JPH08155749A - Gear cutting method - Google Patents

Gear cutting method

Info

Publication number
JPH08155749A
JPH08155749A JP29992394A JP29992394A JPH08155749A JP H08155749 A JPH08155749 A JP H08155749A JP 29992394 A JP29992394 A JP 29992394A JP 29992394 A JP29992394 A JP 29992394A JP H08155749 A JPH08155749 A JP H08155749A
Authority
JP
Japan
Prior art keywords
gear
heat treatment
cutting method
annular rack
abrasive grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29992394A
Other languages
Japanese (ja)
Inventor
Naotami Ino
直民 猪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Kogyo KK
Original Assignee
Nissei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Kogyo KK filed Critical Nissei Kogyo KK
Priority to JP29992394A priority Critical patent/JPH08155749A/en
Publication of JPH08155749A publication Critical patent/JPH08155749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE: To machine a gear with a small number of processes by omitting the deburring process and the dimension correcting process after the gear cutting. CONSTITUTION: A CBN abrasive grain layer 7 is provided by achieving the electrodeposition of the CBN abrasive grain at low density on a blade tip 6b of an annular rack-shaped tool 6. After the heat treatment of hardening and annealing, the gear stock is ground by the annular rack-shaped tool 6 to form a space in the gear 2. The gear stock hardened by the heat treatment is ground sharp by the CBN abrasive grain layer 7 of the annular rack-shaped tool 6, burrs of the space 2a are suppressed, and the dimensional change of the gear 2 by the thermal displacement is corrected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、環状ラック形工具又は
総形工具による歯車の歯切方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gear cutting method using an annular rack type tool or a forming tool.

【0002】[0002]

【従来の技術】従来の歯切方法として、環状フライスカ
ッターやホブ等のラック工具又は総形工具で歯車素材を
切削して歯溝を形成した後に、素材を焼入れ及び焼き戻
しといった熱処理をする技術が知られている。例えば、
モータ軸の先端に歯車を加工する場合、従来の歯切方法
は、図8に示すように、モータ軸を形成する棒状の歯車
素材1を切り出す材料出し工程81と、歯車素材1の外
周面を旋削する旋削A工程82及び旋削B工程83と、
歯切りに先立って外周面を研削する前外研工程84と、
環状フライスカッターにより歯車2の歯溝2aを切削す
る歯切り工程85と、歯切部分のバリ取り工程86と、
全体を浸炭焼入れ及び焼き戻しする熱処理工程87と、
熱処理後に外周面を研削する後外研A工程88及び後外
研B工程89と、ラップ加工及び洗浄を含む仕上工程9
0とから構成されていた。
2. Description of the Related Art As a conventional gear cutting method, a gear material is cut with a rack tool such as an annular milling cutter or a hob or a forming tool to form a tooth groove, and then heat treatment such as quenching and tempering of the material is performed. It has been known. For example,
When machining a gear at the tip of a motor shaft, a conventional gear cutting method is, as shown in FIG. 8, a material feeding step 81 for cutting out a rod-shaped gear material 1 forming a motor shaft, and A turning A step 82 and a turning B step 83 for turning,
A prior external polishing step 84 for grinding the outer peripheral surface prior to gear cutting,
A gear cutting step 85 of cutting the tooth groove 2a of the gear 2 with an annular milling cutter, and a deburring step 86 of the gear cutting portion,
A heat treatment step 87 for carburizing and tempering the whole,
Post-external polishing A step 88 and post-external polishing B step 89 of grinding the outer peripheral surface after heat treatment, and finishing step 9 including lapping and cleaning.
It consisted of 0 and.

【0003】また、この歯車2に噛合する傘歯車を加工
する場合、従来の歯切方法は、図9に示すように、歯車
素材3を円盤状に切り出す材料出し工程91と、歯車素
材3を旋削して傘歯車4を形成する旋削A工程92及び
旋削B工程93と、環状フライスカッターにより傘歯車
4に歯溝4aを切削する歯切り工程94と、歯切部分の
バリ取り工程95と、浸炭焼入れ及び焼き戻しを含む熱
処理工程96と、熱処理後のレース工程97と、ラップ
加工及び洗浄を含む仕上工程98とから構成されてい
た。
In the case of processing a bevel gear that meshes with the gear 2, the conventional gear cutting method is, as shown in FIG. 9, a material feeding step 91 for cutting the gear material 3 into a disk shape and a gear material 3. A turning A step 92 and a turning B step 93 for turning to form the bevel gear 4, a gear cutting step 94 for cutting the tooth groove 4a in the bevel gear 4 with an annular milling cutter, and a deburring step 95 for a gear cutting portion, It was composed of a heat treatment step 96 including carburizing and tempering, a race step 97 after the heat treatment, and a finishing step 98 including lapping and cleaning.

【0004】[0004]

【発明が解決しようとする課題】ところが、従来の歯切
方法によると、熱処理工程87,96に先立って歯切り
工程85,94を実施するので、歯切りに伴ってバリが
発生しやすく、これを除去するためのバリ取り工程8
6,95が必要であった。また、歯切り後に熱処理する
と、熱変位によって各部の寸法が変動することがあり
(特に大型歯車の場合に顕著)、これを修正するため
に、熱処理後に後外研工程88,89やレース工程97
が必要になり、総じて、工程数が増えるという問題点が
あった。
However, according to the conventional gear cutting method, since the gear cutting steps 85 and 94 are performed prior to the heat treatment steps 87 and 96, burrs are apt to be generated due to the gear cutting. Deburring process 8 for removing
6,95 was needed. Further, if heat treatment is performed after gear cutting, the dimensions of each part may change due to thermal displacement (particularly in the case of large gears), and in order to correct this, the post-external polishing steps 88 and 89 and the race step 97 are performed after heat treatment.
However, there is a problem in that the number of steps increases as a whole.

【0005】そこで、本発明の課題は、歯車を少ない工
程数で精度よく加工できる新規な歯切方法を提供するこ
とにある。
Therefore, an object of the present invention is to provide a novel gear cutting method capable of accurately processing a gear with a small number of steps.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の歯切方法は、刃先にCBN砥粒(立方窒
化ホウ素)層を備えた環状ラック形工具又は総形工具を
用い、熱処理後の歯車素材を研削して歯溝を形成するこ
とを特徴とする。
In order to solve the above-mentioned problems, the gear cutting method of the present invention uses an annular rack type tool or a forming tool having a CBN abrasive grain (cubic boron nitride) layer on the cutting edge. The gear material after the heat treatment is ground to form a tooth groove.

【0007】[0007]

【作用】本発明の歯切方法によれば、環状ラック形工具
及び総形工具の刃先にCBN砥粒層が設けられているの
で、熱処理により焼入れされた歯車素材をシャープに研
削でき、歯溝にバリが発生しにくくなり、その後のバリ
取り工程が不要になる。また、熱処理後に歯切りを行う
ので、熱変位による歯車の寸法変化を歯切り工程で同時
に修正でき、歯切後の工程を簡略化することができる。
According to the gear cutting method of the present invention, since the CBN abrasive grain layer is provided at the cutting edges of the annular rack-shaped tool and the all-shaped tool, the gear material hardened by the heat treatment can be sharply ground, and the tooth groove Burr is less likely to occur, and the subsequent deburring process is unnecessary. Further, since gear cutting is performed after the heat treatment, the dimensional change of the gear due to thermal displacement can be simultaneously corrected in the gear cutting process, and the process after gear cutting can be simplified.

【0008】[0008]

【実施例】以下、本発明を具体化した実施例を図面に基
づいて説明する。図1は環状ラック形工具の一実施例を
示すもので、環状ラック形工具6のボデー6aは筒状に
成形されている。ボデー6aの先端には刃先6bが歯車
2の歯溝2aと相似する形状で形成され、その内周面及
び外周面にはCBN砥粒層7が設けられている。CBN
砥粒層7は、例えば、粒度#270のCBN砥粒を、刃
先6bに電着させ、層厚0.085mm程度に形成され
ている。一般的なCBN砥石では、砥粒占有面積が50
〜60%であるが、本発明では砥粒占有面積を35〜4
5%(粒度#270の場合、電着密度は1mm2 あたり1
0〜14個)と低く設定してあって、比較的低密度で優
れた切れ味が得られ、一般的なCBN砥石と比較して砥
粒数を40〜50%に削減することもできる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of an annular rack-shaped tool, and a body 6a of the annular rack-shaped tool 6 is formed in a tubular shape. A cutting edge 6b is formed at the tip of the body 6a in a shape similar to the tooth groove 2a of the gear 2, and a CBN abrasive grain layer 7 is provided on the inner peripheral surface and the outer peripheral surface thereof. CBN
The abrasive grain layer 7 is formed to have a layer thickness of about 0.085 mm by, for example, electrodepositing CBN abrasive grains having a grain size of # 270 on the cutting edge 6b. With a general CBN grindstone, the area occupied by the abrasive grains is 50
However, in the present invention, the abrasive grain occupying area is 35 to 4%.
5% (for grain size # 270, the electrodeposition density is 1 per 1 mm 2
The number of abrasive grains can be reduced to 40 to 50% as compared with a general CBN grindstone.

【0009】図2は歯切方法の第一実施例を示すもの
で、ここでは前記環状ラック形工具6を用いてモータ軸
の先端に歯車が加工される。まず、材料出し工程11に
おいて、モータ軸を形成する歯車素材1が棒状に切り出
される。歯車素材1の材質は、SCM435又はSCM
440である。次いで、旋削A工程12及び旋削B工程
13において、歯車素材1の外周面が旋削され、次に、
熱処理工程14で、素材1の全体が焼入れ及び焼き戻し
される。この場合の硬度はHRC53である。
FIG. 2 shows a first embodiment of the gear cutting method, in which a gear is machined at the tip of the motor shaft by using the annular rack type tool 6. First, in the material feeding step 11, the gear material 1 forming the motor shaft is cut into a rod shape. The material of the gear material 1 is SCM435 or SCM
It is 440. Next, in the turning A step 12 and the turning B step 13, the outer peripheral surface of the gear material 1 is turned, and then
In the heat treatment step 14, the entire material 1 is quenched and tempered. The hardness in this case is HRC53.

【0010】熱処理後には、外研A工程15及び外研B
工程16において、歯車素材1の外周面が研削される。
続いて、CBN歯研工程17で、環状ラック形工具6に
より歯車素材1の先端部が研削され、歯車2に歯溝2a
がスパイラル状に形成される。この場合、環状ラック形
工具6の刃先6bにCBN砥粒層7が設けられているの
で、歯車素材1がシャープに研削され、歯溝2aのバリ
が抑制されるとともに、熱変位による歯車2の寸法変化
が同時に修正される。その後、仕上工程18で、歯車2
がバフ研磨及び洗浄され、モータ軸の製品が完成する。
従って、この実施例の歯切方法によれば、歯切り後のバ
リ取り工程及び寸法修正工程を省略でき、少ない工程数
で歯車2を精度よく加工することができる。
After the heat treatment, external polishing A step 15 and external polishing B
In step 16, the outer peripheral surface of the gear material 1 is ground.
Then, in the CBN tooth grinding step 17, the tip end of the gear material 1 is ground by the annular rack-shaped tool 6, and the gear 2 has a tooth groove 2a.
Are formed in a spiral shape. In this case, since the CBN abrasive grain layer 7 is provided on the cutting edge 6b of the annular rack-shaped tool 6, the gear material 1 is sharply ground, the burr of the tooth groove 2a is suppressed, and the gear 2 due to thermal displacement is The dimensional changes are corrected at the same time. Then, in the finishing step 18, the gear 2
Is buffed and cleaned to complete the motor shaft product.
Therefore, according to the gear cutting method of this embodiment, the deburring step and the dimension correcting step after the gear cutting can be omitted, and the gear 2 can be accurately processed with a small number of steps.

【0011】図3は歯切方法の第二実施例を示すもの
で、ここでは、熱処理後に高速研削工程25が設けられ
ている。高速研削工程25では、好ましくはCBN砥石
が用いられ、該砥石によって歯車素材1の外周面が高速
で研削される。その他の工程は第一実施例と同じであっ
て、同様の作用効果が得られる。
FIG. 3 shows a second embodiment of the gear cutting method, in which a high speed grinding step 25 is provided after the heat treatment. In the high speed grinding step 25, a CBN grindstone is preferably used, and the outer peripheral surface of the gear material 1 is ground at high speed by the grindstone. Other steps are the same as those in the first embodiment, and similar effects can be obtained.

【0012】図4は歯切方法の第三実施例を示すもの
で、ここでは、センタリング工程32において、歯車素
材1の両端面にセンタ孔1aが形成される。センタリン
グ後には熱処理工程33が実施され、旋削に先立って歯
車素材1が熱処理される。熱処理後の歯車素材1は、旋
削工程34で心押台を用いて1チャックキングで旋削さ
れた後、高速研削工程35を経て、CBN歯研工程36
で環状ラック形工具6によって歯溝2aが研削される。
FIG. 4 shows a third embodiment of the gear cutting method. Here, in the centering step 32, center holes 1a are formed in both end faces of the gear material 1. After the centering, the heat treatment step 33 is performed, and the gear material 1 is heat treated prior to turning. The gear material 1 after the heat treatment is turned by one chucking using a tailstock in a turning step 34, and then subjected to a high-speed grinding step 35 and a CBN tooth grinding step 36.
Then, the tooth groove 2a is ground by the annular rack-shaped tool 6.

【0013】図5は歯切方法の第四実施例を示すもの
で、ここでは、熱処理後の旋削がA工程44及びB工程
45に分けて実施されるとともに、外周研削工程が省略
されている。その他の工程は第三実施例と同様である。
FIG. 5 shows a fourth embodiment of the gear cutting method. In this embodiment, the turning after heat treatment is divided into A step 44 and B step 45, and the outer peripheral grinding step is omitted. . The other steps are the same as in the third embodiment.

【0014】図6は歯切方法の第五実施例を示すもの
で、ここでは歯車2に噛合する傘歯車4が同じ環状ラッ
ク形工具6を用いて加工される。まず、材料出し工程5
1において、歯車素材3が円盤状に切り出される。歯車
素材3の材質及び硬度は歯車2の場合と同等である。次
いで、熱処理工程52で、素材3が焼入れ及び焼き戻し
される。次に、旋削A工程53及び旋削B工程54にお
いて、歯車素材3が旋削されて傘歯車4が賦形される。
続いて、CBN歯研工程55で、環状ラック形工具6の
CBN砥粒層7によって歯溝4aがシャープに研削さ
れ、同時に、熱変位による傘歯車4の寸法変化が修正さ
れる。従って、その後のバリ取り工程及び寸法修正工程
を省略でき、歯切り後直ちに仕上工程56を実施でき、
もって、少ない工程数で傘歯車4を精度よく加工するこ
とができる。
FIG. 6 shows a fifth embodiment of the gear cutting method, in which the bevel gear 4 meshing with the gear 2 is machined by using the same annular rack type tool 6. First, the material feeding step 5
1, the gear material 3 is cut out into a disc shape. The material and hardness of the gear material 3 are the same as those of the gear 2. Next, in a heat treatment step 52, the material 3 is quenched and tempered. Next, in the turning A process 53 and the turning B process 54, the gear material 3 is turned and the bevel gear 4 is shaped.
Then, in the CBN grinding step 55, the tooth groove 4a is sharply ground by the CBN abrasive grain layer 7 of the annular rack-shaped tool 6, and at the same time, the dimensional change of the bevel gear 4 due to thermal displacement is corrected. Therefore, the subsequent deburring step and dimension correction step can be omitted, and the finishing step 56 can be performed immediately after gear cutting,
Therefore, the bevel gear 4 can be accurately processed with a small number of steps.

【0015】図7は総形工具の一実施例を示すもので、
総形工具8のボデー8aはホイール状に成形されてい
る。ボデー8aの外周には刃先8bが歯車5の歯溝5a
と相似するインボリュート形状で形成され、その研削面
にはCBN砥粒層9が設けられている。CBN砥粒層9
は、例えば、粒度#325のCBN砥粒を電着により刃
先8bに付着させて、層厚0.075mm程度で形成さ
れている。本実施例では、砥粒の電着密度は1mm2 あた
り12〜20個で、図1の環状ラック形工具6と同様に
低密度で優れた切れ味が得られる。
FIG. 7 shows an embodiment of the forming tool.
The body 8a of the shaping tool 8 is formed into a wheel shape. On the outer periphery of the body 8a, the cutting edge 8b is the tooth groove 5a of the gear 5.
It is formed in an involute shape similar to, and a CBN abrasive grain layer 9 is provided on the ground surface thereof. CBN abrasive grain layer 9
Is formed to have a layer thickness of about 0.075 mm by, for example, adhering CBN abrasive grains having a grain size of # 325 to the cutting edge 8b by electrodeposition. In this embodiment, the electrodeposition density of the abrasive grains is 12 to 20 per 1 mm 2, and similar to the annular rack tool 6 of FIG. 1, low density and excellent sharpness can be obtained.

【0016】なお、本発明は上記実施例のモータ軸上歯
車2及び傘歯車4の歯切方法のみに限定されるものでは
なく、例えば、平歯車、はすば歯車、やまば歯車、ハイ
ポイドギヤ、ウォームギヤ、ねじ歯車等の各種歯車の歯
切方法に適用して具体化することも可能である。
The present invention is not limited to the gear cutting method for the motor shaft upper gear 2 and the bevel gear 4 according to the above-described embodiment. For example, spur gears, helical gears, helical gears, hypoid gears, It is also possible to apply the invention to a gear cutting method for various gears such as a worm gear and a screw gear and embody it.

【0017】[0017]

【発明の効果】以上詳述したように、本発明によれば、
CBN砥粒層を備えた環状ラック形工具又は総形工具で
熱処理後の歯車素材を研削するので、歯車を少ない工程
数で精度よく加工できるという優れた効果を奏する。
As described in detail above, according to the present invention,
Since the gear material after the heat treatment is ground with the annular rack type tool or the all-purpose tool having the CBN abrasive grain layer, the gear wheel can be machined accurately with a small number of steps.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の歯切方法で用いられる環状ラック形工
具の断面図である。
FIG. 1 is a sectional view of an annular rack-shaped tool used in a gear cutting method of the present invention.

【図2】歯切方法の第一実施例を示す工程図である。FIG. 2 is a process drawing showing a first embodiment of a gear cutting method.

【図3】歯切方法の第二実施例を示す工程図である。FIG. 3 is a process drawing showing a second embodiment of the gear cutting method.

【図4】歯切方法の第三実施例を示す工程図である。FIG. 4 is a process drawing showing a third embodiment of the gear cutting method.

【図5】歯切方法の第四実施例を示す工程図である。FIG. 5 is a process drawing showing a fourth embodiment of the gear cutting method.

【図6】歯切方法の第五実施例を示す工程図である。FIG. 6 is a process drawing showing a fifth embodiment of the gear cutting method.

【図7】総形工具の実施例を示す断面図である。FIG. 7 is a sectional view showing an embodiment of a forming tool.

【図8】歯切方法の第一従来例を示す工程図である。FIG. 8 is a process drawing showing a first conventional example of a gear cutting method.

【図9】歯切方法の第二従来例を示す工程図である。FIG. 9 is a process drawing showing a second conventional example of a gear cutting method.

【符号の説明】[Explanation of symbols]

1,3・・歯車素材、2,4,5・・歯車、2a,4
a,5a・・歯溝、6・・環状ラック形工具、7・・C
BN砥粒層、8・・総形工具、6b,8b・・刃先、
7,9・・CBN砥粒層。
1,3 ... Gear material, 2,4,5, ... Gear, 2a, 4
a, 5a ... Tooth groove, 6 ... Annular rack type tool, 7 ... C
BN abrasive grain layer, 8 ... Forming tool, 6b, 8b ...
CBN abrasive grain layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 刃先にCBN砥粒層を備えた環状ラック
形工具又は総形工具を用い、熱処理後の歯車素材を研削
して歯溝を形成することを特徴とする歯切方法。
1. A gear cutting method, characterized in that an annular rack-shaped tool having a CBN abrasive grain layer at a cutting edge or a shaping tool is used to grind a gear material after heat treatment to form a tooth groove.
JP29992394A 1994-12-02 1994-12-02 Gear cutting method Pending JPH08155749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29992394A JPH08155749A (en) 1994-12-02 1994-12-02 Gear cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29992394A JPH08155749A (en) 1994-12-02 1994-12-02 Gear cutting method

Publications (1)

Publication Number Publication Date
JPH08155749A true JPH08155749A (en) 1996-06-18

Family

ID=17878566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29992394A Pending JPH08155749A (en) 1994-12-02 1994-12-02 Gear cutting method

Country Status (1)

Country Link
JP (1) JPH08155749A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298901A (en) * 2000-04-10 2001-10-26 Mitsubishi Electric Corp Geared motor
CN102554808A (en) * 2012-03-12 2012-07-11 无锡市启龙机床有限公司 Grinding wheel used for grinding valve lock clamp groove
JP6127220B1 (en) * 2015-12-10 2017-05-10 株式会社アライドマテリアル Super abrasive wheel
WO2017098764A1 (en) * 2015-12-10 2017-06-15 株式会社アライドマテリアル Super-abrasive grinding wheel
CN107097156A (en) * 2017-06-26 2017-08-29 汉德车桥(株洲)齿轮有限公司 A kind of electroplating CBN emery wheel for spiral bevel gear roll flute
CN107350727A (en) * 2016-05-09 2017-11-17 南京晨伟机械设备制造有限公司 A kind of processing technology of high intensity plunger pump pipe clamp
CN108146420A (en) * 2017-12-29 2018-06-12 合肥久享机械有限责任公司 A kind of high-precision A BS sensors fixing bracket and process

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298901A (en) * 2000-04-10 2001-10-26 Mitsubishi Electric Corp Geared motor
CN102554808A (en) * 2012-03-12 2012-07-11 无锡市启龙机床有限公司 Grinding wheel used for grinding valve lock clamp groove
JP6127220B1 (en) * 2015-12-10 2017-05-10 株式会社アライドマテリアル Super abrasive wheel
WO2017098764A1 (en) * 2015-12-10 2017-06-15 株式会社アライドマテリアル Super-abrasive grinding wheel
CN107405755A (en) * 2015-12-10 2017-11-28 联合材料公司 Super-abrasive grinding wheel
US10307888B2 (en) 2015-12-10 2019-06-04 A.L.M.T. Corp. Superabrasive wheel
CN107350727A (en) * 2016-05-09 2017-11-17 南京晨伟机械设备制造有限公司 A kind of processing technology of high intensity plunger pump pipe clamp
CN107097156A (en) * 2017-06-26 2017-08-29 汉德车桥(株洲)齿轮有限公司 A kind of electroplating CBN emery wheel for spiral bevel gear roll flute
CN108146420A (en) * 2017-12-29 2018-06-12 合肥久享机械有限责任公司 A kind of high-precision A BS sensors fixing bracket and process

Similar Documents

Publication Publication Date Title
US20200230725A1 (en) Method and Device for Precision Machining of Toothed and Hardened Work Wheels
JP5227958B2 (en) Deburring with hob, including integrated secondary deburring without burnishing tools
JPS63306819A (en) Machine tool for precision-machining flank of tooth of previously toothed gear
US2105896A (en) Method and means for honing gears, and for truing the honing means
TWI414377B (en) Barrel - shaped tool for internal gear machining
US7527548B2 (en) System and method for precision machining of high hardness gear teeth and splines
JPH08155749A (en) Gear cutting method
JPH0512101B2 (en)
US6808440B2 (en) Method of grinding cutting blades
US4850253A (en) Broach manufacturing method
JP5123767B2 (en) Worm wheel grinding finishing method and worm gear device
JPS63144957A (en) Tooling method for grindstone
JPH1086017A (en) Working method for gear and deburring machine for gear work
US2274491A (en) Gear finishing tool
JPS61173851A (en) Method of grinding internal surface
JPS60207718A (en) Method and system of improving accuracy and finishing of continuous tooth surface by generating process
JP3877956B2 (en) Method for manufacturing broach for inner surface processing
JP2000280119A (en) Gear grinding
JPH09201721A (en) Grinding wheel dressing tool and its manufacture
JPH05305516A (en) Gear manufacturing method and gear grinding tool
JP3004190B2 (en) Internal tooth type grinding wheel for honing
JP2003326467A (en) Grinding method and grinding wheel
JPH0288119A (en) Cutting method for soft metal
JPS597520A (en) Gear finishing method and abrasive gear used therein
JPS60172417A (en) Cutter blade for cutting tooth surface of super-hardness spiral bevel gear