JPH08153703A - Dry-etching method for 2-6 group compound semiconductor - Google Patents

Dry-etching method for 2-6 group compound semiconductor

Info

Publication number
JPH08153703A
JPH08153703A JP29286594A JP29286594A JPH08153703A JP H08153703 A JPH08153703 A JP H08153703A JP 29286594 A JP29286594 A JP 29286594A JP 29286594 A JP29286594 A JP 29286594A JP H08153703 A JPH08153703 A JP H08153703A
Authority
JP
Japan
Prior art keywords
etching
substrate
compound semiconductor
group
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29286594A
Other languages
Japanese (ja)
Inventor
Takashi Yoshikawa
▲隆▼士 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29286594A priority Critical patent/JPH08153703A/en
Publication of JPH08153703A publication Critical patent/JPH08153703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To provide a dry-etching method for a 2-6 group compound semiconductor which allows enough etching speed while a smooth surface is obtained, by dry-etching under the condition of specific substrate temperature, gas pressure and ion energy, respectively. CONSTITUTION: First, a substrate 5 consisting of ZnSe, a 2-6 group compound semiconductor is set with a substrate holder in between on a resistance heating heater 6 of a reactive ion beam etching device, and, an ion beam 3 is drawn out of an electron cyclotron resonance plasma Z by an ion accelerating electrode 1, and after 0.5-2KeV energy is applied, poured on the substrate 5 for etching. Pure chlorine or BCle2 is used as etching gas. The substrate 5 is controlled at 80-350 deg.C by the resistance heater 6. An etching chamber 4 is, before etching gas introduction, kept at high vacuum state until back pressure 4×10<-8> Torr by a pomp 7, and after gas introduction, kept at 4×10<-8> Torr of the pressure by open/close adjustment of an orifice 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は2−6族化合物半導体の
ドライエッチング方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dry etching method for 2-6 group compound semiconductors.

【0002】[0002]

【従来の技術】2−6族化合物半導体は近年緑青色半導
体レーザ材料として注目されている。半導体を用いたレ
ーザ等の素子作製にはエッチングによる微細加工が不可
欠である。エッチングの方法は大きく分けて酸やアルカ
リ等のエッチング液を用いるウェットエッチングとハロ
ゲンや不活性ガス等のエッチングガスを用いるドライエ
ッチングがある。一般にウェットエッチングは低損傷で
あるが等方的エッチングでありサイドエッチングが大き
いので微細加工にはあまり適さない。一方ドライエッチ
ングは垂直異方性エッチングなので、微細加工に適す
る。さらに、ガスを用いるため均一性、再現性に優れ
る。その反面イオンビームを用いるエッチングでは加工
による損傷が大きいが、通常ドライエッチング後の表面
をウェットエッチングで0.1μm程度エッチングする
ことで損傷除去を行い、加工損傷による劣化の無い素子
が作製可能である。
2. Description of the Related Art Recently, 2-6 group compound semiconductors have attracted attention as a green-blue semiconductor laser material. Microfabrication by etching is indispensable for manufacturing an element such as a laser using a semiconductor. The etching method is roughly classified into wet etching using an etching solution such as acid or alkali and dry etching using an etching gas such as halogen or an inert gas. Generally, wet etching has low damage, but isotropic etching and large side etching is not suitable for fine processing. On the other hand, since dry etching is vertical anisotropic etching, it is suitable for fine processing. Furthermore, since gas is used, it is excellent in uniformity and reproducibility. On the other hand, etching using an ion beam causes a large amount of damage due to processing, but normally, after dry etching, the surface is wet-etched by about 0.1 μm to remove the damage, and an element that is not deteriorated due to processing damage can be manufactured. .

【0003】エッチング面の表面モフォロジーはエッチ
ングに引き続いて行われる埋込みプロセスや電極形成プ
ロセスに大きく影響するため、平滑な表面が得られるこ
とが必要である。エッチング表面荒れの原因は不均一な
エッチングにある。不均一な原因としては、基板表面の
酸化膜の厚さの不均一、基板へのエッチング反応種の供
給の不均一、反応生成物の脱離の不均一、面方位に依存
したエッチング速度の違いに起因する不均一等がある。
さらに化合物半導体では構成しているそれぞれの元素の
エッチングされ易さの不均一が重大な表面荒れをおこ
す。そのため平滑表面を得るためにはこの不均一さを低
減することが重要である。
Since the surface morphology of the etching surface has a great influence on the burying process and the electrode forming process which follow the etching, it is necessary to obtain a smooth surface. The cause of the etching surface roughness is uneven etching. The causes of non-uniformity include non-uniformity of the oxide film on the substrate surface, non-uniform supply of etching reaction species to the substrate, non-uniform desorption of reaction products, and difference in etching rate depending on the plane orientation. There are non-uniformities and the like.
Furthermore, in compound semiconductors, nonuniform etching easiness of the constituent elements causes serious surface roughness. Therefore, it is important to reduce this non-uniformity in order to obtain a smooth surface.

【0004】[0004]

【発明が解決しようとする課題】2−6族化合物半導体
のエッチングについてみるとウェットエッチングでは良
いエッチング液が見つかっていない。酸やアルカリ等の
大部分のエッチング液について、エッチング速度が極端
に小さい場合や表面モフォロジーが著しく劣化してしま
う問題がある。またドライエッチング方法としてはM.
A.FOADらがエレクトロニクスレターズ第27巻7
3ページ(M.A.Foad et.al.,Elec
tronics Letters27,73,199
1)に示したメタンと水素の混合ガスを用いた反応性イ
ンオンエッチングが唯一実用に耐えうる表面モフォロジ
ーを有したエッチング方法である。しかしこのガス系は
炭化水素系であるためエッチング中にポリマーが堆積す
るという欠点を有する。3−5族化合物半導体のエッチ
ングの場合はポリマーを酸素プラズマにより除去する手
法が取られたが、化学反応性の高い2−6族元素からな
る2−6族化合物半導体を酸素プラズマに晒すと強固な
酸化膜が形成され、その後のプロセスを困難にするだけ
でなく、作製した素子の特性に著しい劣化をもたらすと
いう問題がある。またこのエッチング方法はエッチング
速度が数10nm/minと、実用的に良好なエッチン
グ速度に対し1桁遅いという問題も存在する。
As to the etching of the 2-6 group compound semiconductor, no good etching solution has been found in the wet etching. For most etching solutions such as acids and alkalis, there are problems that the etching rate is extremely low and the surface morphology is significantly deteriorated. Further, as a dry etching method, M.
A. FOAD et al. Electronics Letters Vol. 27 7
Page 3 (MA Foad et. Al., Elec
tronics Letters 27, 73, 199
The reactive in-on etching using the mixed gas of methane and hydrogen shown in 1) is the only etching method having a surface morphology that can be practically used. However, since this gas system is a hydrocarbon system, it has a drawback that a polymer is deposited during etching. In the case of etching the 3-5 group compound semiconductor, a method of removing the polymer by oxygen plasma was used, but when the 2-6 group compound semiconductor made of the 2-6 group element having high chemical reactivity is exposed to oxygen plasma, it is strong. There is a problem in that a simple oxide film is formed, which not only makes subsequent processes difficult, but also causes remarkable deterioration in the characteristics of the manufactured device. Further, this etching method has a problem that the etching rate is several tens nm / min, which is an order of magnitude slower than the practically good etching rate.

【0005】一方、特開平2−299230号公報や特
開平3−204926号公報に記載されているように、
ドライエッチングによく用いられるハロゲン系ガスを用
いる場合がある。しかしこの方法では、例えばZnSe
と塩素系の組み合わせの場合二つの問題がある。ひとつ
は、エッチング時の反応生成物であるZnClx の蒸気
圧が低いことである。そのためエッチング速度は極端に
遅くなる場合がある。さらにZn、Se、それぞれの反
応生成物の沸点はZnCl2 が730℃、SeClが1
27℃と大きく異なる。そのためエッチング中基板表面
でZnとSeの脱離の差が大きくなる為、表面モフォロ
ジーが悪いという問題もある。これは、エッチング速度
の増速のために、基板温度を高くしたときに顕著にあら
われる。またハロゲン化水素を使用すると、水素ラジカ
ルによる化学反応性エッチングが起こり、特開平2−2
99230号公報の実施例で述べられているように、フ
ォトレジストのエッチング速度が28nm/minとか
なり速くなり、ZnSeとの選択比が低くなり実用的で
なくなるという問題もある。
On the other hand, as described in JP-A-2-299230 and JP-A-3-204926,
A halogen-based gas often used for dry etching may be used. However, in this method, for example, ZnSe
There are two problems with the combination of and chlorine. One is that the vapor pressure of ZnCl x , which is a reaction product during etching, is low. Therefore, the etching rate may be extremely slow. Furthermore, the boiling points of the reaction products of Zn and Se are 730 ° C. for ZnCl 2 and 1 for SeCl.
It is very different from 27 ° C. Therefore, there is a problem that the surface morphology is poor because the difference between the desorption of Zn and Se on the substrate surface during etching becomes large. This is noticeable when the substrate temperature is increased due to the increased etching rate. Further, when a hydrogen halide is used, chemically reactive etching due to hydrogen radicals occurs, which results in the problem of Japanese Patent Laid-Open No. 2-2.
As described in the example of Japanese Patent Publication No. 99230, there is also a problem that the etching rate of the photoresist is considerably high at 28 nm / min and the selectivity with ZnSe is low, which is not practical.

【0006】本発明の目的は、十分なエッチング速度を
有し平滑な表面が得られる2−6族化合物半導体のドラ
イエッチング方法を提供することにある。
An object of the present invention is to provide a dry etching method for a 2-6 group compound semiconductor which has a sufficient etching rate and can obtain a smooth surface.

【0007】[0007]

【課題を解決するための手段】本発明の2−6族化合物
半導体のドライエッチング方法は、塩素またはその化合
物を反応ガスとする2−6族化合物半導体のドライエッ
チング方法において、基板温度を80〜350℃、ガス
圧を1×10-5〜1×10-4Torr、イオンエネルギ
ーを0.5〜2keVとすることを特徴とするものであ
る。
A dry etching method for a 2-6 group compound semiconductor according to the present invention is a dry etching method for a 2-6 group compound semiconductor using chlorine or a compound thereof as a reaction gas. It is characterized in that the temperature is 350 ° C., the gas pressure is 1 × 10 −5 to 1 × 10 −4 Torr, and the ion energy is 0.5 to 2 keV.

【0008】[0008]

【作用】上記エッチング条件において、基板温度の下限
は、蒸気圧の低い2族元素のエッチング反応生成物が脱
離のための十分な蒸気圧を有するように、80℃以上で
あることが必要である。しかし、基板温度の上限は、6
族元素及び成長の際に用いているGaAs基板やInP
基板の5族元素の選択脱離の防止、ドーピングに用いて
いる元素の拡散等の防止及び異種成長層の境界混晶化の
防止のために、350℃程度が適当である。この高い基
板温度により蒸気圧の低い2族元素化合物の脱離が促進
される。一方ガス圧は供給律速状態を作るために十分低
くその上限は1×10-4Torr程度である。その下限
は安定なプラズマが得られさえすれば良いが、だいたい
1×10-5Torr程度である。このように供給律速状
態であるために6族元素化合物の脱離は頭打ちとなって
おり、2族元素と6族元素の離脱の差は小さくなる。
Under the above etching conditions, the lower limit of the substrate temperature must be 80 ° C. or higher so that the etching reaction product of the Group 2 element having a low vapor pressure has a sufficient vapor pressure for desorption. is there. However, the upper limit of the substrate temperature is 6
Group elements and GaAs substrates and InP used for growth
About 350 ° C. is suitable for preventing selective desorption of the Group 5 element from the substrate, preventing diffusion of the element used for doping, and preventing boundary mixed crystallization of the different growth layer. This high substrate temperature promotes desorption of the Group 2 element compound having a low vapor pressure. On the other hand, the gas pressure is low enough to create a supply-controlled state, and its upper limit is about 1 × 10 −4 Torr. The lower limit is sufficient as long as stable plasma is obtained, but it is about 1 × 10 -5 Torr. As described above, since the supply rate-determining state is established, the elimination of the group 6 element compound reaches a ceiling, and the difference between the group 2 element and the group 6 element is reduced.

【0009】さらにイオンエネルギーの大きいイオンで
衝撃を与え物理的スパッタリングにより脱離を促進す
る。物理的スパッタリングによる脱離の元素選択性は小
さいので、これよりさらに2族元素化合物と6族元素化
合物の脱離の差を十分低減できるため良好な平滑表面が
得られる。物理的スパッタリングによる脱離効果が十分
得られるようにイオンエネルギーを0.5keV以上と
する。上限はスパッタリングによるダメージを考慮して
2keV程度が適当である。以上、基板温度上昇による
2族元素の脱離促進、高温、低ガス圧条件での供給律速
条件実現による2族、6族元素の脱離の差の低減、高イ
オンエネルギーでの物理的スパッタリングによる2族、
6族元素の脱離の低減により、十分なエッチング速度を
有しかつ平滑なエッチングが実現される。
Further, ions having a large ion energy are bombarded to promote desorption by physical sputtering. Since the element selectivity of desorption by physical sputtering is low, the difference in desorption between the group 2 element compound and the group 6 element compound can be further reduced, and a good smooth surface can be obtained. The ion energy is set to 0.5 keV or more so that the desorption effect due to physical sputtering can be sufficiently obtained. An upper limit of about 2 keV is suitable in consideration of damage due to sputtering. As described above, the desorption of the group 2 element is promoted by the increase in the substrate temperature, the difference in the desorption of the group 2 and 6 elements is reduced by realizing the supply rate-controlled condition at high temperature and low gas pressure, and the physical sputtering is performed at high ion energy 2nd group,
By reducing the desorption of the Group 6 element, a sufficient etching rate and smooth etching can be realized.

【0010】[0010]

【実施例】次に本発明を図面を用いて説明する。図1は
本発明の一実施例を説明する為のエッチング装置の構成
図である。
The present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an etching apparatus for explaining an embodiment of the present invention.

【0011】まず、2−6族化合物半導体であるZnS
e(又はZnTe又はZnSeTe)からなる基板5を
基板ホルダーを介して図1に示す反応性イオンビームエ
ッチング(Reactive Ion Beam Et
ching;RIBE)装置の抵抗加熱ヒータ6上にセ
ットしエッチングする。これは一般に用いられているR
IBE装置で、電子サイクロトン共鳴(Electlo
n Cyclotoron Resonance;EC
R)プラズマ2より、イオン加速電極1によりイオンビ
ーム3を引き出し一定の1.1keVのエネルギーを与
えた後に基板5に照射してエッチングを行う。エッチン
グガスには純塩素又はBCl2 やSiCl4 を用いる。
基板5は抵抗加熱ヒータ6により200℃に温度制御さ
れる。エッチング室4は、エッチングガス導入前には背
圧4×10-8Torrまでポンプ7により高真空に保た
れている。ガス導入後はオリフィス8の開度調節により
エッチング室4の圧力は4×10-5Torrに保持され
る。
First, ZnS which is a 2-6 group compound semiconductor.
The substrate 5 made of e (or ZnTe or ZnSeTe) is subjected to the reactive ion beam etching (Reactive Ion Beam Et) shown in FIG. 1 through the substrate holder.
ching; RIBE) device and set on the resistance heater 6 for etching. This is the commonly used R
Electron Cycloton Resonance (Electlo)
n Cyclotron Resonance; EC
R) The ion beam 3 is extracted from the plasma 2 by the ion accelerating electrode 1 and given a constant energy of 1.1 keV, and then the substrate 5 is irradiated with the ion beam 3 for etching. Pure chlorine or BCl 2 or SiCl 4 is used as an etching gas.
The temperature of the substrate 5 is controlled to 200 ° C. by the resistance heater 6. Before the etching gas is introduced, the etching chamber 4 is kept in a high vacuum by a pump 7 up to a back pressure of 4 × 10 −8 Torr. After introducing the gas, the pressure in the etching chamber 4 is maintained at 4 × 10 −5 Torr by adjusting the opening of the orifice 8.

【0012】基板温度が200℃と高いため蒸気圧が低
いZnCl2 も脱離に十分な蒸気圧を有するようにな
る。一方、ガス圧が低いため供給律速となり、蒸気圧の
高いSeClx やTeClx の基板からの脱離速度は基
板温度が高くなり蒸気圧が上がっているにもかかわらず
飽和する。これにより2族元素化合物と6族元素化合物
の脱離速度の差を低減することが可能となる。さらに、
エッチング速度に元素依存性が小さいイオンビーム衝撃
による脱離を、高いエネルギーを有するイオンビームで
衝撃を与えることで促進する。これによりさらに脱離の
差を縮めることが可能となる。
Since the substrate temperature is as high as 200 ° C., ZnCl 2 having a low vapor pressure also has a vapor pressure sufficient for desorption. On the other hand, since the gas pressure is low, the supply is rate-controlled, and the desorption rate of SeCl x or TeCl x having a high vapor pressure from the substrate is saturated even though the substrate temperature increases and the vapor pressure increases. This makes it possible to reduce the difference in desorption rate between the group 2 element compound and the group 6 element compound. further,
Desorption due to ion beam bombardment, which has a small element dependence on etching rate, is accelerated by bombarding with an ion beam having high energy. This makes it possible to further reduce the desorption difference.

【0013】イオンを用いたドライエッチングではもと
もとエッチング表面荒れの原因となる不均一なエッチン
グのうち、基板表面の酸化膜の不均一はイオン衝撃で除
去され、基板へのエッチング反応種の供給の不均一はガ
スのため小さく、反応生成物の脱離の不均一、面方位に
依存したエッチング速度の違いに起因する不均一は異方
性エッチングのため小さい。したがって本実施例により
化合物元素間の脱離速度の違いを低減することで表面平
滑エッチングが実現される。
In dry etching using ions, of the nonuniform etching that causes roughening of the etching surface, nonuniformity of the oxide film on the substrate surface is removed by ion bombardment, and the supply of etching reactive species to the substrate is unsatisfactory. The uniformity is small due to the gas, and the non-uniformity of desorption of the reaction product and the non-uniformity due to the difference in etching rate depending on the plane orientation are small due to the anisotropic etching. Therefore, according to this example, the surface smooth etching is realized by reducing the difference in the desorption rate between the compound elements.

【0014】このエッチング条件でのエッチング速度は
ZnSe、ZnSeTe、ZnTeでそれぞれ110、
128、208nm/minとなり、実用的なエッチン
グ速度が得られた。エッチング速度は供給律速なのでエ
ッチングガス圧をあげることで、ガス圧に比例してエッ
チング速度を増加させることができる。
The etching rate under these etching conditions is 110 for ZnSe, ZnSeTe, and ZnTe, respectively.
It was 128 and 208 nm / min, and a practical etching rate was obtained. Since the etching rate is supply-controlled, increasing the etching gas pressure can increase the etching rate in proportion to the gas pressure.

【0015】[0015]

【発明の効果】以上説明したように本発明のエッチング
条件によれば、基板温度を高くできることによる2族元
素の脱離促進と、高温、低ガス圧による供給律速状態で
あることによる2族、6族元素の脱離の差の低減及び高
イオンエネルギーでの物理的スパッタリングによる2
族、6族元素の脱離の差の低減の複合効果により、2−
6族化合物半導体を十分なエッチング速度を有しつつ、
平滑にエッチングができるという効果がある。
As described above, according to the etching conditions of the present invention, the desorption of the Group 2 element can be promoted by increasing the substrate temperature, and the group 2 element can be supplied by the high temperature and the low gas pressure to control the supply of the Group 2. Reduction of desorption difference of Group 6 elements and physical sputtering with high ion energy 2
Due to the combined effect of reducing the difference in desorption of Group 6 and Group 6 elements
While having a sufficient etching rate for Group 6 compound semiconductors,
The effect is that etching can be performed smoothly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明する為のエッチング装
置の構成図。
FIG. 1 is a configuration diagram of an etching apparatus for explaining an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 イオン加速電極 2 ECRプラズマ 3 イオンビーム 4 エッチング室 5 基板 6 抵抗加熱ヒータ 7 ポンプ 8 オリフィス 1 Ion Acceleration Electrode 2 ECR Plasma 3 Ion Beam 4 Etching Chamber 5 Substrate 6 Resistance Heater 7 Pump 8 Orifice

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 塩素またはその化合物を反応ガスとする
2−6族化合物半導体のドライエッチング方法におい
て、基板温度を80〜350℃、ガス圧を1×10-5
1×10-4Torr、イオンエネルギーを0.5〜2k
eVとすることを特徴とする2−6族化合物半導体のド
ライエッチング方法。
1. A dry etching method for a 2-6 group compound semiconductor using chlorine or a compound thereof as a reaction gas, wherein the substrate temperature is 80 to 350 ° C., and the gas pressure is 1 × 10 −5 to.
1 × 10 -4 Torr, ion energy 0.5-2k
A dry etching method for a 2-6 group compound semiconductor, wherein the dry etching method is eV.
JP29286594A 1994-11-28 1994-11-28 Dry-etching method for 2-6 group compound semiconductor Pending JPH08153703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29286594A JPH08153703A (en) 1994-11-28 1994-11-28 Dry-etching method for 2-6 group compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29286594A JPH08153703A (en) 1994-11-28 1994-11-28 Dry-etching method for 2-6 group compound semiconductor

Publications (1)

Publication Number Publication Date
JPH08153703A true JPH08153703A (en) 1996-06-11

Family

ID=17787381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29286594A Pending JPH08153703A (en) 1994-11-28 1994-11-28 Dry-etching method for 2-6 group compound semiconductor

Country Status (1)

Country Link
JP (1) JPH08153703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100540862B1 (en) * 2000-12-27 2006-01-16 스미토모덴키고교가부시키가이샤 A method for preparing diffractive optical elements for a laser of ZnSe polycrystalline substrate
CN105355550A (en) * 2015-12-02 2016-02-24 中国科学院微电子研究所 III family nitride low damage etching method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378274A (en) * 1989-08-21 1991-04-03 Seiko Epson Corp Manufacture of semiconductor laser
JPH0378275A (en) * 1989-08-21 1991-04-03 Seiko Epson Corp Manufacture of semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378274A (en) * 1989-08-21 1991-04-03 Seiko Epson Corp Manufacture of semiconductor laser
JPH0378275A (en) * 1989-08-21 1991-04-03 Seiko Epson Corp Manufacture of semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100540862B1 (en) * 2000-12-27 2006-01-16 스미토모덴키고교가부시키가이샤 A method for preparing diffractive optical elements for a laser of ZnSe polycrystalline substrate
CN105355550A (en) * 2015-12-02 2016-02-24 中国科学院微电子研究所 III family nitride low damage etching method
CN105355550B (en) * 2015-12-02 2018-05-01 中国科学院微电子研究所 Group III-nitride low damage etch method

Similar Documents

Publication Publication Date Title
US20190013211A1 (en) Tantalum-containing material removal
US4599135A (en) Thin film deposition
US4330569A (en) Method for conditioning nitride surface
JPS61218134A (en) Device and method for forming thin film
US5145554A (en) Method of anisotropic dry etching of thin film semiconductors
US6960533B2 (en) Method of processing a sample surface having a masking material and an anti-reflective film using a plasma
JPH08153703A (en) Dry-etching method for 2-6 group compound semiconductor
JPH05320891A (en) Sputtering device
US6103318A (en) Method for making an optical waveguide component using a low-stress silicon photomask
US5236537A (en) Plasma etching apparatus
US5133830A (en) Method of pretreatment and anisotropic dry etching of thin film semiconductors
CN112366135A (en) Silicon atomic layer etching method
JPH03769B2 (en)
JPH09263948A (en) Formation of thin film by using plasma, thin film producing apparatus, etching method and etching device
CN116536650B (en) Film growth interface optimization method for film growth optimization
JPH07130712A (en) Method for etching pt-based alloy
US7192875B1 (en) Processes for treating morphologically-modified silicon electrode surfaces using gas-phase interhalogens
JP2995794B2 (en) (III)-(V) Group Compound Semiconductor Substrate Etching Method
JPH06291063A (en) Surface treatment device
JPS62286227A (en) Dry etching apparatus
KR20170095463A (en) Hybrid physical-vapor epitaxy method and apparatus for fabrication of thin films
JPH05160078A (en) Dry etching method
JPH07263421A (en) Surface treatment and surface treater
JP2612373B2 (en) Reactive ion etching method
JPH04718A (en) Surface treatment apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970527