en) Ceramic composite and process for preparation thereof
KR20140113364A (en) Dense composite material, method for producing the same, and component for semiconductor production equipment
JP2642184B2 (en) Method for producing aluminum nitride-hexagonal boron nitride sintered body
JPH08157265A (en) Aluminum nitride sintered compact, laminated substrate and its production
CN113264775B (en) Compact composite material, method for producing the same, bonded body, and member for semiconductor manufacturing device
JPH09268069A (en) Highly heat conductive material and its production
JPH07172921A (en) Aluminum nitride sintered material and its production
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
JP2778783B2 (en) Method for producing BN-AlN-based sintered body having anisotropy
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JPH06191953A (en) Aluminum nitride sintered compact
JPH02113561A (en) Parts for heat dissipation use
JP2004083366A (en) Aluminum nitride ceramic bonded product and its forming process
JPH11100276A (en) Silicon nitride substrate for mounting electronic parts and its manufacture
JPH0977559A (en) Aluminum nitride sintered compact and its production
JP2541150B2 (en) Aluminum nitride sintered body
JPH11100273A (en) Silicon nitride sintered compact, its production and circuit board
JPH0684265B2 (en) Aluminum nitride sintered body
JP2000191376A (en) Aluminum nitride sintered body and its production
JPH04292467A (en) Bn-aln-based compound sintered compact and its production
JP3784129B2 (en) High strength alumina sintered body
JP2001322874A (en) Aluminum nitride sintered body and method for manufacturing the same
JPH05254944A (en) Production of sialon-based composite ceramics