JPH0815333A - Magnetic field sensor - Google Patents

Magnetic field sensor

Info

Publication number
JPH0815333A
JPH0815333A JP6169958A JP16995894A JPH0815333A JP H0815333 A JPH0815333 A JP H0815333A JP 6169958 A JP6169958 A JP 6169958A JP 16995894 A JP16995894 A JP 16995894A JP H0815333 A JPH0815333 A JP H0815333A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
wavelength
field sensor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6169958A
Other languages
Japanese (ja)
Inventor
Tadahiko Horiguchi
忠彦 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP6169958A priority Critical patent/JPH0815333A/en
Publication of JPH0815333A publication Critical patent/JPH0815333A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Locating Faults (AREA)

Abstract

PURPOSE:To use a plastic fiber as an optical fiber by employing a magnetooptic element comprising a magnetic film, obtained by mixing an organic compound with Bi magnetic garnet powder, as a component thereby employing a light source of specific wavelength region. CONSTITUTION:Since a film of Bi based garnet having such composition as X>=2/3 in the formula (BixR1-x)3Fe5O12 (R represents at least one kind of rare earth element including Y and 0<X<=1), a light source having wavelength of 0.8mum or above can be used. A Bi garnet film of Bi3Fe5O12 for X=1 exhibits high transmittance of light having wavelength in the range of 0.79+ or -0.1mum. When the site on a crystal lattice occupied by Bi is substituted by a rare earth element including Y, the wavelength range exhibiting high transmittance is shifted in the direction of longer wavelength. When such magnetic film is employed in a magnetooptic element, the optical fiber for a magnetic sensor can be selected over a wide range and an inexpensive magnetic sensor can be obtained using a plastic fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、送電線の電流変化を磁
界変化として検知し、地絡点を検出する磁界センサに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic field sensor which detects a current change in a transmission line as a magnetic field change and detects a ground fault.

【0002】[0002]

【従来の技術】最近、電力系統の電流計測に、絶縁性の
優れた光ファイバー磁界センサの応用が注目を集めてい
る。特に、送電線の地絡故障(樹木などの接触や電線切
断)地点の検出に、このセンサの応用が検討されてい
る。地絡時には、三相交流の電圧および電流の和である
零相電圧、零相電流が発生する。電柱数本おきに電流セ
ンサ、電圧センサを設置し、その零相電流の位相差を検
出することにより、地絡点を特定できる。
2. Description of the Related Art Recently, the application of an optical fiber magnetic field sensor having an excellent insulating property has been attracting attention for measuring current in a power system. In particular, the application of this sensor is being investigated for detecting the ground fault of a power transmission line (contact with a tree or cutting of an electric wire). At the time of a ground fault, a zero-phase voltage and a zero-phase current, which are the sum of the voltage and current of the three-phase alternating current, are generated. A ground fault point can be specified by installing a current sensor and a voltage sensor for every several utility poles and detecting the phase difference of the zero-phase current.

【0003】従来、零相電流を検出する方法としては、
図1に示すように、送電線13の周囲にコア11を配設
した磁気センサ12をはさめ、電線により、その信号を
伝送するものが用いられていた。しかし、この方法で
は、コアが万一電線に接触した時、事故となる。そこ
で、信号伝送のために絶縁体である光ファイバーを用い
る方法が検討され始めた。
Conventionally, as a method for detecting a zero-phase current,
As shown in FIG. 1, a magnetic sensor 12 in which a core 11 is arranged around a power transmission line 13 is inserted and an electric wire transmits the signal. However, with this method, if the core should come into contact with the electric wire, an accident will occur. Then, the method of using an optical fiber as an insulator for signal transmission has begun to be studied.

【0004】このタイプの磁界センサの構成は、図2
(a)および図2(b)に示すように、光源1と、電線
に流れる電流がつくる磁界を感受する位置に設けた磁気
光学素子3と、磁気光学素子の前後の偏光素子2,4
と、光ファイバー5とからなる。磁気光学素子3を通っ
てきた光は、光ファイバー5によって、受光素子7、光
受信機および信号処理からなる計測装置に伝送される。
The structure of this type of magnetic field sensor is shown in FIG.
As shown in FIGS. 2A and 2B, the light source 1, the magneto-optical element 3 provided at a position where the magnetic field generated by the current flowing through the electric wire is sensed, and the polarizing elements 2 and 4 before and after the magneto-optical element.
And an optical fiber 5. The light that has passed through the magneto-optical element 3 is transmitted by an optical fiber 5 to a measuring device including a light receiving element 7, an optical receiver and signal processing.

【0005】[0005]

【発明が解決しようとする課題】光ファイバーを用いた
磁界センサは、YIGガーネット系単結晶膜を磁気光学
素子としたものが主流となっている。しかし、陽イオン
がY,FeのみからなるYIGガーネット磁性膜を用い
た磁気光学素子では、ファラデー回転係数が小さいた
め、必要とする偏光面の回転角度を得るためには磁性膜
を厚くしなければならない。しかし、磁性膜を厚くする
と、光の強度を大きくしなければならないことから、フ
ァラデー回転係数の大きな磁性膜が求められていた。
A magnetic field sensor using an optical fiber is mainly composed of a YIG garnet type single crystal film as a magneto-optical element. However, since the Faraday rotation coefficient is small in the magneto-optical element using the YIG garnet magnetic film in which the cations are only Y and Fe, the magnetic film must be thick in order to obtain the required rotation angle of the polarization plane. I won't. However, if the magnetic film is made thick, the intensity of light must be increased. Therefore, a magnetic film having a large Faraday rotation coefficient has been demanded.

【0006】又、波長が0.8μm程度の光は、YIG
ガーネット磁性膜を透過しないので、波長が1.55μ
mの光が使用されており、光ファイバーとして石英ファ
イバーが用いられている。しかし、石英ファイバーは高
価であるため、これに替えて安いプラスチックファイバ
ーを使用した磁界センサの要求がある。しかし、プラス
チックファイバーは、石英ファイバーに使用される光よ
りも短波長側に光の損失が最も小さい範囲があるものが
多い。例えば、重水素化PMMA(ポリメチルメタクリ
レート)では、波長が0.78μm付近である。このた
め、磁界センサにプラスチックファイバーを使用するに
は、0.80μm程度の波長の光を透過する磁性ガーネ
ット膜が必要である。
Light having a wavelength of about 0.8 μm is emitted by the YIG
Since it does not pass through the garnet magnetic film, the wavelength is 1.55μ.
m light is used, and quartz fiber is used as an optical fiber. However, since quartz fiber is expensive, there is a demand for a magnetic field sensor that uses cheap plastic fiber instead of quartz fiber. However, many plastic fibers have a range where the light loss is the smallest on the shorter wavelength side than the light used for the quartz fiber. For example, in the case of deuterated PMMA (polymethylmethacrylate), the wavelength is around 0.78 μm. Therefore, in order to use the plastic fiber for the magnetic field sensor, a magnetic garnet film that transmits light having a wavelength of about 0.80 μm is required.

【0007】最近の研究で、Bi系磁性ガーネット膜
が、ファラデー回転角の大きな材料として注目を集めて
いる。特に、スパッタ法で成膜されたBi3Fe512
示される組成の薄膜では、光の波長が0.79μm±0.
01μmの範囲に透過率の大きい範囲があることが知ら
れている。しかし、スパッタ法は、膜の成長速度が0.
02μm/hrであって、磁気光学素子を構成するに必
要な膜を得るのに、工業的な方法とはいえない。一方、
磁性ガーネット膜の製法として、工業的に一般に使用さ
れている液相エピタキシャル法(LPE法)では、(B
x1-x3Fe512(RはYを含む希土類元素)で示
されるBi系ガーネットにおいて、X≧2/3の組成の
膜が得られない。
In recent studies, Bi-based magnetic garnet films have attracted attention as a material having a large Faraday rotation angle. In particular, in the thin film of the composition represented by Bi 3 Fe 5 O 12 formed by the sputtering method, the light wavelength is 0.79 μm ± 0.7.
It is known that there is a large range of transmittance in the range of 01 μm. However, in the sputtering method, the film growth rate is 0.
It is 02 μm / hr, which is not an industrial method for obtaining a film necessary for forming a magneto-optical element. on the other hand,
As a method for producing a magnetic garnet film, in the liquid phase epitaxial method (LPE method) generally used in the industry, (B
In the Bi type garnet represented by i x R 1-x ) 3 Fe 5 O 12 (R is a rare earth element containing Y), a film having a composition of X ≧ 2/3 cannot be obtained.

【0008】従って、本発明の課題は、0.8μm以上
の波長の光に対して、透明で、かつファラデー回転角の
大きな磁性ガーネット膜によって構成した磁界センサを
供することである。
Therefore, an object of the present invention is to provide a magnetic field sensor which is transparent to light having a wavelength of 0.8 μm or more and which is composed of a magnetic garnet film having a large Faraday rotation angle.

【0009】[0009]

【課題を解決するための手段】Bi,Fe,およびYを
含む希土類の少なくとも一種類からなる硝酸塩とアミノ
酸との錯体の溶液を、その溶媒の沸点以上の温度で加熱
して、組成が(Bix1-x3Fe512(但し、RはY
を含む希土類元素の少なくとも一種)で表わされ、Xが
2/3<X≦1であるBi系磁性ガーネット粉末を製造
し、その粉末を有機物等と混合した後、透明基板上に塗
布して得られる磁性膜を構成要素とした磁気光学素子を
用いることにより、0.8μm以上の波長の光源、従っ
て、プラスチック光ファイバーを用いることが可能な磁
界センサとなる。
[Means for Solving the Problems] A solution of a complex of a nitrate consisting of at least one kind of rare earth element containing Bi, Fe, and Y and an amino acid is heated at a temperature not lower than the boiling point of the solvent to give a composition (Bi x R 1-x ) 3 Fe 5 O 12 (where R is Y
A Bi-based magnetic garnet powder in which X is 2/3 <X ≦ 1, and the powder is mixed with an organic substance or the like and then coated on a transparent substrate. By using the magneto-optical element having the obtained magnetic film as a constituent element, it becomes a magnetic field sensor capable of using a light source having a wavelength of 0.8 μm or more, that is, a plastic optical fiber.

【0010】[0010]

【作用】本発明の磁界センサの構成は、次のようになっ
ている(図2参照)。即ち、波長が0.8μm以上の光
源1と、電線に流れる電流によって発生する磁界を感受
するように配設された磁気光学素子2と、磁気光学素子
2を挟むように配置された偏光素子2,4と、光ファイ
バー5からなる。本発明によれば、磁気光学素子の磁性
膜として従来作製が不可能であったBi系磁性ガーネッ
ト、(Bix1-x3Fe512(RはYを含む希土類元
素の少なくとも一種で、0<X≦1)のX≧2/3の組
成の膜を使用するので、0.8μm以上の波長の光源が
使用可能となる。X=1であるBi3Fe512のBiガ
ーネット膜は、0.79±0.1μmの範囲の波長の光の
透過率が大きい。又、Biが占める結晶格子上のサイト
を、Yを含む希土類元素に置換すれば、透過率の良好な
波長範囲は、より波長の長い方向に移動する。このこと
から、この磁性膜を用いた磁気光学素子を用いることに
より、磁界センサに用いる光ファイバーの選択の範囲が
広がる。又、1.55μmよりも短波長で動作するた
め、光源のコストも安くなり、従来に比べて安価な磁界
センサが提供可能となる。
The magnetic field sensor of the present invention has the following structure (see FIG. 2). That is, a light source 1 having a wavelength of 0.8 μm or more, a magneto-optical element 2 arranged to sense a magnetic field generated by an electric current flowing through an electric wire, and a polarizing element 2 arranged to sandwich the magneto-optical element 2 therebetween. , 4 and an optical fiber 5. According to the present invention, at least one of rare earth elements including Bi-based magnetic garnet has been conventionally fabricated impossible as the magnetic film of the magneto-optical element, the (Bi x R 1-x) 3 Fe 5 O 12 (R is Y Then, since a film having a composition of X ≧ 2/3 of 0 <X ≦ 1) is used, a light source having a wavelength of 0.8 μm or more can be used. The Bi garnet film of Bi 3 Fe 5 O 12 with X = 1 has a large transmittance of light in the wavelength range of 0.79 ± 0.1 μm. Further, if the site on the crystal lattice occupied by Bi is replaced with a rare earth element containing Y, the wavelength range with good transmittance moves in the longer wavelength direction. From this, by using the magneto-optical element using this magnetic film, the range of selection of the optical fiber used for the magnetic field sensor is expanded. Further, since the light source operates at a wavelength shorter than 1.55 μm, the cost of the light source is also low, and it is possible to provide a cheaper magnetic field sensor than the conventional one.

【0011】[0011]

【実施例】以下、本発明を実施例によって詳細に説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0012】(実施例1)図2は、本発明の磁界センサ
の構成を説明するものである。図2(a)は、電流によ
る磁界検出部の構成を示したもの、図2(b)は、セン
サ全体の構成である。光源1としては、0.8μmの波
長のLED光源を用いた。光源から発せられた光は、検
出部へ光ファイバー5により送られる。検出部は、偏光
子2と磁気光学素子3、偏光子4とで構成される。磁気
光学素子を透過した光源からの光は受光側の光ファイバ
ー5に入る。7は受光素子である。
(Embodiment 1) FIG. 2 illustrates the structure of the magnetic field sensor of the present invention. FIG. 2A shows the configuration of the magnetic field detection unit based on the current, and FIG. 2B shows the configuration of the entire sensor. As the light source 1, an LED light source having a wavelength of 0.8 μm was used. The light emitted from the light source is sent to the detection section by the optical fiber 5. The detection unit includes a polarizer 2, a magneto-optical element 3, and a polarizer 4. The light from the light source that has passed through the magneto-optical element enters the optical fiber 5 on the light receiving side. Reference numeral 7 is a light receiving element.

【0013】磁気光学素子としては、Bi3Fe512
示される組成の磁性ガーネット膜を選択した。この磁性
膜は、次のような方法で作製した。Bi,Feの硝酸塩
をBi3Fe512の組成に一致するように秤量し、アミ
ノ酸との錯体の溶液を溶媒の沸点以上の温度で加熱して
粉末を製造した。その粉末をジオメタンと混合した後、
スピンコート法で基板上に塗布することにより、磁性膜
が得られた。磁性膜の厚さは20μmとした。
As the magneto-optical element, a magnetic garnet film having a composition represented by Bi 3 Fe 5 O 12 was selected. This magnetic film was manufactured by the following method. Bi and Fe nitrates were weighed so as to match the composition of Bi 3 Fe 5 O 12 , and the solution of the complex with the amino acid was heated at a temperature above the boiling point of the solvent to produce a powder. After mixing the powder with diomethane,
A magnetic film was obtained by applying it onto the substrate by spin coating. The thickness of the magnetic film was 20 μm.

【0014】この構成により、電送線の電流を変化させ
た時の光の強度変化を光ファイバーの先に受光素子とし
てSi−フォトダイオードを取り付け、光の強度変化率
(△I/I)と電送線の電流磁場変化(H)の関係を測
定した。その関係を図3に示す。この図からわかるよう
に、本発明によれば、波長0.8μmの光でも非接触な
磁界センサとして応用可能であることがわかった。
With this configuration, a Si-photodiode is attached to the tip of the optical fiber as a light receiving element to detect the change in the intensity of the light when the current of the transmission line is changed, and the change rate of the intensity of light (ΔI / I) and the transmission line The relationship of the current magnetic field change (H) was measured. The relationship is shown in FIG. As can be seen from this figure, according to the present invention, it was found that even light having a wavelength of 0.8 μm can be applied as a non-contact magnetic field sensor.

【0015】なお、本発明の実施例において、粉末を塗
布する際のバインダーとしてジオメタンを用いたが、屈
折率の大きな有機物(たとえば、フッ素系樹脂、ナイロ
ン系、アクリル系、ポリエチレン系)や鉛ガラスを用い
ても同様の効果がえられる。できればバインダの屈折率
はガーネット粉末の屈折率(〜2)に近いことが好まし
い。
In the examples of the present invention, although dimethane was used as a binder when applying the powder, organic substances having a large refractive index (for example, fluorine resin, nylon resin, acrylic resin, polyethylene resin) and lead glass are used. The same effect can be obtained by using. If possible, the refractive index of the binder is preferably close to the refractive index (~ 2) of the garnet powder.

【0016】又、本発明において、BiのサイトをYを
含む希土類で置換した磁性ガーネット膜では、波長0.
8μmの光の偏光面を回転させ、かつ透過することはで
きない。しかし、より波長の長い光(例えば1.2μm
帯等)を使用すれば、BiのサイトをYを含む希土類で
置換した組成の膜でも、電磁界センサ用の磁気光学素子
として使用可能である。
Further, in the present invention, in the magnetic garnet film in which the Bi site is replaced with a rare earth element containing Y, the wavelength of 0.
The polarization plane of 8 μm light cannot be rotated and transmitted. However, longer wavelength light (eg 1.2 μm)
Band), a film having a composition in which the Bi site is replaced with a rare earth element containing Y can be used as a magneto-optical element for an electromagnetic field sensor.

【0017】[0017]

【発明の効果】本発明によれば、従来の1.55μmに
比べて波長の短い光(波長が0.8μm以上)で使用で
きる磁界センサを提供することが可能となった。これに
よれば、光源が低コスト化され、用いられる光ファイバ
ーとしてプラスチックファイバーの使用が可能となり、
従来よりも安価な磁界センサの提供が可能となった。
According to the present invention, it is possible to provide a magnetic field sensor that can be used with light having a shorter wavelength (wavelength of 0.8 μm or more) than the conventional 1.55 μm. According to this, the cost of the light source is reduced, and it becomes possible to use the plastic fiber as the optical fiber used.
It has become possible to provide a magnetic field sensor that is cheaper than before.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の磁界センサの例を示した断面図。FIG. 1 is a sectional view showing an example of a conventional magnetic field sensor.

【図2】本発明の構成を示す説明図。図2(a)は検出
部の構成図、図2(b)はセンサ全体の構成図。
FIG. 2 is an explanatory diagram showing a configuration of the present invention. 2A is a configuration diagram of the detection unit, and FIG. 2B is a configuration diagram of the entire sensor.

【図3】本発明における受光素子の磁場(H)の変化に
対する光の強度変化率の関係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship of a change rate of light intensity with respect to a change of a magnetic field (H) of a light receiving element in the invention.

【符号の説明】[Explanation of symbols]

1 光源(光送信機) 2,4 偏光素子 3 磁気光学素子 5 光ファイバー 6,13 電線 7 受光素子 11 コア 12 磁界センサ 1 Light source (optical transmitter) 2,4 Polarizing element 3 Magneto-optical element 5 Optical fiber 6,13 Electric wire 7 Light receiving element 11 Core 12 Magnetic field sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁性ガーネット膜の磁気光学回転効果を
応用し、光ファイバーケーブルを経由して磁界の変化を
検出する磁界センサにおいて、前記磁性ガーネット膜は
自己燃焼法によって作製された磁性粉末によるものであ
り、かつ測定に用いられる光信号の波長が0.8μm以
上であることを特徴とする磁界センサ。
1. A magnetic field sensor for detecting a change of a magnetic field via an optical fiber cable by applying a magneto-optical rotation effect of a magnetic garnet film, wherein the magnetic garnet film is made of magnetic powder produced by a self-combustion method. A magnetic field sensor characterized in that the wavelength of an optical signal used for measurement is 0.8 μm or more.
【請求項2】 請求項1記載の磁性ガーネット膜は、B
i,Fe,およびR(但し、RはYを含む希土類元素の
少なくとも一種)の硝酸塩とアミノ酸との錯体の溶液
を、その溶液をなす溶媒の沸点以上の温度で加熱して得
られた磁性粉末を透明基板上に塗布したものであること
を特徴とする磁界センサ。
2. The magnetic garnet film according to claim 1,
Magnetic powder obtained by heating a solution of a complex of nitrate of i, Fe, and R (where R is at least one of rare earth elements containing Y) and an amino acid at a temperature higher than the boiling point of the solvent forming the solution. A magnetic field sensor characterized by being coated on a transparent substrate.
【請求項3】 請求項1または2記載の磁界センサにお
いて、磁性ガーネット膜の組成は、その組成を(Bix
1-x3Fe512(但し、RはYを含む希土類元素の
少なくとも一種で、0<X≦1)と表した時のXが2/
3以上であることを特徴とする磁界センサ。
3. The magnetic field sensor according to claim 1 or 2, wherein the composition of the magnetic garnet film is (Bi x
R 1-x ) 3 Fe 5 O 12 (wherein R is at least one of rare earth elements including Y, and 0 <X ≦ 1), X is 2 /
A magnetic field sensor having three or more.
JP6169958A 1994-06-28 1994-06-28 Magnetic field sensor Pending JPH0815333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6169958A JPH0815333A (en) 1994-06-28 1994-06-28 Magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6169958A JPH0815333A (en) 1994-06-28 1994-06-28 Magnetic field sensor

Publications (1)

Publication Number Publication Date
JPH0815333A true JPH0815333A (en) 1996-01-19

Family

ID=15895994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6169958A Pending JPH0815333A (en) 1994-06-28 1994-06-28 Magnetic field sensor

Country Status (1)

Country Link
JP (1) JPH0815333A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333809B1 (en) 1996-02-21 2001-12-25 Matsushita Electric Industrial Co., Ltd. Magneto-optical element
US6370288B1 (en) 1996-02-21 2002-04-09 Matsushita Electric Industrial Co., Ltd. Optical magnetic field sensor probe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333809B1 (en) 1996-02-21 2001-12-25 Matsushita Electric Industrial Co., Ltd. Magneto-optical element
US6370288B1 (en) 1996-02-21 2002-04-09 Matsushita Electric Industrial Co., Ltd. Optical magnetic field sensor probe
US6404190B1 (en) 1996-02-21 2002-06-11 Matsushita Electric Industrial Co., Ltd. Optical magnetic field sensor probe

Similar Documents

Publication Publication Date Title
EP0208476B1 (en) Magnetic field sensor having magneto-optic element
US7254286B2 (en) Magneto-optical resonant waveguide sensors
EP0510621B1 (en) Magneto-optical element and magnetic field measurement apparatus
US4560932A (en) Magneto-optical converter utilizing Faraday effect
EP0236345B1 (en) Optical systems with antireciprocal polarization rotators
EP0081367B1 (en) Magnetic field and electric current measuring device
JP3144928B2 (en) Optical sensor
EP0046298A1 (en) Apparatus for measuring a magnetic field
DE69320398T2 (en) Magneto-optical sensor head
US5463316A (en) Magnetooptic sensor head
JPH0815333A (en) Magnetic field sensor
Sohlström Fibre optic magnetic field sensors utilizing iron garnet materials
JPH0445813B2 (en)
Fujikawa et al. Magnetic field sensors using magnetophotonic crystals
EP0785454A1 (en) Faraday rotator for magneto-optic sensors
JP3248211B2 (en) Magneto-optical film
JP2004219137A (en) Reflection type optical magnetic field sensor head
JP3269102B2 (en) Magneto-optical film
EP0565085A2 (en) Magnetic field sensor
JP3044084B2 (en) Magneto-optical element for magnetic field sensor
JP2783012B2 (en) Magneto-optical film of optical magnetic field sensor
JP3269101B2 (en) Magneto-optical film
CA2131123A1 (en) Non-reciprocal optical device
JP3114765B2 (en) Optical magnetic field sensor
JPS6396567A (en) Small-sized high sensitivity current sensor