JPH08153653A - Electrical double-layer capacitor and manufacture - Google Patents

Electrical double-layer capacitor and manufacture

Info

Publication number
JPH08153653A
JPH08153653A JP6294846A JP29484694A JPH08153653A JP H08153653 A JPH08153653 A JP H08153653A JP 6294846 A JP6294846 A JP 6294846A JP 29484694 A JP29484694 A JP 29484694A JP H08153653 A JPH08153653 A JP H08153653A
Authority
JP
Japan
Prior art keywords
double layer
electric double
layer capacitor
macropores
polarizable electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6294846A
Other languages
Japanese (ja)
Other versions
JP2677214B2 (en
Inventor
Takayuki Saito
貴之 斉藤
Yukari Kibi
ゆかり 吉備
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6294846A priority Critical patent/JP2677214B2/en
Priority to KR1019950044993A priority patent/KR100224142B1/en
Publication of JPH08153653A publication Critical patent/JPH08153653A/en
Application granted granted Critical
Publication of JP2677214B2 publication Critical patent/JP2677214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PURPOSE: To obtain an electrical double-layer capacitor which is lessened in resistance caused by macro pores on both an anode side polarizable electrode and a cathode side polarizable electrode and where resistances caused by macro pores on both an anode side and a cathode side are set nearly equal to each other by a method wherein the macro pores on the anode side polarizable electrode are set larger than those on the cathode side polarizable electrode in average diameter. CONSTITUTION: Macro pores on a cathode side are lessened in size as small as possible, and macro pores on an anode side macro pores are enhanced in size, whereby an electrical double-layer capacitor of this constitution is capable of being enhanced in quick charge properties and voltage stability when a large current is discharged without deteriorating in electrostatic capacity. Especially, when macro pores on an anode side are set larger than those on a cathode side in size, the double-layer capacitor is markedly enhanced in quick charge properties and voltage stability. Macro pores on a cathode side are set smaller than 0.7μm in size Dn , and provided that the size of macro pores on an anode side is represented by Dp , Dn and Dp , are so set as to satisfy a formula, Dp /Dn >1.0, to obtain an good result. That is, activated carbon possessed of macro pores distributed in a region where fine holes are larger than 0.1μm in diameter and micro pores distributed in a region where fine holes are smaller than 0.1μm in diameter is contained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気二重層コンデンサ
及びその製造方法に関し、特に、細孔直径が大きいマク
ロポアと小さいミクロポアとを合せ持つ活性炭あるいは
それから得られる活性炭/炭素複合体を分極性電極とし
て用いる電気二重層コンデンサ及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor and a method for producing the same, and more particularly to a polarizable electrode of activated carbon having macropores having large pore diameters and micropores having small pores or an activated carbon / carbon composite obtained therefrom. The present invention relates to an electric double layer capacitor used as a device and a manufacturing method thereof.

【0002】[0002]

【従来の技術】電気二重層コンデンサは固体と液体との
界面に生じる電気二重層を利用したコンデンサであっ
て、ファラッドオーダの大容量を容易に得られるという
大きな特徴をもつ。上記の大容量は、通常のコンデンサ
における誘電体層に相当する電気二重層が分子の直径程
度に小さいことに基くものであるが、特に分極性電極と
して活性炭又は活性炭と炭素とから得られる活性炭/炭
素複合体を用いたものは、固・液の接触面積すなわち電
気二重層の面積を非常に大きくできることから、より大
きい静電容量を示す。このような大容量性はこれまで、
この種のコンデンサをICメモリやマイクロプロセッサ
などのバックアップ電源など、電池の代替品として用い
ることを可能にしてきた。しかしながら電気二重層コン
デンサは、大きな静電容量を持つものの等価直列抵抗
(ESR:Equivalent Series Re
sistance)も高いことから、信号処理回路での
高周波成分除去には不適であるなど、用途は限られてい
る。
2. Description of the Related Art An electric double layer capacitor is a capacitor utilizing an electric double layer generated at an interface between a solid and a liquid, and has a great feature that a large capacity of farad order can be easily obtained. The above-mentioned large capacity is based on the fact that the electric double layer corresponding to the dielectric layer in an ordinary capacitor is as small as the diameter of the molecule, and in particular, activated carbon or activated carbon obtained from activated carbon and carbon is used as a polarizable electrode. The one using the carbon composite exhibits a larger capacitance because the contact area between solid and liquid, that is, the area of the electric double layer can be made very large. Such large capacity has been
It has become possible to use this type of capacitor as a substitute for a battery such as a backup power supply for an IC memory or a microprocessor. However, although the electric double layer capacitor has a large capacitance, it has an equivalent series resistance (ESR: Equivalent Series Re).
Since the signal strength is also high, it is not suitable for removing high frequency components in a signal processing circuit, and its application is limited.

【0003】電気二重層コンデンサを更に大容量化する
と共に低ESR化Rを実現するための技術が、特開平4
ー288361号公報(以後、第1の公報と記す)に開
示されている。一般に、電気二重層コンデンサは、それ
ぞれ電解液を浸み込ませた一対の分極性電極を、絶縁材
料から成る板(又は、フィルム)状のセパレータを間に
挿んで、薄い筒状の絶縁材料から成るガスケットの内側
空間内に重ね合せて収容した基本的構成を備える。筒状
のガスケットの両端面には、導電材料から成る平板状集
電体がガスケットの蓋板および底板を構成するようにそ
れぞれ設けられる。これら集電体は、上記一対の分極性
電極の外部に対する端子板を構成すると同時に、ガスケ
ットとともに電解液の封止部材を構成する。
A technique for further increasing the capacity of an electric double layer capacitor and realizing a low ESR R is disclosed in Japanese Patent Laid-Open Publication No.
No. 288361 (hereinafter referred to as the first publication). Generally, an electric double layer capacitor is made of a thin cylindrical insulating material by inserting a pair of polarizable electrodes, each of which is impregnated with an electrolytic solution, with a plate (or film) separator made of an insulating material interposed therebetween. And a basic structure that is housed in the inner space of the gasket in a superposed manner. Flat plate current collectors made of a conductive material are provided on both end faces of the tubular gasket so as to form a lid plate and a bottom plate of the gasket, respectively. These current collectors form a terminal plate for the outside of the pair of polarizable electrodes, and at the same time form a sealing member for the electrolytic solution together with the gasket.

【0004】上記公報記載の電気二重層コンデンサを概
略的に示す図5を参照すると、このコンデンサは、一対
の平板状分極性電極1A/1Bと、これら電極の間に挿
まれた多孔性絶縁材料から成る板状のセパレータ3とを
含む。分極性電極1A/1Bは、活性炭粉末とフェノー
ル系樹脂との混合物を板状に成形した後、1000℃程
度の高温で熱処理することによって得られる活性炭/炭
素複合体であって、30wt%程度の濃度の硫酸溶液が
電解液として浸み込ませてある。分極性電極1A/1B
の活性炭部分は電解液との界面にプラスイオン(H+
およびマイナスイオン(SO4 2-)を選択的に吸着し電
気二重層を形成する。セパレータ3は分極性電極1A/
1Bを互いに分離された状態で保持すると共に電解液中
の電解質のイオンを通過させる。図5に示す構成によ
り、この電気二重層コンデンサは、電解液の槽中に二枚
の平板状の電極を対向させ、各電極と電解液とで形成さ
れる二つの電気二重層コンデンサを、電解液で直列に接
続した構造と等価になる。上記分極性電極1A/1Bお
よびセパレータ3の積層体は、絶縁ゴム製の筒状のガス
ケット4に収容され、ガスケット4の端面には導電ゴム
製の平板状集電体2A/2Bが設けられる。集電体2A
は分極性電極1Aおよびガスケット4上面と強固に密着
し、集電体2Bは分極性電極1Bおよびガスケット4下
面に密着する。これによって、これら集電体2A/2B
は、分極性電極1A/1Bの外部への接続のための端子
板を形成し、ガスケット4とともに電解液への気密容器
を形成する。
Referring to FIG. 5, which schematically shows the electric double layer capacitor described in the above publication, this capacitor has a pair of flat plate-like polarizable electrodes 1A / 1B and a porous insulating material inserted between these electrodes. And a plate-shaped separator 3 made of. The polarizable electrodes 1A / 1B are activated carbon / carbon composites obtained by molding a mixture of activated carbon powder and a phenolic resin into a plate and then heat treating the mixture at a high temperature of about 1000 ° C. A concentrated sulfuric acid solution is impregnated as an electrolyte. Polarizing electrode 1A / 1B
The activated carbon part of the positive ion (H + ) at the interface with the electrolyte
And negative ions (SO 4 2− ) are selectively adsorbed to form an electric double layer. The separator 3 is a polarizable electrode 1A /
1B is kept in a state of being separated from each other, and the ions of the electrolyte in the electrolytic solution are allowed to pass through. With the configuration shown in FIG. 5, this electric double layer capacitor has two flat plate-shaped electrodes facing each other in a bath of electrolytic solution, and two electric double layer capacitors formed by each electrode and the electrolytic solution are electrolyzed. It is equivalent to the structure of connecting in series with liquid. The laminated body of the polarizable electrodes 1A / 1B and the separator 3 is housed in a tubular gasket 4 made of insulating rubber, and an end face of the gasket 4 is provided with a flat-plate current collector 2A / 2B made of conductive rubber. Current collector 2A
Firmly adheres to the polarizable electrode 1A and the upper surface of the gasket 4, and the current collector 2B closely adheres to the polarizable electrode 1B and the lower surface of the gasket 4. By this, these current collectors 2A / 2B
Forms a terminal plate for connecting the polarizable electrodes 1A / 1B to the outside, and forms a hermetic container for the electrolytic solution together with the gasket 4.

【0005】上述したように、上記公報記載の電気二重
層コンデンサでは活性炭と電解液とを接触状態に保つ手
段として、活性炭の粉末または繊維とフェノール樹脂と
の混合物を不活性ガス雰囲気中で加熱し、炭化したフェ
ノール樹脂で活性炭粉末(または繊維)どうしを結合さ
せて得られる多孔質の固体活性炭(活性炭/炭素複合
体)を用いる。この固体活性炭に電解液を染み込ませて
電気二重層コンデンサの分極性電極とする。この分極性
電極は、従来技術における分極性電極、すなわち活性炭
粉末と電解液とを混練したペースト状混合物から成る分
極性電極や、或いは、活性炭繊維などにバインダーを混
合しプレス成形したものに比べて密度が大きく抵抗率が
低いので、電気二重層コンデンサの単位体積あたりの容
量を更に大きくでき、又、上記ESRを更に小さくでき
る。
As described above, in the electric double layer capacitor described in the above publication, as a means for keeping the activated carbon and the electrolytic solution in contact with each other, a mixture of activated carbon powder or fiber and phenol resin is heated in an inert gas atmosphere. A porous solid activated carbon (activated carbon / carbon composite) obtained by binding activated carbon powders (or fibers) with a carbonized phenol resin is used. The solid activated carbon is impregnated with an electrolytic solution to form a polarizable electrode of an electric double layer capacitor. This polarizable electrode is compared to the polarizable electrode in the prior art, that is, a polarizable electrode made of a paste-like mixture prepared by kneading activated carbon powder and an electrolytic solution, or a mixture obtained by mixing active carbon fiber with a binder and press-molding. Since the density is high and the resistivity is low, the capacity per unit volume of the electric double layer capacitor can be further increased, and the ESR can be further reduced.

【0006】尚、電気二重層コンデンサの電解液には、
上記公報記載の電気二重層コンデンサに用いられた硫酸
水溶液のような水溶液系電解液と、例えば特開平2ー1
1007号公報(以後、第2の公報と記す)に記載され
た電気二重層コンデンサに用いられているような有機系
電解液とがあって、それぞれ、水溶液系電解液はESR
は低いが耐電圧も低く、一方、有機系電解液は耐電圧は
高いがESRも高いという特徴を持つ。いずれの電解液
を用いた場合でも、コンデンサとしての耐電圧は電解液
の電気分解電圧で決まり、ESRの低減に有利な水溶液
系の場合、コンデンサ一個当りの耐電圧は、水の電気分
解電圧(1.0V前後)程度である。この耐電圧の値
は、現在LSIなどに用いられている5.0V或いは
3.3Vという比較的低い電源電圧に対しても不足して
いる。従って、電気二重層コンデンサを電気回路に適用
する場合、例えば上記第1の公報記載の電気二重層コン
デンサを5V電源系のLSIのバックアップに用いると
きには、少くとも5個、マージンを見て6個以上を直列
にするというように、必要な耐電圧に応じて複数個の電
気二重層コンデンサを直列に積層し一体化させて積層構
造とし、全体としての耐電圧を高めることになる。
Incidentally, the electrolytic solution of the electric double layer capacitor is
An aqueous electrolytic solution such as an aqueous solution of sulfuric acid used in the electric double layer capacitor described in the above publication and, for example, JP-A-2-1.
No. 1007 (hereinafter referred to as the second publication), there is an organic electrolytic solution such as that used in the electric double layer capacitor, and the aqueous electrolytic solution is ESR.
Has a low withstand voltage, while the organic electrolyte has a high withstand voltage but a high ESR. Whatever electrolyte is used, the withstand voltage of the capacitor is determined by the electrolysis voltage of the electrolyte, and in the case of an aqueous solution that is advantageous for reducing ESR, the withstand voltage per capacitor is the electrolysis voltage of water ( It is about 1.0V). This withstand voltage value is insufficient even for a relatively low power supply voltage of 5.0 V or 3.3 V currently used in LSIs and the like. Therefore, when the electric double layer capacitor is applied to an electric circuit, for example, when the electric double layer capacitor described in the above-mentioned first publication is used for backing up a 5V power supply system LSI, at least 5, at least 6 in view of a margin. In order to increase the withstand voltage as a whole, a plurality of electric double layer capacitors are laminated in series and integrated according to the required withstand voltage.

【0007】ここで、本発明との関連で、電気二重層コ
ンデンサの分極性電極に用いられる活性炭の細孔構造に
ついて述べる。活性炭に、直径がサブミクロンオーダー
以下の非常に微細な細孔が多数存在することは、既に良
く知られていることである。通常、この細孔は直径の大
きさによって、マクロポア(macro pore)と
ミクロポア(micro pore)とに分れる。マク
ロポアは、直径が概ね100nm(=0.1μm)以上
のサブミクロン領域に分布し、外部に直接通じている。
これに対しミクロポアは、直径が0.1μm以下、特に
10nm程度以下の領域に分布し、マクロポアを介して
外部と通じている(例えば、炭素材料学会編、「活性炭
ー基礎と応用」、第6刷、(株)講談社(1986
年)、第19頁)。以上のことは、活性炭自体について
いえることであるが、上述した第1の公報記載の電気二
重層コンデンサに用いられる活性炭/炭素複合体、すな
わち活性炭の粉末または繊維とフェノール樹脂との混合
物を不活性ガス雰囲気中で加熱し、炭化したフェノール
樹脂で活性炭粉末(または繊維)どうしを結合させて得
られる固体活性炭にも、上記したと同じようなサイズ、
構造のマクロポア及びミクロポアが存在する。これは、
上記第1の公報記載の電気二重層コンデンサの発明者が
発表した論文「電極用固体活性炭の開発と応用」、化学
工業、1992年7月号、第23頁に記載されているよ
うに、活性炭/フェノール樹脂混合材が炭化されていく
過程で、フェノール樹脂の炭化によりCO2 やH2
などの分解ガスが発生し、ガスの抜け穴が残ることと、
活性炭は熱膨張するのに対し、フェノール樹脂は炭化
により収縮するため、内部にクラックが発生することと
による。活性炭によっては、例えば上記第2の公報に記
載されている活性炭繊維のように、マクロポアを持たず
ミクロポアが直接外部と通じているようなものもある
が、本発明が対象とする電気二重層コンデンサは、マク
ロポアとミクロポアとを合せもつ活性炭または活性炭/
炭素複合体からなる分極性電極を用いるコンデンサであ
る。上述した活性炭の細孔のうちミクロポアは、活性炭
の比表面積の約90%以上を占め、上記第2の公報にも
記載されているように、電気二重層コンデンサに用いた
ときの静電容量発現に大きく寄与している。一方、マク
ロポアは、電極表面から内部のミクロポアまで電解液を
つなげる役目を果す。
Here, the pore structure of the activated carbon used for the polarizable electrode of the electric double layer capacitor will be described in the context of the present invention. It is well known that activated carbon has a large number of very fine pores having a diameter of submicron order or less. Generally, the pores are divided into macropores and micropores depending on the size of the diameter. The macropores are distributed in a submicron region having a diameter of approximately 100 nm (= 0.1 μm) or more and directly communicate with the outside.
On the other hand, the micropores are distributed in a region with a diameter of 0.1 μm or less, especially about 10 nm or less, and communicate with the outside through the macropores (for example, edited by Carbon Society of Japan, “Activated Carbon-Basics and Applications”, No. 6). Printing, Kodansha Co., Ltd. (1986
Year), page 19). The above can be said about the activated carbon itself, but the activated carbon / carbon composite used in the electric double layer capacitor described in the above-mentioned first publication, that is, the activated carbon powder or the mixture of the fiber and the phenol resin is inactivated. Solid activated carbon obtained by combining activated carbon powder (or fiber) with carbonized phenolic resin after heating in a gas atmosphere has the same size as above.
There are macropores and micropores of structure. this is,
As described in the paper "Development and Application of Solid Activated Carbon for Electrodes", published by the inventor of the electric double layer capacitor described in the first publication, Chemical Industry, July 1992, p. 23, activated carbon In the process of carbonization of the / phenol resin mixture, carbonization of the phenol resin causes CO 2 and H 2 O
Decomposition gas such as is generated, leaving gas vent holes,
This is because the activated carbon thermally expands, whereas the phenol resin shrinks due to carbonization, which causes cracks inside. Some activated carbons, such as the activated carbon fiber described in the above-mentioned second publication, do not have macropores and have micropores directly communicating with the outside. The electric double layer capacitor targeted by the present invention Is activated carbon having both macropores and micropores or activated carbon /
A capacitor using a polarizable electrode made of a carbon composite. Among the pores of the above-mentioned activated carbon, the micropores occupy about 90% or more of the specific surface area of the activated carbon, and as described in the above-mentioned second publication, the capacitance development when used in an electric double layer capacitor. Greatly contributes to On the other hand, the macropores serve to connect the electrolyte solution from the electrode surface to the internal micropores.

【0008】従来、上述のようなミクロポアに着目して
特性改善を図った電気二重層コンデンサは、例えば上記
第2の公報や或いは特開昭63ー184314号公報に
開示された電気二重層コンデンサなどのように、幾つか
知られているが、マクロポアに着目したものは見当らな
い。このようなことから、上記第1の公報記載の電気二
重層コンデンサの構造上の特徴をマクロポアの点から言
えば、正極側分極性電極のマクロポアの平均細孔直径
(マクロポアサイズ)と、負極側分極性電極のマクロポ
アサイズとが同一であった。
Conventionally, an electric double layer capacitor whose characteristics have been improved by paying attention to the micropores as described above is, for example, the electric double layer capacitor disclosed in the above-mentioned second publication or JP-A-63-184314. There are some known, but I can't find anything that focuses on macropores. From the above, from the viewpoint of macropores in terms of the structural characteristics of the electric double layer capacitor described in the first publication, the average pore diameter (macropore size) of the macropores of the positive electrode side polarizable electrode and the negative electrode side It was the same as the macropore size of the polarizable electrode.

【0009】[0009]

【発明が解決しようとする課題】電気二重層コンデンサ
の重要な用途の一つにLSIのバックアップなど電池の
代替としての用途があることを考慮すると、コンデンサ
が大容量であることは勿論のこととしてその外に、充電
特性および放電特性が良好なことが重要である。すなわ
ち、急速充電が可能でしかも大電流放電時の電圧降下が
小さくなければならない。電気二重層コンデンサの充・
放電特性は電荷蓄積部分(電気二重層)に直列に加わる
抵抗の大きさに強く依存し、勿論、直列抵抗の値が小さ
いほど充・放電特性が良い。このような充・放電特性に
対する要求に対し、上記第1の公報記載の技術によれ
ば、分極性電極材料そのものの密度をこれまでより大き
くできまた抵抗率を低くできるので、単位体積当りの静
電容量を大きくすると共にESRを小さくして、電気二
重層コンデンサの充電特性や放電特性を改善することが
できる。
Considering that one of the important uses of the electric double layer capacitor is as a substitute for a battery such as an LSI backup, it goes without saying that the capacitor has a large capacity. In addition, it is important that the charge and discharge characteristics are good. That is, rapid charging must be possible and the voltage drop during large current discharge must be small. Charging of electric double layer capacitors
The discharge characteristics strongly depend on the magnitude of the resistance applied in series to the charge storage portion (electric double layer), and of course, the smaller the series resistance value, the better the charge / discharge characteristics. In order to meet such demands for charge / discharge characteristics, according to the technique described in the first publication, the density of the polarizable electrode material itself can be made higher and the resistivity can be made lower. It is possible to improve the charging characteristics and discharging characteristics of the electric double layer capacitor by increasing the capacitance and reducing the ESR.

【0010】ところで、第1の公報記載の電気二重層コ
ンデンサにおける上記充・放電特性の改善効果は、静電
容量の増大とESRの低減とによる得られたものであ
る。このESRは、例えば、活性炭/炭素複合体(分極
性電極)自体の導電率、分極性電極と集電体との間の接
触抵抗、集電体の導電率、集電体と外部電極との間の接
触抵抗、外部電極の導電率あるいは、積層構造のコンデ
サであれば、積層される個々のコンデンサどうしの間の
接触抵抗などのような、電子伝導に関る抵抗である。と
ころが、電気二重層コンデンサの充電・放電には、電解
液中のイオンの挙動が関与しており、その充・放電特性
はイオンの移動速度によっても大きく左右される。すな
わち、電気二重層コンデンサにおける充電は、電解液中
のイオンが正極側および負極側の各分極性電極のマクロ
ポアを通して、各電極表面に移動することによって行わ
れ、一方、放電は、正負各分極性電極表面のイオンが各
電極のマクロポアを通して、電解液側に移動することに
よって行われる。このことから、電気二重層コンデンサ
の充・放電特性を向上させるには、正負各分極性電極の
マクロポアにおけるイオンの移動を最適状態に制御する
ことが重要である。このような考察に基づいて、従来の
電気二重層コンデンサでは、正極側分極性電極と負極側
分極性電極とでマクロポアサイズが同一であることか
ら、陰陽各イオンの移動条件が必ずしも最適ではなく、
本来得られるべき充・放電特性が十分に引き出されてい
ない、つまり、充・放電特性を更に改善できる可能性が
ある。以下に、その説明を行う。
By the way, the effect of improving the charge / discharge characteristics in the electric double layer capacitor described in the first publication is obtained by increasing the electrostatic capacity and decreasing the ESR. This ESR is, for example, the electrical conductivity of the activated carbon / carbon composite (polarizable electrode) itself, the contact resistance between the polarizable electrode and the current collector, the electrical conductivity of the current collector, the electrical connection between the current collector and the external electrode. These are resistances related to electron conduction, such as contact resistance between electrodes, conductivity of external electrodes, or contact resistance between individual capacitors to be stacked in the case of a capacitor having a laminated structure. However, the behavior of ions in the electrolytic solution is involved in the charging / discharging of the electric double layer capacitor, and the charge / discharge characteristics thereof are greatly influenced by the moving speed of the ions. That is, charging in the electric double layer capacitor is performed by moving ions in the electrolytic solution to the surface of each electrode through the macropores of each polarizable electrode on the positive electrode side and the negative electrode side, while discharging is performed on each positive and negative polarizable electrode. It is performed by moving the ions on the surface of the electrode to the electrolyte side through the macropores of each electrode. From this, in order to improve the charge / discharge characteristics of the electric double layer capacitor, it is important to control the movement of ions in the macropores of the positive and negative polarizable electrodes to the optimum state. Based on such a consideration, in the conventional electric double layer capacitor, the macropore size is the same in the positive electrode side polarizable electrode and the negative electrode side polarizable electrode, so that the transfer condition of each anion and cation is not necessarily optimal,
The charge / discharge characteristics that should be originally obtained have not been sufficiently drawn out, that is, the charge / discharge characteristics may be further improved. The description will be given below.

【0011】前述したように、電気二重層コンデンサの
構造は原理的に、電解液の槽中に二枚の平板状の電極を
対向させ、各電極と電解液とで形成される二つの電気二
重層コンデンサを、電解液で直列に接続した構造と等価
になる。いま、図5に示す実際の電気二重層コンデンサ
を、図6に示すように、模式的に表す。すなわち、図6
(a)は、フル充電されているコンデンサを放電させる
ときの状態を表し、正極側分極性電極1Aは、1つのマ
クロポアとその中に存在する多数のミクロポアを持つも
のとする。ミクロポア表面には多数の硫酸イオンSO4
2-が吸着されており、電気二重層を形成している。同様
に、負極側分極性電極1Bも1つのマクロポアの中に無
数のミクロポアをもち、そのミクロポアの表面に多数の
水素イオンH+ が吸着されている。この状態のコンデン
サを放電させる場合、正極側電極1Aの電位を相対的に
下げて硫酸イオンSO4 2-をミクロポア表面から離脱さ
せる。離脱した硫酸イオンは電界に引かれ、マクロポア
を通って電解液側に移動しようとする。ところがこのと
き、マクロポアの直径Dp が有限であることから、離脱
した全硫酸イオンSO4 2-は同時にはマクロポアを通過
できず、単位時間にマクロポアを通過する硫酸イオンS
4 2-の数量には制限が加わる。すなわち、マクロポア
の直径Dp と硫酸イオンSO4 2-のイオン半径とできま
る抵抗が生じる。同様に、負極側電極1Bにも、マクロ
ポアの直径Dn と水素イオンH+ のイオン半径できまる
抵抗が生じる。一方、完全に放電したコンデンサを充電
する場合の状態を模式的に示す図6(b)を参照して、
硫酸イオンSO4 2-が電解液側から正極側電極1Aのマ
クロポアを通って、その中のミクロポア表面に移動しよ
うとするが、マクロポアの直径に制限されて、全ミクロ
ポア表面に同時には到達できない。すなわち、マクロポ
アで抵抗が生じ、ミクロポアにおける硫酸イオンの吸着
能力が十分あるにも拘らず、小さな電流でわずかずつし
か充電できない。負極側電極1Bにも同様に、マクロポ
アの直径と水素イオンのイオン半径とで決まる抵抗が生
じる。
As described above, in principle, the structure of the electric double layer capacitor is such that two plate-shaped electrodes are made to face each other in a bath of electrolytic solution, and two electric capacitors formed by each electrode and the electrolytic solution are formed. It is equivalent to a structure in which a multilayer capacitor is connected in series with an electrolytic solution. Now, the actual electric double layer capacitor shown in FIG. 5 is schematically shown as shown in FIG. That is, FIG.
(A) shows a state when a fully charged capacitor is discharged, and the positive electrode side polarizable electrode 1A has one macropore and a large number of micropores existing therein. Many sulfate ions SO 4 are present on the surface of the micropores.
2- is adsorbed and forms an electric double layer. Similarly, the negative polarizable electrode 1B also has innumerable micropores in one macropore, and many hydrogen ions H + are adsorbed on the surface of the micropore. When discharging the capacitor in this state, the potential of the positive electrode 1A is relatively lowered to separate the sulfate ion SO 4 2− from the surface of the micropore. The released sulfate ions are attracted to the electric field, and try to move to the electrolyte side through the macropores. However, at this time, since the diameter D p of the macropores is finite, all the released sulfate ions SO 4 2- cannot pass through the macropores at the same time, and the sulfate ions S passing through the macropores per unit time S
There is a limit to the quantity of O 4 2- . That is, a resistance is formed by the diameter D p of the macropore and the ionic radius of the sulfate ion SO 4 2− . Similarly, the negative electrode 1B also has a resistance caused by the diameter D n of the macropore and the ionic radius of the hydrogen ion H + . On the other hand, referring to FIG. 6 (b), which schematically shows a state in which a completely discharged capacitor is charged,
Sulfate ions SO 4 2− try to move from the electrolyte side through the macropores of the positive electrode 1A to the surface of the micropores therein, but the diameter of the macropores is limited, and it is impossible to reach all the micropore surfaces at the same time. That is, although resistance is generated in the macropores and the adsorption capacity for sulfate ions in the micropores is sufficient, the micropores can only be charged little by little with a small current. Similarly, a resistance determined by the diameter of the macropore and the ionic radius of hydrogen ions is generated in the negative electrode 1B.

【0012】以上のことから、電気二重層コンデンサ
は、図7に示す等価回路のように、正極側分極性電極1
Aでの硫酸イオンSO4 2-の移動速度により決まる抵抗
1 をもったコンデンサC1 と、負極側分極性電極1B
での水素イオンH+ の移動速度によって決まる抵抗R2
をもったコンデンサC2 とが直列に接続された回路と等
価になる。その結果、電気二重層コンデンサの充・放電
に直接関与する抵抗、すなわち直列抵抗R1 +R2 の値
は、正極側電極1Aのマクロポアで発生する抵抗R
1 と、負極側電極1Bのマクロポアで発生する抵抗R2
のいずれか大きい方によって決ることになる。従って、
電気二重層コンデンサの充.放電特性を改善するには、
それぞれの抵抗値R1 ,R2 が低くなるようにすること
と共に、二つの抵抗値が同等程度になるようにすること
が、重要である。
From the above, the electric double layer capacitor has the positive polarizable electrode 1 as shown in the equivalent circuit of FIG.
A capacitor C 1 having a resistance R 1 determined by the moving speed of sulfate ion SO 4 2− in A, and a polarizable electrode 1B on the negative electrode side.
Resistance R 2 determined by the moving speed of hydrogen ions H + at
It is equivalent to a circuit in which a capacitor C 2 having a capacitor is connected in series. As a result, the resistance directly related to charging / discharging of the electric double layer capacitor, that is, the value of the series resistance R 1 + R 2 is the resistance R generated in the macropore of the positive electrode 1A.
1 and the resistance R 2 generated in the macropore of the negative electrode 1B
Whichever is larger will be decided. Therefore,
Charging of electric double layer capacitors. To improve the discharge characteristics,
It is important to make the respective resistance values R 1 and R 2 low and to make the two resistance values comparable.

【0013】ここで、上述のマクロポアにおけるイオン
の移動速度は、マクロポアの直径とマクロポアを通って
移動するイオンの半径とに依存するが、従来の電気二重
層コンデンサでは、正極側分極性電極1Aのマクロポア
サイズDp と、負極側分極性電極1Bのマクロポアサイ
ズDn とが同一である。これに対し、電解液中のイオン
半径は、通常、イオン種によって異なる。従って、従来
の電気二重層コンデンサでは、マクロポアにおけるイオ
ンの移動速度が、正極側と負極側とで異ることになる。
例えば、図5に示す従来の電気二重層コンデンサにおい
て、マクロポアサイズが0.4μmの活性炭/炭素複合
体に硫酸溶液を含浸させた場合、陰陽各イオンの移動速
度、換言すれば拡散係数は水素イオンが1.0×10-7
cm2 /s、硫酸イオンが4.0×10-8cm2 /sで
あって、陰イオンの方が陽イオンよりも一桁以上、遅
い。従って、正極側抵抗R1 と負極側抵抗R2 との間に
アンバランスが生じ、電気二重層コンデンサのイオン伝
導による抵抗は正極側電極1A側の抵抗値R1 により制
限されて、十分に低い値になりきれない。
Here, the moving speed of the ions in the above-mentioned macropores depends on the diameter of the macropores and the radius of the ions moving through the macropores. In the conventional electric double layer capacitor, the polarizable electrode 1A on the positive electrode side is The macropore size D p is the same as the macropore size D n of the negative polarizable electrode 1B. On the other hand, the ionic radius in the electrolytic solution usually differs depending on the ionic species. Therefore, in the conventional electric double layer capacitor, the moving speed of ions in the macropore is different between the positive electrode side and the negative electrode side.
For example, in the conventional electric double layer capacitor shown in FIG. 5, when an activated carbon / carbon composite having a macropore size of 0.4 μm is impregnated with a sulfuric acid solution, the migration rate of each anion and cation, in other words, the diffusion coefficient is hydrogen ion. Is 1.0 x 10 -7
cm 2 / s, sulfate ion is 4.0 × 10 -8 cm 2 / s, and the anion is an order of magnitude slower than the cation. Therefore, an imbalance occurs between the positive electrode side resistance R 1 and the negative electrode side resistance R 2, and the resistance due to ion conduction of the electric double layer capacitor is limited by the resistance value R 1 on the positive electrode side electrode 1A side and is sufficiently low. The value cannot be reached.

【0014】上記のような抵抗R1 ,R2 間にアンバラ
ンスのある電気二重層コンデンサでは、充電の際には、
コンデンサC1 を大きな抵抗R1 を通して充電すること
になるので、急速充電が行われない。一方、放電時に
は、正極側分極性電極1A内のミクロポア表面に十分多
数の硫酸イオンが吸着されているにも拘らず、それらを
大きな抵抗R1 を通して僅かずつ引き出すことになる。
又、外部から電極1A,1B間の電圧は大部分が抵抗R
1 で消費され、コンデンサC2 における水素イオンの引
き出しには有効に働かないことになる。つまり、この電
気二重層コンデンサの放電時には、大きな容量値を持つ
ものの電荷引出し電圧が僅かしか加わらないコンデンサ
2 と、電荷引出し電圧は大きいものの容量値の小さな
コンデンサC1 とが直列に接続されていることと等価に
なり、コンデンサ全体としての静電容量が見掛け上、減
少してしまう。その結果、放電時の電圧降下は、コンデ
ンサが本来備えている容量値によるよりも大きなものに
なってしまう。
In the electric double layer capacitor having an unbalance between the resistors R 1 and R 2 as described above, during charging,
Since the capacitor C 1 is charged through the large resistance R 1 , rapid charging is not performed. On the other hand, at the time of discharging, although a large number of sulfate ions are adsorbed on the surface of the micropores in the positive electrode side polarizable electrode 1A, they are drawn out little by little through the large resistance R 1 .
Most of the voltage from the outside between the electrodes 1A and 1B is the resistance R.
It is consumed by 1 and does not work effectively for extracting hydrogen ions in the capacitor C 2 . That is, when the electric double layer capacitor is discharged, a capacitor C 2 having a large capacitance value but a small charge extraction voltage is applied, and a capacitor C 1 having a large charge extraction voltage but a small capacitance value are connected in series. This is equivalent to the fact that the capacitance of the capacitor as a whole is apparently reduced. As a result, the voltage drop at the time of discharge becomes larger than that due to the capacitance value originally possessed by the capacitor.

【0015】従って、本発明は、マクロポアとミクロポ
アとを持つ活性炭または活性炭/炭素複合体からなる分
極性電極をもつ電気二重層コンデンサにおいて、従来よ
りも急速な充電を可能とし、しかも放電時の電圧降下を
小さくすることを目的とするものである。
Therefore, the present invention enables an electric double layer capacitor having a polarizable electrode composed of activated carbon having macropores and micropores or an activated carbon / carbon composite, which enables charging more rapidly than before, and has a voltage during discharging. The purpose is to reduce the descent.

【0016】本発明の他の目的は、上記のような、急速
充電性に優れ、しかも放電時の電圧維持性にも優れた電
気二重層コンデンサを製造する方法を提供することを目
的とするものである。
Another object of the present invention is to provide a method for producing the electric double layer capacitor which is excellent in rapid charging property and also in voltage maintaining property during discharge as described above. Is.

【0017】[0017]

【課題を解決するための手段】本発明の電気二重層コン
デンサは、細孔直径がほぼ0.1μm以上の領域に分布
するマクロポアと0.1μmより小なる領域に分布する
ミクロポアとを有する活性炭を含む正負二つの分極性電
極と、前記二つの分極性電極のそれぞれとの界面で電気
二重層を形成する電解液とを含む電気二重層コンデンサ
において、前記正極側分極性電極におけるマクロポアの
平均細孔直径を、前記負極側分極性電極におけるマクロ
ポアの平均細孔直径よりも大きくしたことを特徴とす
る。
The electric double layer capacitor of the present invention comprises an activated carbon having macropores distributed in a region having a pore diameter of about 0.1 μm or more and micropores distributed in a region smaller than 0.1 μm. In an electric double layer capacitor including two positive and negative polarizable electrodes including, and an electrolytic solution forming an electric double layer at an interface with each of the two polarizable electrodes, an average pore of macropores in the positive electrode side polarizable electrode. The diameter is larger than the average pore diameter of the macropores in the negative electrode side polarizable electrode.

【0018】上記の電気二重層コンデンサは、前記正負
二つの固形状分極性電極をそれぞれ形成する工程を含む
電気二重層コンデンサの製造方法において、前記分極性
電極形成工程を、活性炭粉末或いは活性炭樹脂と粒状或
いは粉末状フェノール系樹脂と粒状或いは粉末状のアク
リル樹脂の混合物を加熱圧縮して所定形状に成形する工
程と、得られた成形体を非酸化性雰囲気中で熱硬化せし
める工程とで構成し、正極側分極性電極形成用の混合物
における前記アクリル樹脂の粒径及び、負極側分極性電
極形成用の混合物における前記アクリル樹脂の粒径を適
宜選択することにより、前記正極側分極性電極における
マクロポアの平均細孔直径と、前記負極側分極性電極に
おけるマクロポアの平均細孔直径をそれぞれ所望の値に
調整するようにしたことを特徴とする製造方法によって
製造される。
In the electric double layer capacitor, in the method of manufacturing an electric double layer capacitor including the steps of forming the positive and negative two solid polarizable electrodes respectively, the polarizable electrode forming step is performed with activated carbon powder or activated carbon resin. It comprises a step of heating and compressing a mixture of a granular or powdery phenolic resin and a granular or powdery acrylic resin into a predetermined shape, and a step of thermally curing the obtained molded body in a non-oxidizing atmosphere. By appropriately selecting the particle size of the acrylic resin in the mixture for forming the positive electrode side polarizable electrode and the particle size of the acrylic resin in the mixture for forming the negative electrode side polarizable electrode, macropores in the positive electrode side polarizable electrode can be obtained. And the average pore diameter of the macropores in the polarizable electrode on the negative electrode side are adjusted to desired values. Manufactured by the manufacturing method characterized by.

【0019】[0019]

【作用】電気二重層コンデンサの充・放電特性は、イオ
ン速度の遅い方の極で決定されている。そこで、イオン
速度の遅い方の極のマクロポアサイズを大きくしてそこ
でのイオン速度を上昇させ、両方の極でのイオン速度を
同等にすることが、充・放電特性の改善に有効である。
本発明では、移動速度の遅い陰イオンが電気二重層を形
成する正極側分極性電極のマクロポアサイズを、負極側
分極性電極のマクロポアサイズよりも、大きくしてい
る。
The charge / discharge characteristics of the electric double layer capacitor are determined by the pole having the slower ion velocity. Therefore, it is effective to improve the charge / discharge characteristics by increasing the macropore size of the pole having the slower ion velocity to increase the ion velocity there and making the ion velocity at both poles equal.
In the present invention, the macropore size of the positive electrode side polarizable electrode forming the electric double layer by the anion having a slow moving speed is made larger than the macropore size of the negative electrode side polarizable electrode.

【0020】[0020]

【実施例】次に、本発明の好適な実施例について、図面
を参照して説明する。本発明の実施例として、図5に示
す構造を持ち、正極側分極性電極1Aのマクロポアサイ
ズが、負極側分極性電極1Bのマクロポアよりも大きい
電気二重層コンデンサを作成し、これを6個積層して積
層型電気二重層コンデンサとした。一方、比較用とし
て、同じ積層構造ではあるが、正極側と負極側とでマク
ロポアサイズが同一の電気二重層コンデンサ及び、正極
側マクロポアサイズの方が負極側マクロポアサイズより
小さい電気二重層コンデンサを作成した。各コンデンサ
の製造工程は、下記のとおりである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the present invention will be described with reference to the drawings. As an example of the present invention, an electric double layer capacitor having the structure shown in FIG. 5, in which the macropore size of the positive electrode side polarizable electrode 1A is larger than the macropore of the negative electrode side polarizable electrode 1B, is prepared and six of these are laminated. Thus, a laminated electric double layer capacitor was obtained. On the other hand, for comparison, an electric double layer capacitor having the same laminated structure but having the same macropore size on the positive electrode side and the negative electrode side, and an electric double layer capacitor having the positive electrode side macropore size smaller than the negative electrode side macropore size were prepared. did. The manufacturing process of each capacitor is as follows.

【0021】フェノールを原料とし比表面積1500m
2 /gを有する粉末状活性炭と、粉末状フェノール系樹
脂とを重量比で7:3の割合で混合した。この混合粉末
にアクリル樹脂(PMMA;polymethyl m
ethacrylate:ポリメタクリル酸メチル)
を、重量比で8:2の割合で添加し混合粉末を得た。P
MMAは、窒素雰囲気中で熱処理すると分解して、オー
プンポア(内部から外部に通じる細孔)を形成するとい
う特徴がある。上記の混合粉末を150℃前後に加圧・
加熱して、コンプレッション成形により平板に成形した
後、窒素雰囲気で熱処理を行った。熱処理条件は、温度
900℃、時間2hである。
Using phenol as a raw material, specific surface area 1500 m
Powdered activated carbon having 2 / g and powdered phenolic resin were mixed at a weight ratio of 7: 3. Acrylic resin (PMMA; polymethyl m)
Ethacrylate: poly (methyl methacrylate)
Was added at a weight ratio of 8: 2 to obtain a mixed powder. P
MMA is characterized in that it decomposes when heat-treated in a nitrogen atmosphere to form open pores (pores communicating from the inside to the outside). Pressurize the above mixed powder to around 150 ° C
After heating and molding into a flat plate by compression molding, heat treatment was performed in a nitrogen atmosphere. The heat treatment conditions are a temperature of 900 ° C. and a time of 2 hours.

【0022】PMMA樹脂の平均粒径を5、10、2
0、30μmと振って、6水準の分極性電極を作成し
た。それらの分極性電極を水銀圧入法で測定し0.1μ
m以上で平均細孔直径を求めたところ、それぞれ、0.
4、0.5、0.7、0.8μmにシャープなピークを
持つ分布を示した。又、比表面積はBET法で測定した
結果、1100〜1200m2 /gであった。このよう
にして、マクロポアサイズは異るが、比表面積は殆ど同
一である分極性電極を合成した。
The average particle size of PMMA resin is 5, 10, 2
By shaking at 0 and 30 μm, 6 levels of polarizable electrodes were prepared. 0.1 μ for those polarizable electrodes measured by mercury porosimetry
When the average pore diameter was calculated at m or more, it was 0.
A distribution having sharp peaks at 4, 0.5, 0.7 and 0.8 μm was shown. The specific surface area was 1100 to 1200 m 2 / g as a result of measurement by the BET method. In this way, polarizable electrodes having different macropore sizes but almost the same specific surface area were synthesized.

【0023】上述のようにして得られた分極性電極から
任意に2つを選び、それぞれ分極性電極1A,1Bとす
ることにより、図5に示す構造の電気二重層コンデンサ
における正極側マクロポアサイズと負極側マクロポアサ
イズの組合せを変えた。正極側電極1Aと集電体2A、
負極側電極1Bと集電体2Bとを圧着した。集電体2
A,2Bには、厚さが200μmの導電性ブチルゴムを
使用した。これらを厚さ600μmのガラス繊維抄造体
製のセパレータ3を挟んで積み重ね、プラスチック製の
ガスケット4内に配置し、ガスケット4と、上蓋、底板
としての集電体2A,2Bとをそれぞれエポキシ樹脂で
接着した。電解液には30wt%の硫酸溶液を用い、ガ
スケット4側面に設けた注入孔(図示せず)から注入
し、超音波融着により孔に栓をし封止して、積層の単位
となる電気二重層コンデンサを作成した。この単位の電
気二重層コンデンサを6個上下に積み重ね、最上部と最
下部の集電体に端子板を取り付けた。次いで、緩衝用絶
縁性板材を宛がい、圧力を均一にするための加圧板を介
してボルト締めにより上下から圧力を加えると共に一体
化して、公称耐電圧5.5Vの積層型電気二重層コンデ
ンサを得、これを試料としてそれぞれの静電容量、充電
特性、放電特性を測定した。
Two polarizable electrodes are arbitrarily selected from the polarizable electrodes obtained as described above to form polarizable electrodes 1A and 1B, respectively, so that the positive electrode side macropore size in the electric double layer capacitor having the structure shown in FIG. The combination of the macropore size on the negative electrode side was changed. Positive electrode 1A and current collector 2A,
The negative electrode 1B and the current collector 2B were pressure-bonded. Current collector 2
A conductive butyl rubber having a thickness of 200 μm was used for A and 2B. These are stacked with a separator 3 made of a glass fiber paper body having a thickness of 600 μm sandwiched therebetween and placed in a plastic gasket 4, and the gasket 4 and current collectors 2A and 2B as a top plate and a bottom plate are made of epoxy resin. Glued A 30 wt% sulfuric acid solution was used as the electrolytic solution, and it was injected from an injection hole (not shown) provided on the side surface of the gasket 4, and the hole was plugged and sealed by ultrasonic welding to form an electrical unit serving as a lamination unit. A double layer capacitor was created. Six electric double layer capacitors of this unit were vertically stacked, and terminal plates were attached to the top and bottom current collectors. Next, a buffer insulating plate is applied, and pressure is applied from above and below by bolting through a pressure plate for equalizing the pressure, and they are integrated to form a laminated electric double layer capacitor having a nominal withstand voltage of 5.5V. Then, using this as a sample, the capacitance, charge characteristics, and discharge characteristics were measured.

【0024】各試料の負極側マクロポアサイズ、正極側
マクロポアサイズ、静電容量、充電特性および放電特性
を、表1に示す。
Table 1 shows the negative electrode side macropore size, the positive electrode side macropore size, the electrostatic capacity, the charge characteristic and the discharge characteristic of each sample.

【0025】[0025]

【表1】 [Table 1]

【0026】表1において、試料番号Aが、正極側マク
ロポアサイズと負極側マクロポアサイズが同一な、従来
の構造のコンデンサである。試料番号B〜Gが、図1に
その構造を模式的に示すように、正極側分極性電極1A
のマクロポアサイズDp の方が負極側分極性電極1Bの
マクロポアサイズDn よりも大きい構造の、本発明の実
施例のコンデンサである。試料番号H〜Nは、負極側マ
クロポアサイズの方を大きくした、比較用のコンデンサ
である。
In Table 1, sample number A is a capacitor having a conventional structure in which the positive side macropore size and the negative side macropore size are the same. Sample Nos. BG have positive polarizable electrodes 1A, as shown in FIG.
Towards the macropore size D p is greater structural than macropore size D n of the negative electrode side polarizable electrode 1B of a capacitor embodiment of the present invention. Sample numbers H to N are capacitors for comparison in which the negative side macropore size is larger.

【0027】静電容量C0.1 は、コンデンサを5.0V
で1h充電した後、電流I=100mAで定電流放電さ
せ、端子電圧が3.0Vから2.5Vに低下する(△
V)のに要した時間△tから、C0.1 =(I・△t)/
△Vにより求めた。前出の論文にもあるように、電気二
重層コンデンサでは、放電初期にESRによる電圧降下
(IRドロップ)が起る。この影響を取り除くため、静
電容量の計算は、電圧が初期電圧の60%から50%に
低下するのに要した時間から求めるのが、一般的であ
る。
The electrostatic capacity C 0.1 is 5.0V for the capacitor.
After charging the battery for 1 h at constant current, discharge the battery with a constant current of I = 100 mA, and the terminal voltage drops from 3.0 V to 2.5 V (△
From the time Δt required for V), C 0.1 = (I · Δt) /
It was determined by ΔV. As described in the above-mentioned paper, in an electric double layer capacitor, a voltage drop (IR drop) occurs due to ESR at the initial stage of discharge. In order to eliminate this effect, the capacitance is generally calculated from the time required for the voltage to drop from 60% to 50% of the initial voltage.

【0028】充電特性tCHG は、放電させておいたコン
デンサに一定電圧5.0Vを連続印加し、そのときの充
電電流が10mAに減少する迄に要した時間である。電
気二重層コンデンサでは、充電が進行して行くのに伴っ
て、充電電流が漸次減少して行く。従って、上述の時間
CHG はこれが小さいほど、急速充電性が良いことを示
す。
The charging characteristic t CHG is the time required until a constant voltage of 5.0 V is continuously applied to the discharged capacitor and the charging current at that time is reduced to 10 mA. In the electric double layer capacitor, the charging current gradually decreases as the charging proceeds. Therefore, the smaller the above-mentioned time t CHG , the better the rapid charging property.

【0029】放電特性△Cは、静電容量C0.1 を求めた
ときと同様にして、10Aの大電流放電を行ったときの
静電容量C10を求め、100mAでの小電流放電時の静
電容量C0.1 からの変化(C10−C0.1 )をC0.1 で規
格化し百分率で表したものである。すなわち、△C=
{(C10−C0.1 )/C0.1 }×100である。
The discharge characteristic ΔC is the same as when the electrostatic capacitance C 0.1 is calculated, and the electrostatic capacitance C 10 is calculated when a large current discharge of 10 A is performed. change from capacitance C 0.1 a (C 10 -C 0.1) is obtained expressed in percentage normalized by C 0.1. That is, ΔC =
{(C 10 -C 0.1) / C 0.1} is a × 100.

【0030】前述したように、電気二重層コンデンサの
放電時には、正極側マクロポアに起因する抵抗により見
掛け上の静電容量が低下し、放電時の電圧降下が実際以
上に大きくなる。この放電時の見掛けの静電容量の減
少、電圧降下は、正極側マクロポアでの電圧降下が大き
いほど、つまり放電電流が大きく正極側マクロポアの抵
抗が大きいほど、激しい。従って、放電電流の条件を一
定にしておいて、大電流放電での静電容量の減少程度を
コンデンサどうしで比較すれば、各コンデンサの正極側
マクロポアの抵抗の大小を比較できる。上記の△C、す
なわち大電流放電時の静電容量の減少程度は、絶対値が
小さい方が、正極側マクロポアの抵抗が小さく、放電特
性が良好であることを示す。尚、表1からも分るよう
に、マクロポアサイズを変化させると、小電流放電時の
静電容量C0.1 も変化する傾向があるので、コンデンサ
どうしで比較する場合には、大電流放電時の静電容量の
絶対値ではなく、小電流放電時の静電容量で規格化して
比較する必要がある。
As described above, when the electric double layer capacitor is discharged, the apparent capacitance is reduced due to the resistance caused by the macropores on the positive electrode side, and the voltage drop at the time of discharge becomes larger than it actually is. The apparent decrease in electrostatic capacitance and voltage drop during discharge become more severe as the voltage drop in the positive side macropores increases, that is, the discharge current increases and the resistance of the positive side macropores increases. Therefore, by keeping the discharge current condition constant and comparing the reduction degree of the electrostatic capacitance in the large current discharge between the capacitors, it is possible to compare the magnitude of the resistance of the positive side macropores of the respective capacitors. Regarding the above ΔC, that is, the degree of decrease in electrostatic capacity at the time of discharging a large current, the smaller the absolute value, the smaller the resistance of the macropores on the positive electrode side and the better the discharge characteristics. As can be seen from Table 1, when the macropore size is changed, the electrostatic capacitance C 0.1 at the time of small current discharge also tends to change. Therefore, when comparing the capacitors, It is necessary to standardize and compare not the absolute value of the electrostatic capacity but the electrostatic capacity at the time of small current discharge.

【0031】表1に示す結果をグラフ化して、図2〜4
に示す。表1及び図2を参照すると、充電特性t
CHG は、負極側マクロポアサイズDn が0.4、0.
5.0.7、0.8μmのいずれの場合にも、正極側マ
クロポアサイズDp が大きくなるに従って、つまりDp
/Dn が大きくなるに従って、tCHG が小さくなり、急
速充電性が向上して行く。特に、Dp /Dn >1.0の
領域で充電特性の改善効果が顕著である。一方、Dp
n の値を固定した場合には、負極側クロポアサイズが
大きい方がtCHG が小さい。このことから、急速充電性
を向上させるためには、負極側マクロポアサイズDn
大きくすると共に、正極側マクロポアサイズDpを負極
側マクロポアサイズDn より大きくすると効果的である
といえる。
The results shown in Table 1 are made into a graph and shown in FIGS.
Shown in Referring to Table 1 and FIG. 2, the charging characteristic t
CHG has a negative side macropore size D n of 0.4, 0.
5. In both cases of 0.7 and 0.8 μm, as the positive electrode side macropore size D p increases, that is, D p
As / D n increases, t CHG decreases, and the rapid chargeability improves. In particular, the effect of improving the charging characteristics is remarkable in the region of D p / D n > 1.0. On the other hand, D p /
When the value of D n is fixed, the larger the negative side cropore size, the smaller t CHG . From this, it can be said that it is effective to increase the negative electrode side macropore size D n and to make the positive electrode side macropore size D p larger than the negative electrode side macropore size D n in order to improve the rapid chargeability.

【0032】次に、図3を参照すると、放電特性△Cも
充電特性tCHG におけると同様の傾向を示す。すなわ
ち、負極側マクロポアサイズDn の大小に拘らず、Dp
/Dnが大きくなって行くに従って△Cの絶対値が小さ
くなり、放電特性が向上して行く。Dp /Dn を固定し
た場合には、負極側マクロポアサイズDn が大きいほど
△Cが小さく、放電特性が良好である。
Next, referring to FIG. 3, the discharge characteristic ΔC shows the same tendency as in the charge characteristic t CHG . That is, regardless of the size of the negative side macropore size D n , D p
As / D n increases, the absolute value of ΔC decreases, and the discharge characteristics improve. When D p / D n is fixed, the larger the negative electrode side macropore size D n , the smaller ΔC and the better discharge characteristics.

【0033】上述の結果から、負極側マクロポアサイズ
n をできる限り大きくし、正極側マクロポアサイズD
p 対負極側マクロポアサイズDn の比DP /Dn を1.
0以上にすると、急速充電性と放電時の電圧維持性とを
同時に向上させることができる。
From the above-mentioned results, the macropore size D n on the negative electrode side was made as large as possible, and the macropore size D on the positive electrode side was set.
p to the ratio D P / D n of the negative electrode side macropore size D n 1.
When it is 0 or more, the rapid charging property and the voltage maintaining property during discharging can be improved at the same time.

【0034】しかしながら、図4に示す静電容量特性を
見ると、Dp /Dn のいずれの領域でも、負極側マクロ
ポアサイズDn が大きい方が静電容量が低い。しかもD
p /Dn の値が大きくなるに従って、静電容量が減少し
て行く。この静電容量の減少は、マクロポアサイズが大
きくなることによる分極性電極の嵩密度の減少に伴って
生じるものであるが、負極側マクロポアサイズDn
0.8μmのときに特に著しい。一方、Dn が0.7μ
m以下の場合は、Dp /Dn の増加に伴う静電容量の低
下は小さい。
However, looking at the capacitance characteristics shown in FIG. 4, the capacitance is lower as the negative electrode side macropore size D n is larger in any region of D p / D n . Moreover, D
The capacitance decreases as the value of p / D n increases. This decrease in capacitance is accompanied by a decrease in the bulk density of the polarizable electrode due to an increase in macropore size, and is particularly remarkable when the negative electrode side macropore size D n is 0.8 μm. On the other hand, D n is 0.7μ
When it is m or less, the decrease in capacitance with the increase of D p / D n is small.

【0035】以上のことから、負極側マクロポアサイズ
をなるべく小さくして、正極側マクロポアサイズ大きく
することにより、静電容量を損うことなく、急速充電性
と大電流放電時の電圧維持性とを、従来の電気二重層コ
ンデンサよりも向上させることができることが分る。特
に、正極側マクロポアサイズを負極側マクロポアサイズ
よりも大きくすると、その効果は顕著であり、実施例に
ついていえば、負極側マクロポアサイズDn を大きくて
も0.7μm以下とし、Dp /Dn >1.0とすると、
好結果が得られる。
From the above, by making the macropore size on the negative electrode side as small as possible and making the macropore size on the positive electrode side as large as possible, rapid chargeability and voltage maintainability at the time of large current discharge can be obtained without impairing the electrostatic capacity. It can be seen that it can be improved over the conventional electric double layer capacitor. In particular, when the positive electrode side macropore size is made larger than the negative electrode side macropore size, the effect is remarkable. In the example, the negative electrode side macropore size D n is 0.7 μm or less at most, and D p / D n > 1.0,
Good results are obtained.

【0036】ところで、電気抵抗が等しいということ
は、イオンが通過する断面の面積の比と導電率の比とが
等しいということに他ならない。導電率の比は、イオン
の移動度と価数の積のの比に等しい。従って、正極側マ
クロポアサイズ、負極側ポアサイズ、陰イオンの移動度
および価数、陽イオンの移動度および価数をそれぞれ、
p ,Dn ,μn ,Nn ,μp ,Np としたとき、 (Dp /Dn 2 =(μp ・Np )/(μn ・Nn ) となるように、マクロポアサイズを決めることが、良好
な充,放電特性を得る上で望ましいといえる。
By the way, the fact that the electric resistances are equal means that the ratio of the area of the cross section through which the ions pass and the ratio of the electric conductivity are equal. The ratio of conductivity is equal to the ratio of the product of ion mobility and valence. Therefore, positive electrode side macropore size, negative electrode side pore size, anion mobility and valence, cation mobility and valence, respectively,
When D p , D n , μ n , N n , μ p , and N p are set, (D p / D n ) 2 = (μ p · N p ) / (μ n · N n ), It can be said that determining the macropore size is desirable for obtaining good charge and discharge characteristics.

【0037】尚、前述したように、本発明における作
用、効果は、分極性電極がマクロポアとミクロポアとを
有することに基づいて得られるものである。従って、上
述の実施例ではいずれの試料も、分極性電極1A,1B
として、粉末状活性炭とフェノール樹脂とPMMAとを
出発材料とする活性炭/炭素複合体からなる固形状電極
を用いたが、出発材料中の活性炭は粉末状のものに限ら
れるものではない。前述の第1の公報に記載されている
ように、繊維状の活性炭であっても構わない。更にはマ
クロポアとミクロポアとを持つのものであれば、例えば
粉末状活性炭と電解液とを混練させたペースト状分極性
電極のような、他の状態の分極性電極を用いた電気二重
層コンデンサであっても、本発明による作用、効果が現
れる。
As described above, the action and effect of the present invention are obtained based on the polarizable electrode having macropores and micropores. Therefore, in each of the above-described examples, the polarizable electrodes 1A and 1B are used as samples.
As the solid electrode made of activated carbon / carbon composite having powdered activated carbon, phenol resin and PMMA as starting materials was used as the starting material, the activated carbon in the starting material is not limited to powdered one. As described in the above-mentioned first publication, fibrous activated carbon may be used. Further, as long as it has macropores and micropores, it is an electric double layer capacitor using a polarizable electrode in another state, such as a pasty polarizable electrode prepared by kneading powdered activated carbon and an electrolytic solution. Even if there is, the action and effect of the present invention appear.

【0038】[0038]

【発明の効果】以上説明したように、本発明は、移動速
度の遅い陰イオンが電気二重層を形成する正極側分極性
電極のマクロポアサイズを、負極側分極性電極のマクロ
ポアサイズよりも大きくし、正極側と負極側のマクロポ
アイオンの移動に伴うにおける抵抗が同等になるように
している。これにより本発明によれば、急速充電が可能
で、大電流放電時の電圧降下の小さい、充放電特性に優
れた電気二重層コンデンサを提供できる。
As described above, according to the present invention, the macropore size of the positive electrode side polarizable electrode in which anion having a slow moving speed forms the electric double layer is made larger than that of the negative electrode side polarizable electrode. The resistances associated with the movement of the macropore ions on the positive electrode side and the negative electrode side are made equal. As a result, according to the present invention, it is possible to provide an electric double layer capacitor which can be rapidly charged, has a small voltage drop at the time of discharging a large current, and has excellent charge / discharge characteristics.

【0039】又、本発明は、粉末活性炭と成形用樹脂と
粉末状のオープンポア形成用樹脂とを混合した粉末を板
状に成形する工程と、成形して得た板状成形体を窒素雰
囲気中で熱処理する工程とを含み、オープンポア形成用
樹脂の粒径を適宜選択することにより、分極性電極のマ
クロポアサイズを調整するようにしている。これにより
本発明によれば、マクロポアサイズを容易に調整するこ
とができる。
The present invention also includes a step of molding a powder obtained by mixing powdered activated carbon, a molding resin and a powdery open pore forming resin into a plate shape, and a plate-shaped molded body obtained by the molding in a nitrogen atmosphere. In this case, the macropore size of the polarizable electrode is adjusted by appropriately selecting the particle size of the open pore forming resin. Therefore, according to the present invention, the macropore size can be easily adjusted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電気二重層コンデンサの断面構造
を模式的に示す図である。
FIG. 1 is a diagram schematically showing a cross-sectional structure of an electric double layer capacitor according to the present invention.

【図2】本発明による電気二重層コンデンサ、従来の電
気二重層コンデンサ及び比較用の電気二重層コンデンサ
の充電特性を示す図である。
FIG. 2 is a diagram showing charging characteristics of an electric double layer capacitor according to the present invention, a conventional electric double layer capacitor and a comparative electric double layer capacitor.

【図3】本発明による電気二重層コンデンサ、従来の電
気二重層コンデンサ及び比較用の電気二重層コンデンサ
の放電特性を示す図である。
FIG. 3 is a diagram showing discharge characteristics of an electric double layer capacitor according to the present invention, a conventional electric double layer capacitor and a comparative electric double layer capacitor.

【図4】本発明による電気二重層コンデンサ、従来の電
気二重層コンデンサ及び比較用の電気二重層コンデンサ
の静電容量特性を示す図である。
FIG. 4 is a diagram showing capacitance characteristics of an electric double layer capacitor according to the present invention, a conventional electric double layer capacitor, and a comparative electric double layer capacitor.

【図5】電気二重層コンデンサの一例の断面図である。FIG. 5 is a cross-sectional view of an example of an electric double layer capacitor.

【図6】従来の電気二重層コンデンサにおける充電時の
状態および放電時の状態を模式的に示す断面図である。
FIG. 6 is a cross-sectional view schematically showing a state during charging and a state during discharging in a conventional electric double layer capacitor.

【図7】従来の電気二重層コンデンサの等価回路図であ
る。
FIG. 7 is an equivalent circuit diagram of a conventional electric double layer capacitor.

【符号の説明】[Explanation of symbols]

1A,1B 分極性電極 2A,2B 集電体 3 セパレータ 4 ガスケット 1A, 1B Polarizing electrodes 2A, 2B Current collector 3 Separator 4 Gasket

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 細孔直径がほぼ0.1μm以上の領域に
分布するマクロポアと0.1μmより小なる領域に分布
するミクロポアとを有する活性炭を含む正負二つの分極
性電極と、前記二つの分極性電極のそれぞれとの界面で
電気二重層を形成する電解液とを含む電気二重層コンデ
ンサにおいて、 前記正極側分極性電極におけるマクロポアの平均細孔直
径を、前記負極側分極性電極におけるマクロポアの平均
細孔直径よりも大きくしたことを特徴とする電気二重層
コンデンサ。
1. A positive and negative polarizable electrode containing activated carbon having macropores distributed in a region having a pore diameter of approximately 0.1 μm or more and micropores distributed in a region having a pore diameter smaller than 0.1 μm; In an electric double layer capacitor including an electrolytic solution that forms an electric double layer at the interface with each of the polar electrodes, the average pore diameter of the macropores in the positive electrode side polarizable electrode is the average of the macropores in the negative electrode side polarizable electrode. An electric double layer capacitor characterized by being made larger than the pore diameter.
【請求項2】 請求項1記載の電気二重層コンデンサに
おいて、 前記電解液中の陽イオンの移動度及び価数をそれぞれμ
p ,Np 、陰イオンの移動度及び価数をそれぞれμn
n 、前記正極側分極性電極のマクロポアの平均細孔直
径及び前記負極側分極性電極のマクロポアの平均細孔直
径をDp ,Dnとするとき、(Dp /Dn 2 =(μp
・Np )/(μn ・Nn )となるようにしたことを特徴
とする電気二重層コンデンサ。
2. The electric double layer capacitor according to claim 1, wherein the mobility and valence of cations in the electrolytic solution are each μ.
p , N p , anion mobility and valence are μ n ,
When N n is the average pore diameter of the macropores of the positive electrode side polarizable electrode and the average pore diameter of the macropores of the negative electrode side polarizable electrode is D p , D n , (D p / D n ) 2 = ( μ p
・ N p ) / (μ n · N n ).
【請求項3】 請求項1記載の電気二重層コンデンサに
おいて、 前記分極性電極が、活性炭と炭素とからなる固形状複合
体であることを特徴とする電気二重層コンデンサ。
3. The electric double layer capacitor according to claim 1, wherein the polarizable electrode is a solid composite of activated carbon and carbon.
【請求項4】 請求項3記載の電気二重層コンデンサを
製造する方法であって、前記正負二つの固形状分極性電
極をそれぞれ形成する工程を含む電気二重層コンデンサ
の製造方法において、 前記分極性電極形成工程を、活性炭粉末或いは活性炭樹
脂と粒状或いは粉末状フェノール系樹脂と粒状或いは粉
末状のアクリル樹脂の混合物を加熱圧縮して所定形状に
成形する工程と、得られた成形体を非酸化性雰囲気中で
熱硬化せしめる工程とで構成し、 正極側分極性電極形成用の混合物における前記アクリル
樹脂の粒径及び、負極側分極性電極形成用の混合物にお
ける前記アクリル樹脂の粒径を適宜選択することによ
り、前記正極側分極性電極におけるマクロポアの平均細
孔直径と、前記負極側分極性電極におけるマクロポアの
平均細孔直径をそれぞれ所望の値に調整するようにした
ことを特徴とする電気二重層コンデンサの製造方法。
4. The method of manufacturing an electric double layer capacitor according to claim 3, wherein the method comprises the steps of forming the positive and negative two solid state polarizable electrodes, respectively. The electrode forming step is a step of heating and compressing a mixture of activated carbon powder or activated carbon resin, granular or powdery phenolic resin and granular or powdery acrylic resin into a predetermined shape, and non-oxidizing the obtained molded body. And a particle size of the acrylic resin in the mixture for forming the positive electrode side polarizable electrode and the particle size of the acrylic resin in the mixture for forming the negative electrode side polarizable electrode are appropriately selected. The average pore diameter of the macropores in the positive electrode side polarizable electrode and the average pore diameter of the macropores in the negative electrode side polarizable electrode Method for producing an electric double layer capacitor is characterized in that so as to adjust to a desired value is.
JP6294846A 1994-11-29 1994-11-29 Electric double layer capacitor and method of manufacturing the same Expired - Fee Related JP2677214B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6294846A JP2677214B2 (en) 1994-11-29 1994-11-29 Electric double layer capacitor and method of manufacturing the same
KR1019950044993A KR100224142B1 (en) 1994-11-29 1995-11-29 Eletrical double layer capacitor and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6294846A JP2677214B2 (en) 1994-11-29 1994-11-29 Electric double layer capacitor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08153653A true JPH08153653A (en) 1996-06-11
JP2677214B2 JP2677214B2 (en) 1997-11-17

Family

ID=17813017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6294846A Expired - Fee Related JP2677214B2 (en) 1994-11-29 1994-11-29 Electric double layer capacitor and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP2677214B2 (en)
KR (1) KR100224142B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028547A1 (en) * 1996-02-02 1997-08-07 Takeda Chemical Industries, Ltd. Activated carbon electrode and process for producing the same
JP2007048970A (en) * 2005-08-10 2007-02-22 Sekisui Chem Co Ltd Manufacturing method of electrode for electric double layer capacitor and of separator for electric double layer capacitor
JP2021086696A (en) * 2019-11-27 2021-06-03 アイオン株式会社 Electrode for power storage device and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028547A1 (en) * 1996-02-02 1997-08-07 Takeda Chemical Industries, Ltd. Activated carbon electrode and process for producing the same
JP2007048970A (en) * 2005-08-10 2007-02-22 Sekisui Chem Co Ltd Manufacturing method of electrode for electric double layer capacitor and of separator for electric double layer capacitor
JP2021086696A (en) * 2019-11-27 2021-06-03 アイオン株式会社 Electrode for power storage device and manufacturing method thereof

Also Published As

Publication number Publication date
KR960019356A (en) 1996-06-17
JP2677214B2 (en) 1997-11-17
KR100224142B1 (en) 1999-10-15

Similar Documents

Publication Publication Date Title
KR0143178B1 (en) Polarizanble electrode
Yoshida et al. Electric double-layer capacitors with sheet-type polarizable electrodes and application of the capacitors
JP2002231585A (en) Electric double-layered capacitor
JP2677214B2 (en) Electric double layer capacitor and method of manufacturing the same
JPS63187614A (en) Electric double-layer capacitor
JPH1111921A (en) Solid activated carbon
JP3602933B2 (en) Activated carbon substrate
JP3652061B2 (en) Electric double layer capacitor
KR102013173B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
JP2778425B2 (en) Polarizing electrode, method of manufacturing the same, and electric double layer capacitor using the same
JPH1197295A (en) Electric double layer capacitor, its manufacture, electrode, and separator
JP4518223B2 (en) Polarizable electrode for electric double layer capacitor and manufacturing method thereof
JPH07240348A (en) Electrical double layer capacitor
JPH0697003A (en) Electrode body, its manufacture and electronic double layer capacitor
JPH0362296B2 (en)
JPH05251271A (en) Electric double-layer capacitor
JP2002222741A (en) Method of manufacturing polarizable electrode for electric double layer capacitor and electric double layer capacitor using the same
JPH1197306A (en) Electric double layer capacitor, electrode material, electrode, and its manufacture
JPH11121295A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor
JP2005216881A (en) Electric double layer capacitor and its manufacturing method
JP2002008954A (en) Electric double-layer capacitor, carbon electrode and method of manufacturing the same
JPH03116708A (en) Electric double-layer capacitor
JPS63232308A (en) Electric double-layer capacitor
JP3801802B2 (en) Electric double layer capacitor and manufacturing method thereof
JPH07135127A (en) Electric double layer capacitor and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970624

LAPS Cancellation because of no payment of annual fees