JPH08154210A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPH08154210A
JPH08154210A JP6292754A JP29275494A JPH08154210A JP H08154210 A JPH08154210 A JP H08154210A JP 6292754 A JP6292754 A JP 6292754A JP 29275494 A JP29275494 A JP 29275494A JP H08154210 A JPH08154210 A JP H08154210A
Authority
JP
Japan
Prior art keywords
light receiving
signal
image pickup
dynamic range
dimensional light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6292754A
Other languages
Japanese (ja)
Inventor
Hisataka Takahama
尚敬 高濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP6292754A priority Critical patent/JPH08154210A/en
Publication of JPH08154210A publication Critical patent/JPH08154210A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To pickup an image of an object moving at a high speed and to obtain a wide dynamic range by providing an extinct means differentiating a quantity of light received by each pixel whose position corresponds to the position of each spectral means of plural 2-dimension light receiving pixels to the device. CONSTITUTION: The device is provided with two CCD image pickup elements 1, 2 receiving light from an image pickup object and applying photoelectric conversion to the light, a lens system 3 and a prism 4 dispersing the light at a dispersion rate of 1:1. A signal processing means SP processing the signal of the CCD image pickup elements 1, 2 is made up of 8-bit A/D converters 7, 8, a lookup table 9 receiving outputs of the A/D converters to its address, and a D/A converter 10. Thus, the signal processing means SP provides an output of an image signal having a dynamic range covering the dynamic range of a 2-dimension light receiving element IM as an image signal of pixels whose position corresponds between the image pickup elements 1, 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、撮像対象からの光を受
光する2次元受光素子を備えた撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image pickup apparatus having a two-dimensional light receiving element for receiving light from an object to be imaged.

【0002】[0002]

【従来の技術】かかる撮像装置は、撮像対象からの光
を、CCD撮像素子、MOS撮像素子又は撮像管等の2
次元受光素子によって受光し、光電変換することで、撮
像対象を撮像する。撮像対象を適正に撮像するために
は、撮像対象からの光量が、上記の2次元受光素子のダ
イナミックレンジすなわち受光量に応じて出力信号が適
正に変化する範囲内にある必要がある。ところが、実際
の撮像対象には、例えば、トンネル内部からトンネルの
出口付近を撮像した場合や、あるいは、強い日差しを受
ける箇所と影になる箇所が混在するような場所を撮像し
た場合等のように、広いダイナミックレンジを要する場
合がある。
2. Description of the Related Art Such an image pickup device uses a CCD image pickup device, a MOS image pickup device, an image pickup tube, or the like to transmit light from an image pickup object.
A three-dimensional light receiving element receives light and photoelectrically converts the light to capture an image of the imaging target. In order to properly image the imaging target, the amount of light from the imaging target needs to be within the dynamic range of the two-dimensional light receiving element, that is, the range in which the output signal appropriately changes according to the amount of received light. However, the actual imaging target is, for example, an image of the vicinity of the exit of the tunnel from the inside of the tunnel, or an image of a place where a strong sunlight and a shaded area are mixed. , A wide dynamic range may be required.

【0003】このような場合に、2次元受光素子で通常
通り撮像すると、ハレーションを発生する等により撮像
対象を適正に撮像することができない。そこで、従来、
2次元受光素子としてCCD撮像素子を採用し、CCD
撮像素子の電子シャッタ機能を利用してダイナミックレ
ンジを広くすることが考えられている。つまり、電子シ
ャッタのシャッタスピードを2段階に変化させて同一撮
像対象を撮像して、シャッタスピードを長くして撮像し
た場合の画像信号が、CCD撮像素子のダイナミックレ
ンジを超えて飽和した場合に、シャッタスピードを短く
して撮像した場合の画像信号を採用する構成とするので
ある。
In such a case, if the two-dimensional light receiving element normally takes an image, the object to be imaged cannot be properly imaged due to halation or the like. So, conventionally,
CCD image sensor is adopted as a two-dimensional light receiving element
It is considered to widen the dynamic range by utilizing the electronic shutter function of the image sensor. That is, when the image signal of the same image pickup target is picked up by changing the shutter speed of the electronic shutter in two steps and the image is picked up with the shutter speed lengthened, when the image signal is saturated beyond the dynamic range of the CCD image pickup device, The configuration is such that an image signal obtained by capturing an image with a short shutter speed is adopted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来構成では、2段階のシャッタスピードで撮像対象を撮
像する間、撮像対象が実質的に停止している必要があ
り、高速で動く撮像対象を撮像する場合には、シャッタ
スピードを極めて高速に設定する必要がある。シャッタ
スピードを極めて高速に設定すると、その結果として、
CCD撮像素子の受光する光量が低下することになり、
CCD撮像素子の出力信号が低下してしまう不都合があ
る。
However, in the above-described conventional configuration, the image pickup target needs to be substantially stopped while the image pickup target is picked up at two shutter speeds, and the image pickup target moving at high speed is picked up. In that case, it is necessary to set the shutter speed to an extremely high speed. If you set the shutter speed to a very high speed, as a result,
The amount of light received by the CCD image sensor will decrease,
There is an inconvenience that the output signal of the CCD image pickup device is lowered.

【0005】このような不都合を合理的に解決する手段
としては、CCD撮像素子の隣接する2画素を1組とし
て、その一方の画素にのみ減光フィルタを形成し、減光
フィルタを形成していない画素の検出信号が飽和してい
ないときは、減光フィルタを形成していない画素の検出
信号を、その2画素分の検出信号として扱い、減光フィ
ルタを形成していない画素の検出信号が飽和したとき
は、減光フィルタを形成した画素の検出信号を、その2
画素分の検出信号として扱う構成が考えられる。
As a means for rationally solving such inconvenience, two adjacent pixels of the CCD image pickup device are set as one set, and the neutral density filter is formed only in one of the pixels, and the neutral density filter is formed. When the detection signal of the non-darkening filter is not saturated, the detection signal of the pixel which does not form the dark filter is treated as the detection signal of the two pixels, and the detection signal of the pixel which does not form the dark filter is detected. When saturated, the detection signal of the pixel forming the neutral density filter is
A configuration in which it is treated as a detection signal for pixels can be considered.

【0006】しかしながら、この構成では、2画素分の
検出信号を実質上1画素として扱うことになるので、結
果として、CCD撮像素子の解像度が低下してしまうこ
とになる。本発明は、上記実情に鑑みてなされたもので
あって、その目的は、解像度やCCD撮像素子の出力の
低下を招くことなく、高速で動く撮像対象の撮像を可能
としながらも、ダイナミックレンジを広くする点にあ
る。
However, in this configuration, the detection signals for two pixels are treated as substantially one pixel, and as a result, the resolution of the CCD image pickup device is lowered. The present invention has been made in view of the above circumstances, and an object thereof is to enable the imaging of a moving object at a high speed without lowering the resolution or the output of the CCD imaging device, and to improve the dynamic range. There is a point to widen it.

【0007】[0007]

【課題を解決するための手段】本発明の撮像装置は、撮
像対象からの光を受光する2次元受光素子を備えたもの
であって、その第1特徴構成は、前記2次元受光素子が
複数個備えられ、前記撮像対象からの光を、前記複数個
の2次元受光素子の夫々に分光する分光手段と、前記複
数個の2次元受光素子間で、存在位置が対応する画素の
受光する光量が異なるように減光する減光手段と、前記
2次元受光素子夫々の検出信号を各別に読み取り可能な
信号読み取り手段と、前記複数個の2次元受光素子間で
存在位置が対応する画素の前記信号読み取り手段の読み
取り信号から、前記複数個の2次元受光素子夫々のダイ
ナミックレンジを含むダイナミックレンジを有する、そ
の存在位置が対応する画素の画像信号とするように処理
する信号処理手段とが設けられている点にある。第2特
徴構成は、上記第1特徴構成において、前記信号処理手
段は、前記2次元受光素子夫々の検出信号をデジタル信
号に変換するA/Dコンバータと、そのA/Dコンバー
タにてデジタル信号に変換された、前記複数個の2次元
画像素子間で存在位置が対応する画素の検出信号をアド
レス信号として、前記複数個の2次元受光素子夫々のダ
イナミックレンジを含むダイナミックレンジを有する、
その存在位置が対応する画素の画像信号とするためのデ
ータを記憶したルックアップテーブルとを備えて構成さ
れている点にある。第3特徴構成は、上記第1特徴構成
において、前記信号処理手段は、受光強度がダイナミッ
クレンジ内にある2次元受光素子のうち、受光強度の最
も弱い側にダイナミックレンジを有する2次元受光素子
の検出信号を前記画像信号とするように構成されている
点にある。
An image pickup apparatus of the present invention is provided with a two-dimensional light receiving element for receiving light from an object to be imaged, and a first characteristic configuration thereof is that the two-dimensional light receiving element is plural. A light-splitting unit that is provided individually and splits the light from the imaging target into each of the plurality of two-dimensional light receiving elements, and the amount of light received by a pixel whose existence position corresponds between the plurality of two-dimensional light receiving elements. Of the two-dimensional light receiving elements, a signal reading means capable of individually reading the detection signals of the respective two-dimensional light receiving elements, and a pixel having a corresponding position among the plurality of two-dimensional light receiving elements. A signal processing means for processing the read signal of the signal reading means so as to obtain an image signal of a pixel having a dynamic range including the dynamic range of each of the plurality of two-dimensional light receiving elements, the position of which is present. Lies in is provided. A second characteristic configuration is the same as the first characteristic configuration, wherein the signal processing means converts the detection signal of each of the two-dimensional light receiving elements into a digital signal, and the A / D converter converts the signal into a digital signal. A converted dynamic range including the dynamic range of each of the plurality of two-dimensional light-receiving elements, using the converted detection signal of the pixel having a corresponding position among the plurality of two-dimensional image elements as an address signal;
The present position is configured by including a look-up table that stores data for forming an image signal of a corresponding pixel. A third characteristic configuration is the same as the first characteristic configuration, wherein the signal processing means is a two-dimensional light receiving element having a dynamic range on a side having a weakest light reception intensity among the two-dimensional light receiving elements having a light reception intensity within a dynamic range. It is configured so that the detection signal is the image signal.

【0008】[0008]

【作用】本発明の第1特徴構成によれば、複数個備えら
れた2次元受光素子の受光面には、分光手段に分光され
た状態で同一撮像対象からの光が入射する。2次元受光
素子の夫々に入射する光は減光手段にて減光されて、2
次元受光素子間で存在位置が対応する画素の受光する光
量が異なるようにしてあるので、実質的に、同一の撮像
対象をダイナミックレンジが異なる複数の2次元受光素
子で撮像することになる。2次元受光素子の検出信号
は、信号読み取り手段にて各別に読み取られて、信号処
理手段に送られ、信号処理手段は、存在位置が対応する
複数の画素の検出信号を処理して、その存在位置が対応
する画素の画像信号を出力する。この信号処理手段が出
力する画像信号は、上記の如く、実質的にダイナミック
レンジが異なる複数の2次元受光素子の検出信号に基づ
いて処理しているので、これら異なるダイナミックレン
ジを含むダイナミックレンジを有するものとすることが
できる。
According to the first characteristic configuration of the present invention, light from the same image pickup object is incident on the light receiving surface of a plurality of two-dimensional light receiving elements in a state of being separated by the spectroscopic means. The light incident on each of the two-dimensional light receiving elements is dimmed by the dimming means,
Since the amount of light received by the pixels whose corresponding positions are different is different between the two-dimensional light receiving elements, substantially the same image pickup target is picked up by a plurality of two-dimensional light receiving elements having different dynamic ranges. The detection signals of the two-dimensional light receiving element are individually read by the signal reading means and sent to the signal processing means, and the signal processing means processes the detection signals of a plurality of pixels whose existence positions correspond to each other, and the existence thereof is detected. The image signal of the pixel corresponding to the position is output. Since the image signal output by the signal processing means is processed based on the detection signals of the plurality of two-dimensional light receiving elements having substantially different dynamic ranges as described above, it has a dynamic range including these different dynamic ranges. Can be one.

【0009】本発明の第2特徴構成によれば、信号処理
手段は、2次元受光素子間で存在位置が対応する画素の
検出信号をA/D変換して、それをアドレス信号として
ルックアップテーブルに入力し、ルックアップテーブル
は、そのアドレスに記憶されているデータを、その存在
位置が対応する画素の画像信号として出力する。このよ
うにルックアップテーブルを使用すると、ルックアップ
テーブルから出力する信号は、任意にルックアップテー
ブルに記憶させておくことができるので、複雑な処理を
要することなく、最適な信号を高速に出力することがで
きる。
According to the second characteristic configuration of the present invention, the signal processing means performs A / D conversion on the detection signal of the pixel whose existence position corresponds between the two-dimensional light receiving elements, and uses it as an address signal for the lookup table. The look-up table outputs the data stored at the address as an image signal of the pixel corresponding to the existing position. When the look-up table is used in this way, the signal output from the look-up table can be arbitrarily stored in the look-up table, so that an optimal signal can be output at high speed without complicated processing. be able to.

【0010】本発明の第3特徴構成によれば、信号処理
手段は、受光強度がダイナミックレンジ内にある2次元
受光素子のうち、受光強度の最も弱い側にダイナミック
レンジを有する2次元受光素子の検出信号を選択して、
複数の2次元受光素子間で存在位置が対応する画素の画
像信号として出力する。すなわち、受光強度の最も弱い
側にダイナミックレンジを有する2次元受光素子の検出
信号を優先的に使用し、2次元受光素子の受光感度が極
力高くなるようにしているのである。
According to the third characteristic construction of the present invention, the signal processing means is a two-dimensional light receiving element having a dynamic range on the side having the weakest received light intensity among the two-dimensional light receiving elements having a received light intensity within the dynamic range. Select the detection signal,
It is output as an image signal of a pixel whose existence position corresponds between the plurality of two-dimensional light receiving elements. That is, the detection signal of the two-dimensional light receiving element having a dynamic range on the side where the light receiving intensity is weakest is preferentially used to maximize the light receiving sensitivity of the two-dimensional light receiving element.

【0011】[0011]

【発明の効果】上記第1特徴構成によれば、同一の撮像
対象をダイナミックレンジが異なる複数の2次元受光素
子で撮像することになり、これら異なるダイナミックレ
ンジを含むダイナミックレンジを有するものとすること
ができる。しかも、複数の2次元受光素子間で存在位置
が対応する複数の画素の検出信号を処理して、その存在
位置が対応する画素の画像信号とするので、解像度の低
下を招くことがなく、又、2次元受光素子が複数存在す
るので、存在位置が対応する画素の信号を読み出すの
に、これらの間の走査タイミングすなわち検出信号の読
み出しタイミングを異ならせる必要もない。従って、解
像度やCCD撮像素子の出力の低下を招くことなく、高
速で動く撮像対象の撮像を可能としながらも、ダイナミ
ックレンジを広くすることができる。
According to the first characteristic configuration, the same image pickup object is picked up by a plurality of two-dimensional light receiving elements having different dynamic ranges, and a dynamic range including these different dynamic ranges is provided. You can Moreover, since the detection signals of a plurality of pixels whose corresponding positions are present among a plurality of two-dimensional light receiving elements are processed into image signals of pixels corresponding to the existing positions, there is no reduction in resolution, and Since there are a plurality of two-dimensional light receiving elements, it is not necessary to change the scanning timing between them, that is, the read timing of the detection signal, in order to read the signal of the pixel corresponding to the existing position. Therefore, it is possible to widen the dynamic range while enabling the imaging of a moving object at high speed without lowering the resolution or the output of the CCD imaging device.

【0012】上記第2特徴構成によれば、上記の如くル
ックアップテーブルを使用することで、複雑な処理を要
することなく、最適な信号を高速に出力することができ
るので、構成の簡素化を図りながら上記第1特徴構成に
よる作用効果を奏することができる。上記第3特徴構成
によれば、上記の如く2次元受光素子の受光感度が極力
高くなるようにしながら、上記第1特徴構成による効果
を奏することができる。
According to the second characteristic configuration, by using the look-up table as described above, an optimum signal can be output at high speed without requiring complicated processing, so that the configuration can be simplified. While working, it is possible to obtain the operational effect of the first characteristic configuration. According to the third characteristic configuration, the effect of the first characteristic configuration can be obtained while the light receiving sensitivity of the two-dimensional light receiving element is maximized as described above.

【0013】[0013]

【実施例】以下、本発明の撮像装置の実施例を図面に基
づいて説明する。図1に示す撮像装置IPは、撮像対象
からの光を受光して光電変換する2つのCCD撮像素子
1,2と、CCD撮像素子1,2の受光面上に撮像対象
からの光を結像するためのレンズ3と、撮像対象からの
光を2つのCCD撮像素子1,2へ分光比1:1で分光
する分光手段であるプリズム4と、プリズム4にてCC
D撮像素子2側に分光された光を減光して、2つのCC
D撮像素子1,2間で存在位置が対応する画素の受光す
る光量を異ならせるようにする減光手段であるNDフィ
ルタ5と、CCD撮像素子1,2の出力信号を処理する
信号処理手段SPと、信号処理手段SPの出力画像信号
を種々の規格のビデオ信号に変換するためのビデオ回路
6とが備えられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the image pickup apparatus of the present invention will be described below with reference to the drawings. The imaging device IP shown in FIG. 1 forms two CCD image pickup devices 1 and 2 that receive light from an image pickup target and photoelectrically converts it, and forms light from the image pickup target on the light receiving surfaces of the CCD image pickup devices 1 and 2. Lens 3 for performing the operation, a prism 4 that is a spectroscopic unit that disperses light from an imaging target into two CCD image pickup devices 1 and 2 with a spectral ratio of 1: 1, and CC with the prism 4
The light dispersed to the D image sensor 2 side is dimmed to reduce the two CCs.
An ND filter 5 which is a light-reducing unit that makes the amount of light received by a pixel whose corresponding position is different between the D image pickup devices 1 and 2, and a signal processing unit SP that processes the output signals of the CCD image pickup devices 1 and 2. And a video circuit 6 for converting the output image signal of the signal processing means SP into a video signal of various standards.

【0014】信号処理手段SPは、CCD撮像素子1の
出力信号をA/D変換する8ビットのA/Dコンバータ
7と、CCD撮像素子2の出力信号をA/D変換する8
ビットのA/Dコンバータ8と、A/Dコンバータ7,
8の出力をアドレス入力とするルックアップテーブル9
と、ルックアップテーブル9の出力をD/A変換するD
/Aコンバータ10とからなる。
The signal processing means SP includes an 8-bit A / D converter 7 for A / D converting the output signal of the CCD image pickup device 1 and an A / D converter 8 for converting the output signal of the CCD image pickup device 2.
Bit A / D converter 8 and A / D converter 7,
Look-up table 9 whose address is the output of 8
And D for D / A converting the output of the lookup table 9
/ A converter 10.

【0015】尚、各画素毎に信号を各別に読み取る電子
回路はCCD撮像素子1,2の受光面と一体に集積化さ
れており、CCD撮像素子1,2は、2次元受光素子I
M及びその2次元受光素子IMの検出信号を読み取る信
号読み取り手段RDの両方の機能を備えている。従っ
て、信号読み取り手段RDは、CCD撮像素子1,2毎
に各別に設けられている。撮像対象からの光をレンズ3
にてCCD撮像素子1,2の受光面に結像させている状
態で、CCD撮像素子1とCCD撮像素子2とは、図示
を省略するが、同一のクロック信号で各画素の検出信号
を出力し、CCD撮像素子1とCCD撮像素子2とから
は、それらの間で存在位置が対応する画素の検出信号が
同時に出力される。
An electronic circuit for individually reading a signal for each pixel is integrated with the light receiving surfaces of the CCD image pickup elements 1 and 2, and the CCD image pickup elements 1 and 2 are two-dimensional light receiving elements I.
It has the functions of both M and signal reading means RD for reading the detection signals of the two-dimensional light receiving element IM. Therefore, the signal reading means RD is separately provided for each of the CCD image pickup devices 1 and 2. Light from the imaged object is passed through the lens 3
The CCD image pickup device 1 and the CCD image pickup device 2 output detection signals of each pixel with the same clock signal, although not shown in the figure, in a state where images are formed on the light receiving surfaces of the CCD image pickup devices 1 and 2. Then, the CCD image pickup device 1 and the CCD image pickup device 2 simultaneously output detection signals of pixels corresponding to existing positions between them.

【0016】A/Dコンバータ7,8の8ビットの出力
は、ルックアップテーブル9の16ビットのアドレス入
力に接続され、ルックアップテーブル9は、そのアドレ
ス入力にて特定されるアドレスに記憶されている8ビッ
トのデータをD/Aコンバータ10へ出力する。
The 8-bit outputs of the A / D converters 7 and 8 are connected to the 16-bit address input of the look-up table 9, and the look-up table 9 is stored at the address specified by the address input. The present 8-bit data is output to the D / A converter 10.

【0017】次に、ルックアップテーブル5のアドレス
入力と出力データとの関係について図2に基づいて説明
する。図2において、横軸は撮像対象からの光の輝度を
ログスケールにて示し、縦軸はA/Dコンバータ3が出
力する8ビットデータを示している。図2中の線分A
は、撮像対象からの光の輝度とCCD撮像素子1の検出
信号をA/D変換して得られる8ビットデータとの関係
を示しており、図2中の線分Bは、撮像対象からの光の
輝度とNDフィルタ5にて減光された光を受光するCC
D撮像素子2の検出信号をA/D変換して得られる8ビ
ットデータとの関係を示している。
Next, the relationship between the address input and output data of the lookup table 5 will be described with reference to FIG. In FIG. 2, the horizontal axis represents the brightness of light from the imaging target on a log scale, and the vertical axis represents the 8-bit data output by the A / D converter 3. Line segment A in Figure 2
Shows the relationship between the brightness of light from the imaging target and the 8-bit data obtained by A / D converting the detection signal of the CCD imaging device 1. The line segment B in FIG. CC that receives the brightness of light and the light attenuated by the ND filter 5
The relationship with 8-bit data obtained by A / D converting the detection signal of the D image sensor 2 is shown.

【0018】つまり、CCD撮像素子1の各画素は、図
2中の点pから点qまでの輝度の範囲でダイナミックレ
ンジを有し、NDフィルタ5が備えられたCCD撮像素
子2の各画素は、図2中の点rから点sまでの輝度の範
囲でダイナミックレンジを有し、夫々のダイナミックレ
ンジの範囲内で00〜FFの8ビット信号が割り付けら
れている。ルックアップテーブル9には、撮像対象から
の光の輝度に対して、線分Aで決まる8ビットデータ
と、線分Bで決まる8ビットデータとからなる16ビッ
トのアドレス信号で特定されるアドレスに、線分Cで決
まる8ビットデータが記憶されている。具体的には、撮
像対象から点tで示す輝度の光が入射した場合、CCD
撮像素子1の画素の信号をA/D変換すると点lで示す
データが得られ、NDフィルタ5が備えられているCC
D撮像素子2の画素の信号をA/D変換すると点mで示
すデータが得られるが、ルックアップテーブル9の点l
と点mで特定されるアドレスには、点nの8ビットデー
タが記憶されている。
That is, each pixel of the CCD image pickup device 1 has a dynamic range in the luminance range from the point p to the point q in FIG. 2, and each pixel of the CCD image pickup device 2 provided with the ND filter 5 is 2 has a dynamic range in the luminance range from the point r to the point s in FIG. 2, and 8-bit signals of 00 to FF are allocated within each dynamic range. In the look-up table 9, an address specified by a 16-bit address signal composed of 8-bit data determined by the line segment A and 8-bit data determined by the line segment B with respect to the brightness of light from the imaging target is stored. , 8-bit data determined by the line segment C is stored. Specifically, when light with the brightness indicated by the point t is incident from the imaging target, the CCD
When the signal of the pixel of the image sensor 1 is A / D converted, the data indicated by the point 1 is obtained, and the CC having the ND filter 5 is provided.
When the signal of the pixel of the D image sensor 2 is A / D converted, the data indicated by the point m is obtained.
The 8-bit data at the point n is stored in the address specified by the point m.

【0019】従って、信号処理手段SPは、CCD撮像
素子1及びCCD撮像素子2間で存在位置が対応する画
素の画像信号として、図2から明らかなように、2つの
2次元受光素子IMのダイナミックレンジを含むダイナ
ミックレンジを有する画像信号を出力するのである。
Therefore, the signal processing means SP, as an image signal of a pixel whose existence position corresponds between the CCD image pickup device 1 and the CCD image pickup device 2, as shown in FIG. An image signal having a dynamic range including a range is output.

【0020】〔別実施例〕以下、別実施例を列記する。 上記実施例では、信号処理手段SPは、2つの2次
元受光素子IMの検出信号をアドレス信号としてルック
アップテーブル9へ入力し、2つの2次元受光素子IM
のダイナミックレンジを含むダイナミックレンジを有す
る画像信号を生成しているが、図3に示すように、2つ
の2次元受光素子IMの検出信号を選択的に出力する構
成としても良い。図3に示すブロック図では、CCD撮
像素子1,2、レンズ3、プリズム4及びNDフィルタ
5は図1のブロック図と同様の構成であり、CCD撮像
素子1とCCD撮像素子2とで実質的にダイナミックレ
ンジが異なるように構成してある。
[Other Embodiments] Other embodiments will be listed below. In the above embodiment, the signal processing means SP inputs the detection signals of the two two-dimensional light receiving elements IM to the look-up table 9 as address signals to input the two two-dimensional light receiving elements IM.
Although an image signal having a dynamic range including the dynamic range is generated, the detection signals of the two two-dimensional light receiving elements IM may be selectively output as shown in FIG. In the block diagram shown in FIG. 3, the CCD image pickup devices 1 and 2, the lens 3, the prism 4, and the ND filter 5 have the same configuration as in the block diagram of FIG. 1, and the CCD image pickup device 1 and the CCD image pickup device 2 are substantially the same. The dynamic range is different.

【0021】CCD撮像素子1の出力とCCD撮像素子
2の出力とは、スイッチ20にて切り換えられて選択的
にサンプルホールド回路21に出力される。尚、CCD
撮像素子2の出力は、NDフィルタ5の減衰率(1/
N)を補償する利得(N)を有するアンプ23にて増幅
された後、スイッチ20に送られる。このスイッチ20
の切り換え制御はコンパレータ22によって行い、コン
パレータ22は、CCD撮像素子1からの出力信号が基
準電圧(Vref )以下の場合は、CCD撮像素子1の出
力をサンプルホールド回路21へ入力し、又、CCD撮
像素子1からの出力信号が基準電圧(Vref )を超える
場合は、アンプ23の出力をサンプルホールド回路21
へ入力するようにスイッチ20を切り換える。上記の基
準電圧(Vref )は、2次元受光素子IMが飽和した状
態又は飽和する直前の状態に相当する電圧値に設定して
ある。尚、サンプルホールド回路21は、スイッチ20
のスイッチングノイズ等を除去するためのものである。
The output of the CCD image pickup device 1 and the output of the CCD image pickup device 2 are switched by the switch 20 and selectively output to the sample hold circuit 21. Incidentally, CCD
The output of the image sensor 2 is the attenuation factor (1 /
After being amplified by an amplifier 23 having a gain (N) for compensating N), it is sent to the switch 20. This switch 20
Is controlled by the comparator 22. The comparator 22 inputs the output of the CCD image pickup device 1 to the sample hold circuit 21 when the output signal from the CCD image pickup device 1 is equal to or lower than the reference voltage (Vref). When the output signal from the image sensor 1 exceeds the reference voltage (Vref), the output of the amplifier 23 is set to the sample hold circuit 21.
The switch 20 is switched so as to input to. The above-mentioned reference voltage (Vref) is set to a voltage value corresponding to a saturated state of the two-dimensional light receiving element IM or a state immediately before the saturated state. The sample and hold circuit 21 includes a switch 20.
It is for removing the switching noise and the like.

【0022】従って、信号処理手段SPは、図4に撮像
対象からの光の輝度とCCD撮像素子1,2の出力信号
との関係をログスケールで示すように、2つの2次元受
光素子IMのうち受光強度の弱い側にダイナミックレン
ジを有する2次元受光素子IMを備えたCCD撮像素子
1の検出信号が飽和せず、受光した撮像対象からの光の
明るさがダイナミックレンジ内にあるときは、CCD撮
像素子1の出力信号(図4中において線分Eで示す)を
そのまま出力し、CCD撮像素子1の2次元受光素子I
Mが飽和して、受光した撮像対象からの光の明るさがダ
イナミックレンジを超えるときは、NDフィルタ5に減
光されているCCD撮像素子2の検出信号(図4中にお
いて線分Fで示す)をNDフィルタ5の減衰率を補償す
るべく増幅した後(図4中において一点鎖線Gで示す)
の信号を出力する。換言すると、受光強度がダイナミッ
クレンジ内にある2次元受光素子IMのうち、受光強度
の最も弱い側にダイナミックレンジを有する2次元受光
素子IMの検出信号を、複数の2次元受光素子IM間で
存在位置が対応する画素の画像信号として出力するので
ある。これにより、信号処理手段SPの出力は、2つの
2次元受光素子IMのダイナミックレンジを含むダイナ
ミックレンジを有するものとなっている。
Therefore, the signal processing means SP includes two two-dimensional light receiving elements IM as shown in a log scale of the relationship between the brightness of the light from the image pickup object and the output signals of the CCD image pickup elements 1 and 2 in FIG. When the detection signal of the CCD image pickup device 1 including the two-dimensional light receiving element IM having a dynamic range on the side where the received light intensity is weak is not saturated and the brightness of the light received from the image pickup target is within the dynamic range, The output signal of the CCD image pickup device 1 (shown by the line segment E in FIG. 4) is output as it is, and the two-dimensional light receiving element I of the CCD image pickup device 1 is output.
When M is saturated and the brightness of the received light from the image pickup object exceeds the dynamic range, the detection signal of the CCD image pickup element 2 that is dimmed by the ND filter 5 (indicated by a line segment F in FIG. 4). ) Is amplified to compensate the attenuation factor of the ND filter 5 (indicated by a chain line G in FIG. 4).
The signal of is output. In other words, among the two-dimensional light receiving elements IM whose received light intensity is within the dynamic range, the detection signal of the two-dimensional light receiving element IM having the dynamic range on the weakest side of the received light intensity exists among the plurality of two-dimensional light receiving elements IM. It is output as an image signal of the pixel corresponding to the position. As a result, the output of the signal processing means SP has a dynamic range including the dynamic range of the two two-dimensional light receiving elements IM.

【0023】 上記実施例では、2つの2次元受光素
子IM間で、存在位置が対応する画素の受光する光量を
異ならせる減光手段をNDフィルタ5にて構成している
が、CCD撮像素子2の受光面上に金属蒸着膜を形成し
て減光手段を構成しても良い。又、分光手段であるプリ
ズムの、CCD撮像素子1及びCCD撮像素子2に対す
る分光比を異ならせて、CCD撮像素子1,2夫々の受
光する光量を異ならせても良い。
In the above-described embodiment, the ND filter 5 constitutes the light-reducing means for differentiating the amount of light received by the pixels corresponding to the existing positions between the two two-dimensional light-receiving elements IM. The light-attenuating means may be formed by forming a metal vapor deposition film on the light-receiving surface of. Further, the spectral ratio of the prism as the spectroscopic means to the CCD image pickup device 1 and the CCD image pickup device 2 may be made different so that the light amounts received by the CCD image pickup devices 1 and 2 are made different.

【0024】 上記実施例では、減光手段をNDフィ
ルタ5にて構成しているが、必ずしもNDフィルタでな
くても良く、例えば、特定の波長特性を有する干渉フィ
ルタにて構成しても良い。
In the above-mentioned embodiment, the light reduction means is composed of the ND filter 5, but it is not necessarily an ND filter and may be composed of, for example, an interference filter having a specific wavelength characteristic.

【0025】 上記実施例では、2次元受光素子IM
を2つ設けているが、3個以上設けて、夫々の2次元受
光素子間で、存在位置が対応する画素の受光する光量が
異なるように構成しても良い。
In the above embodiment, the two-dimensional light receiving element IM
Although two are provided, three or more may be provided so that the respective two-dimensional light receiving elements have different amounts of light received by the pixels corresponding to the existing positions.

【0026】 図3のブロック図で示す別実施例で
は、CCD撮像素子1の検出信号自体に基づいてスイッ
チ20の切り換え制御を行っているが、CCD撮像素子
1が受光する光量を測定するフォトセンサを別途設け
て、そのフォトセンサの検出値によってスイッチ20を
切り換え制御する構成としても良い。
In another embodiment shown in the block diagram of FIG. 3, the switching control of the switch 20 is performed based on the detection signal itself of the CCD image pickup device 1, but a photosensor for measuring the amount of light received by the CCD image pickup device 1. May be separately provided, and the switch 20 may be controlled to be switched according to the detection value of the photo sensor.

【0027】 上記実施例では、2次元受光素子IM
としてCCD撮像素子1を採用した場合を例示している
が、撮像管を2次元受光素子IMとして用いても良い。
In the above embodiment, the two-dimensional light receiving element IM
Although the case where the CCD image pickup device 1 is adopted is illustrated as an example, the image pickup tube may be used as the two-dimensional light receiving device IM.

【0028】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構造に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の撮像装置の実施例にかかるブロック図FIG. 1 is a block diagram according to an embodiment of an image pickup apparatus of the present invention.

【図2】本発明の実施例にかかる動作説明図FIG. 2 is an operation explanatory diagram according to the embodiment of the present invention.

【図3】本発明の別実施例にかかるブロック図FIG. 3 is a block diagram according to another embodiment of the present invention.

【図4】本発明の別実施例にかかる動作説明図FIG. 4 is an operation explanatory diagram according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

4 分光手段 5 減光手段 7,8 A/Dコンバータ 9 ルックアップテーブル IM 2次元受光素子 RD 信号読み取り手段 SP 信号処理手段 4 spectroscopic means 5 dimming means 7, 8 A / D converter 9 look-up table IM two-dimensional light receiving element RD signal reading means SP signal processing means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 撮像対象からの光を受光する2次元受光
素子(IM)を備えた撮像装置であって、 前記2次元受光素子(IM)が複数個備えられ、 前記撮像対象からの光を、前記複数個の2次元受光素子
(IM)の夫々に分光する分光手段(4)と、 前記複数個の2次元受光素子(IM)間で、存在位置が
対応する画素の受光する光量が異なるように減光する減
光手段(5)と、 前記2次元受光素子(IM)夫々の検出信号を各別に読
み取り可能な信号読み取り手段(RD)と、 前記複数個の2次元受光素子(IM)間で存在位置が対
応する画素の前記信号読み取り手段(RD)の読み取り
信号から、前記複数個の2次元受光素子(IM)夫々の
ダイナミックレンジを含むダイナミックレンジを有す
る、その存在位置が対応する画素の画像信号とするよう
に処理する信号処理手段(SP)とが設けられている撮
像装置。
1. An image pickup apparatus comprising a two-dimensional light receiving element (IM) for receiving light from an image pickup target, comprising a plurality of the two-dimensional light receiving element (IM), wherein light from the image pickup target is received. The amount of light received by the pixel corresponding to the existing position is different between the spectroscopic means (4) for splitting light into each of the plurality of two-dimensional light receiving elements (IM) and the plurality of two-dimensional light receiving elements (IM). And a plurality of two-dimensional light receiving elements (IM), and a signal reading means (RD) capable of individually reading the detection signal of each of the two-dimensional light receiving elements (IM). A pixel having a dynamic range including a dynamic range of each of the plurality of two-dimensional light receiving elements (IM) from a read signal of the signal reading means (RD) of a pixel having a corresponding existing position between Image of Signal processing means (SP) and is has an imaging device is provided for processing so as to issue.
【請求項2】 前記信号処理手段(SP)は、前記2次
元受光素子(IM)夫々の検出信号をデジタル信号に変
換するA/Dコンバータ(7),(8)と、 そのA/Dコンバータ(7),(8)にてデジタル信号
に変換された、前記複数個の2次元画像素子(IM)間
で存在位置が対応する画素の検出信号をアドレス信号と
して、前記複数個の2次元受光素子(IM)夫々のダイ
ナミックレンジを含むダイナミックレンジを有する、そ
の存在位置が対応する画素の画像信号とするためのデー
タを記憶したルックアップテーブル(9)とを備えて構
成されている請求項1記載の撮像装置。
2. The signal processing means (SP) converts A / D converters (7) and (8) for converting detection signals of the two-dimensional light receiving elements (IM) into digital signals, and the A / D converters. (7), (8) converted into digital signals, the detection signals of pixels corresponding to the existing positions among the plurality of two-dimensional image elements (IM) are used as address signals, and the plurality of two-dimensional light reception is performed. A look-up table (9) having a dynamic range including the dynamic range of each element (IM) and storing data for forming an image signal of a pixel corresponding to the existing position. The imaging device described.
【請求項3】 前記信号処理手段(SP)は、受光強度
がダイナミックレンジ内にある2次元受光素子(IM)
のうち、受光強度の最も弱い側にダイナミックレンジを
有する2次元受光素子(IM)の検出信号を前記画像信
号とするように構成されている請求項1記載の撮像装
置。
3. The two-dimensional light receiving element (IM), wherein the signal processing means (SP) has a received light intensity within a dynamic range.
2. The image pickup apparatus according to claim 1, wherein a detection signal of a two-dimensional light receiving element (IM) having a dynamic range on the side of the weakest received light intensity is used as the image signal.
JP6292754A 1994-11-28 1994-11-28 Image pickup device Pending JPH08154210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6292754A JPH08154210A (en) 1994-11-28 1994-11-28 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6292754A JPH08154210A (en) 1994-11-28 1994-11-28 Image pickup device

Publications (1)

Publication Number Publication Date
JPH08154210A true JPH08154210A (en) 1996-06-11

Family

ID=17785909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6292754A Pending JPH08154210A (en) 1994-11-28 1994-11-28 Image pickup device

Country Status (1)

Country Link
JP (1) JPH08154210A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101886A (en) * 2001-09-25 2003-04-04 Olympus Optical Co Ltd Image pickup device
US6693664B2 (en) 1999-06-30 2004-02-17 Negevtech Method and system for fast on-line electro-optical detection of wafer defects
EP1439385A1 (en) * 2003-01-15 2004-07-21 Negevtech Ltd. Method and system for fast on-line electro-optical detection of wafer defects
US6892013B2 (en) 2003-01-15 2005-05-10 Negevtech Ltd. Fiber optical illumination system
US6924891B2 (en) 1999-11-17 2005-08-02 Applied Materials, Inc. Method and apparatus for article inspection including speckle reduction
US7180586B2 (en) 2003-01-15 2007-02-20 Negevtech Ltd. System for detection of wafer defects
US7274444B2 (en) 2004-07-12 2007-09-25 Negevtech Ltd. Multi mode inspection method and apparatus
US7486861B2 (en) 2003-01-15 2009-02-03 Negevtech Ltd. Fiber optical illumination system
US7499583B2 (en) 1990-11-16 2009-03-03 Applied Materials, Israel, Ltd. Optical inspection method for substrate defect detection
US7714998B2 (en) 2006-11-28 2010-05-11 Applied Materials South East Asia Pte. Ltd. Image splitting in optical inspection systems
US7719674B2 (en) 2006-11-28 2010-05-18 Applied Materials South East Asia Pte. Ltd. Image splitting in optical inspection systems
US7804993B2 (en) 2005-02-28 2010-09-28 Applied Materials South East Asia Pte. Ltd. Method and apparatus for detecting defects in wafers including alignment of the wafer images so as to induce the same smear in all images
US7813541B2 (en) 2005-02-28 2010-10-12 Applied Materials South East Asia Pte. Ltd. Method and apparatus for detecting defects in wafers
US8031931B2 (en) 2006-04-24 2011-10-04 Applied Materials South East Asia Pte. Ltd. Printed fourier filtering in optical inspection tools
JP2011223221A (en) * 2010-04-08 2011-11-04 Nippon Hoso Kyokai <Nhk> Photographing device and image integration program

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7499583B2 (en) 1990-11-16 2009-03-03 Applied Materials, Israel, Ltd. Optical inspection method for substrate defect detection
US6693664B2 (en) 1999-06-30 2004-02-17 Negevtech Method and system for fast on-line electro-optical detection of wafer defects
US6924891B2 (en) 1999-11-17 2005-08-02 Applied Materials, Inc. Method and apparatus for article inspection including speckle reduction
JP2003101886A (en) * 2001-09-25 2003-04-04 Olympus Optical Co Ltd Image pickup device
US7180586B2 (en) 2003-01-15 2007-02-20 Negevtech Ltd. System for detection of wafer defects
US7843559B2 (en) 2003-01-15 2010-11-30 Applied Materials South East Asia Pte. Ltd. System for detection of wafer defects
US7260298B2 (en) 2003-01-15 2007-08-21 Negevtech Ltd. Fiber optical illumination system
US7961763B2 (en) 2003-01-15 2011-06-14 Applied Materials South East Asia Pte. Ltd. System for detection of wafer defects
US7477383B2 (en) 2003-01-15 2009-01-13 Negevtech Ltd. System for detection of wafer defects
US7486861B2 (en) 2003-01-15 2009-02-03 Negevtech Ltd. Fiber optical illumination system
EP1439385A1 (en) * 2003-01-15 2004-07-21 Negevtech Ltd. Method and system for fast on-line electro-optical detection of wafer defects
US7525659B2 (en) 2003-01-15 2009-04-28 Negevtech Ltd. System for detection of water defects
US7633041B2 (en) 2003-01-15 2009-12-15 Applied Materials South East Asia Pte, Ltd. Apparatus for determining optimum position of focus of an imaging system
US6892013B2 (en) 2003-01-15 2005-05-10 Negevtech Ltd. Fiber optical illumination system
US7274444B2 (en) 2004-07-12 2007-09-25 Negevtech Ltd. Multi mode inspection method and apparatus
US7804993B2 (en) 2005-02-28 2010-09-28 Applied Materials South East Asia Pte. Ltd. Method and apparatus for detecting defects in wafers including alignment of the wafer images so as to induce the same smear in all images
US7813541B2 (en) 2005-02-28 2010-10-12 Applied Materials South East Asia Pte. Ltd. Method and apparatus for detecting defects in wafers
US8031931B2 (en) 2006-04-24 2011-10-04 Applied Materials South East Asia Pte. Ltd. Printed fourier filtering in optical inspection tools
US7719674B2 (en) 2006-11-28 2010-05-18 Applied Materials South East Asia Pte. Ltd. Image splitting in optical inspection systems
US7714998B2 (en) 2006-11-28 2010-05-11 Applied Materials South East Asia Pte. Ltd. Image splitting in optical inspection systems
JP2011223221A (en) * 2010-04-08 2011-11-04 Nippon Hoso Kyokai <Nhk> Photographing device and image integration program

Similar Documents

Publication Publication Date Title
US6970195B1 (en) Digital image sensor with improved color reproduction
US6734905B2 (en) Dynamic range extension for CMOS image sensors
US7349129B2 (en) Controller for photosensor array with multiple different sensor areas
EP0430982B1 (en) Wide dynamic range camera
JPH08154210A (en) Image pickup device
US6950133B2 (en) Method of detecting defective pixels of a solid-state image-pickup device and image-pickup apparatus using the same
US20060017824A1 (en) Image processing device, image processing method, electronic camera, and scanner
EP1971131B1 (en) Analog image signal processing circuit for cmos image sensor
JPH10271519A (en) Solid-state image pickup device
JPS60105390A (en) Camera device
JP4477265B2 (en) Color television camera
JPH0530424A (en) Picture input device
KR0141599B1 (en) Image pick up device
JPH05260357A (en) Image pickup device
Chan CCD camera design and ASIC applications
JPH08154211A (en) Image pickup device
JPH03296609A (en) Measuring apparatus of shape of object
JP2982479B2 (en) TV camera device
JPH07322142A (en) Solid-state image pickup element and television camera using the element
JPH03106186A (en) Solid-state image pickup device
JPH06169461A (en) Color camera with solid-state image pickup element
JP2007124533A (en) Image pickup apparatus and picked-up image processing method
JPS6260879B2 (en)
JP2002185869A (en) Solid-state image pickup element and imaging pickup device
JPH05199454A (en) Photodetecting device of video camera