JPH08152550A - Automatic focusing device of microscope - Google Patents

Automatic focusing device of microscope

Info

Publication number
JPH08152550A
JPH08152550A JP29284594A JP29284594A JPH08152550A JP H08152550 A JPH08152550 A JP H08152550A JP 29284594 A JP29284594 A JP 29284594A JP 29284594 A JP29284594 A JP 29284594A JP H08152550 A JPH08152550 A JP H08152550A
Authority
JP
Japan
Prior art keywords
focus
focusing
image
signal
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29284594A
Other languages
Japanese (ja)
Inventor
Hideo Mihashi
秀男 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29284594A priority Critical patent/JPH08152550A/en
Publication of JPH08152550A publication Critical patent/JPH08152550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE: To enable automatic focusing with good controllability without being affected by a pattern to be observed by correcting the gain of a focus detection signal to a constant value with a correction value calculated on the basis of the focusing degree values of image signals from three image pickup means. CONSTITUTION: Line sensors 61-63 as the three image pickup means are arranged on three optical axes 42 of focus detection and at a real-image position determined by an objective 3 at the time of focusing and real-image positions determined by the objective 3 when the observed object shifts from the focusing position to the front focus and rear focus by a specific quantity. A differential amplifier 10 differentially amplifies the focusing degree signals b2 and b3 from two focusing degree detecting means 9 connected to the front focus line sensor 62 and rear focus line sensor 53 and outputs a focusing detection signal (c). A correction value arithmetic means 11 is connected to the three focusing detecting means 9 and calculates the correction value on the basis of the values of the focusing degree signals 1b-b3, thereby outputting a correction signal (d). A multiplying circuit 12 is connected to the differential amplifier 10 and correction value arithmetic means 11 and multiplies the focus detection signal (c) and correction signal (d), thereby outputting a defocusing signal (e).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、顕微鏡自動焦点装置に
関し、特に、光学顕微鏡により試料面上のパターンを観
察する際に自動的に焦点を合わせる顕微鏡自動焦点装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microscope autofocus device, and more particularly to a microscope autofocus device for automatically focusing when observing a pattern on a sample surface with an optical microscope.

【0002】[0002]

【従来の技術】従来の技術としては、例えば、特開昭5
3−50851号公報に記載の顕微鏡自動焦点装置があ
る。
2. Description of the Related Art As a conventional technique, for example, Japanese Patent Laid-Open No.
There is a microscope automatic focusing device described in Japanese Patent Laid-Open No. 3-50851.

【0003】従来の顕微鏡自動焦点装置について図面を
参照して詳細に説明する。
A conventional microscope autofocus device will be described in detail with reference to the drawings.

【0004】図6は、従来の一例を示す構成図である。
図6に示す顕微鏡自動焦点装置は、上下ステージ1上に
載せた試料2の像を拡大する対物レンズ3と、光学顕微
鏡の結像光軸を観察光軸41と2本の焦点検出光軸42
とに分割する光分割器としての2枚のハーフミラー5
と、2本の各焦点検出光軸42上にあって、観察対象が
合焦位置から所定量zだけ前焦点側および後焦点側にあ
るときの対物レンズ3による実像位置に配置された2個
の撮像手段である、前焦点ラインセンサ62および後焦
点ラインセンサ63と、後焦点ラインセンサ63に検出
光を導くための全反射ミラー7と、各ラインセンサ6
2,63のそれぞれに接続され、各ラインセンサ62,
63から出力される画像信号a2 ,a3 の合焦度を検出
して合焦度信号b2 ,b3 を出力する2個の合焦度検出
手段9と、2個の合焦度検出手段9からの合焦度信号b
2 ,b3 の差動増幅を行い焦点検出信号cを出力する差
動アンプ10とを含んで構成される。
FIG. 6 is a block diagram showing a conventional example.
The microscope auto-focusing device shown in FIG. 6 includes an objective lens 3 for enlarging an image of a sample 2 placed on the upper and lower stages 1, an observation optical axis 41 for forming an optical axis of an optical microscope, and two focus detecting optical axes 42.
Two half mirrors 5 as an optical splitter for splitting into and
And two on the respective focus detection optical axes 42, which are arranged at the real image position by the objective lens 3 when the observation target is on the front focus side and the rear focus side by the predetermined amount z from the in-focus position. The front focus line sensor 62 and the rear focus line sensor 63 which are the image pickup means of the total reflection mirror 7 for guiding the detection light to the rear focus line sensor 63, and each line sensor 6.
2, 63 connected to each of the line sensors 62,
From the two focus degree detecting means 9 for detecting the focus degree of the image signals a2 and a3 outputted from the reference numeral 63 and outputting the focus degree signals b2 and b3, and the two focus degree detecting means 9. Focus signal b
2, a differential amplifier 10 for performing differential amplification on b3 and outputting a focus detection signal c.

【0005】図2は合焦度検出手段9の内部ブロック図
である。合焦度検出手段9は、微分回路91と、積分回
路92とで構成され、画像信号a2 ,a3 の画像信号波
形について微分回路91で微分の絶対値を演算し、積分
回路92でこの微分絶対値を1スキャン分積算して合焦
度信号b2 ,b3 として出力する。
FIG. 2 is an internal block diagram of the focus degree detection means 9. The focus degree detecting means 9 is composed of a differentiating circuit 91 and an integrating circuit 92. The differentiating circuit 91 calculates the absolute value of the differential of the image signal waveforms of the image signals a2 and a3, and the integrating circuit 92 calculates the absolute difference. The values are integrated for one scan and output as focusing degree signals b2 and b3.

【0006】次に、図6に示す顕微鏡自動焦点装置の動
作を説明する。
Next, the operation of the microscope autofocus device shown in FIG. 6 will be described.

【0007】図3は焦点位置による合焦度信号b2 〜b
3 の変化を示す図であり、図4は焦点位置による焦点検
出信号cの変化を示す図である。観察系の焦点が+z
(前焦点側)から−z(後焦点側)まで移動すると、前
焦点ラインセンサ62は、+zのときに最も焦点の合っ
た画像信号a2 を出力し、観察系の合焦点に近づくにつ
れて画像信号a2 はぼけてくる。このとき、画像信号に
含まれる高周波成分の量は合焦の程度により変化するこ
とを利用して、合焦度検出部9で画像信号a2 の微分絶
対値の積算量を求めて合焦度信号b2 として出力する
と、この合焦度信号b2 は+zのときが最大値で合焦に
近づくにつれて出力が低くなる。また、後焦点ラインセ
ンサ63では逆の動作となり、合焦度信号b3 は−zの
ときが最大値で合焦に近づくにつれて出力が低くなる。
従って、差動アンプ10でこれら2つの合焦度信号b2
,b3 の差動増幅を行うと、前焦点側が正で後焦点側
が負のいわゆるS曲線なる焦点検出信号cが得られる。
この信号をフィードバック信号として、サーボ制御によ
りモータなどで上下ステージ1を移動し、焦点検出信号
cの値が0になるように制御を行うことで焦点を合わせ
る。
FIG. 3 shows focusing degree signals b2 to b depending on the focus position.
3 is a diagram showing a change in 3 and FIG. 4 is a diagram showing a change in the focus detection signal c depending on the focus position. Focus of observation system is + z
When moving from (front focus side) to -z (back focus side), the front focus line sensor 62 outputs the most focused image signal a2 at + z, and the image signal becomes closer to the in-focus point of the observation system. a2 is blurred. At this time, the amount of high-frequency components included in the image signal changes depending on the degree of focusing, and the focusing degree detection unit 9 obtains the integrated amount of the differential absolute value of the image signal a2 to obtain the focusing degree signal. When output as b2, the focus degree signal b2 has the maximum value at + z, and the output decreases as the focus approaches. Further, in the rear focus line sensor 63, the reverse operation is performed, and the focus degree signal b3 has the maximum value at -z, and the output decreases as the focus approaches.
Therefore, in the differential amplifier 10, these two focus degree signals b2
, B3 are differentially amplified, a focus detection signal c which is a so-called S curve having a positive front side and a negative rear side is obtained.
Using this signal as a feedback signal, the upper and lower stages 1 are moved by a motor or the like by servo control, and control is performed so that the value of the focus detection signal c becomes 0, thereby focusing.

【0008】[0008]

【発明が解決しようとする課題】上述した従来の顕微鏡
自動焦点装置は、合焦位置の前後に配置したラインセン
サからの画像信号の合焦度値を差動増幅した焦点検出信
号をフィードバック信号としてフォーカスサーボをかけ
ている。この際、合焦度値の最大値は観察パターンの高
周波成分量と輝度値により変化するため、焦点検出信号
の最大・最小値も変化する。すなわち、フォーカスサー
ボのフィードバック信号ゲインが観察パターンにより変
化することになる。従って、例えば半導体ウェハ上のロ
ジック配線パターン等のようなパターン配置密度すなわ
ち高周波成分量と輝度差が場所により変化する試料を連
続的に全面観察しようとすると、観察場所により、フィ
ードバック信号ゲインが変化し、過大になって制御系が
発振したり、過小になって位置決め精度が劣化する、と
いう欠点があった。
SUMMARY OF THE INVENTION The conventional microscope autofocus device described above uses a focus detection signal obtained by differentially amplifying a focus degree value of an image signal from a line sensor arranged before and after a focus position as a feedback signal. Focus servo is applied. At this time, the maximum focus value changes depending on the amount of high-frequency components of the observation pattern and the brightness value, so the maximum and minimum values of the focus detection signal also change. That is, the feedback signal gain of the focus servo changes depending on the observation pattern. Therefore, when attempting to continuously observe the entire surface of a sample, such as a logic wiring pattern on a semiconductor wafer, where the pattern arrangement density, that is, the amount of high-frequency components and the difference in brightness change depending on the location, the feedback signal gain changes depending on the observation location. However, there is a drawback that the control system oscillates when it becomes too large, or the positioning accuracy deteriorates when it becomes too small.

【0009】[0009]

【課題を解決するための手段】本発明の顕微鏡自動焦点
装置は、光学顕微鏡の結像光軸を観察光軸と3本の焦点
検出光軸とに分割する光分割器と、前記3本の各焦点検
出光軸上にあって、合焦時の対物レンズによる実像位置
と、観察対象が合焦位置から所定量だけ前焦点側および
後焦点側にずれたときの前記対物レンズによる実像位置
とに配置された3個の撮像手段と、前記撮像手段のそれ
ぞれから出力される画像信号をもとに合焦度を検出して
合焦度信号を出力する3個の合焦度検出手段と、前焦点
側と後焦点側の2つの合焦度信号の差動増幅を行う差動
アンプと、前記3個の合焦度検出手段からそれぞれ出力
される3つの合焦度信号をもとに補正信号を演算して出
力する補正値演算手段と、前記差動アンプと前記補正値
演算手段との出力信号を乗算して焦点検出信号を出力す
る乗算回路とを含むことを特徴とする。
SUMMARY OF THE INVENTION A microscope autofocus device according to the present invention comprises an optical splitter for splitting an image forming optical axis of an optical microscope into an observation optical axis and three focus detection optical axes, and the three optical splitters. On each focus detection optical axis, a real image position by the objective lens at the time of focusing, and a real image position by the objective lens when the observation target is deviated from the focus position to the front focus side and the rear focus side by a predetermined amount. And three focusing degree detecting means for detecting a focusing degree based on an image signal output from each of the imaging means and outputting a focusing degree signal. Correction is performed based on a differential amplifier that differentially amplifies two focus degree signals on the front focus side and the rear focus side, and three focus degree signals respectively output from the three focus degree detecting means. Correction value calculation means for calculating and outputting a signal, and outputs of the differential amplifier and the correction value calculation means Characterized in that it comprises a multiplier circuit for multiplying outputs a focus detection signal No..

【0010】[0010]

【実施例】次に、本発明について図面を参照して詳細に
説明する。
The present invention will be described in detail with reference to the drawings.

【0011】図1は、本発明の一実施例を示す構成図で
ある。図1に示す顕微鏡自動焦点装置は、上下ステージ
1上に載せた試料2の像を拡大する対物レンズ3と、光
学顕微鏡の結像光軸を観察光軸41と3本の焦点検出光
軸42とに分割する光分割器としての3枚のハーフミラ
ー5と、3本の各焦点検出光軸42上にあって、合焦時
の対物レンズ3による実像位置と、観察対象が合焦位置
から所定量zだけ前焦点側および後焦点側にずれたとき
の対物レンズ3による実像位置とに配置された3個の撮
像手段である、合焦点ラインセンサ61と前焦点ライン
センサ62と後焦点ラインセンサ63と、後焦点ライン
センサ63に検出光を導くための全反射ミラー7と前焦
点ラインセンサ62の前にあって、他2つのラインセン
サと受光量を合わせるために光量を1/2にする50%
NDフィルタ8と、各ラインセンサ61〜63のそれぞ
れに接続され、各ラインセンサ61〜63から出力され
る画像信号a1 〜a3 の合焦度を検出して合焦度信号b
1 〜b3 を出力する3個の合焦度検出手段9と、前焦点
ラインセンサ62と後焦点ラインセンサ63に接続され
た2個の合焦度検出手段9からの合焦度信号b2 ,b3
の差動増幅を行い焦点検出信号cを出力する差動アンプ
10と、3個の合焦度検出手段9に接続され、合焦度信
号b1 〜b3 の値をもとに補正値を演算して補正信号d
を出力する補正値演算手段11と、差動アンプ10と補
正値演算手段11とに接続され、焦点検出信号cと補正
信号dを乗算して焦点ずれ信号eを出力する乗算回路1
2とを含んで構成される。
FIG. 1 is a block diagram showing an embodiment of the present invention. The microscope auto-focusing device shown in FIG. 1 includes an objective lens 3 for enlarging an image of a sample 2 placed on an upper and lower stage 1, an observation optical axis 41 for forming an optical axis of an optical microscope, and three focus detection optical axes 42. There are three half mirrors 5 as light splitters for dividing into two, and the real image position by the objective lens 3 at the time of focusing on each of the three focus detection optical axes 42 and the observation target from the focusing position. Focusing line sensor 61, front focus line sensor 62, and rear focus line, which are three imaging means arranged at the real image position by objective lens 3 when they are deviated to the front focus side and the rear focus side by a predetermined amount z. In front of the sensor 63, the total reflection mirror 7 for guiding the detection light to the back focus line sensor 63, and the front focus line sensor 62, the light amount is halved in order to match the received light amount with the other two line sensors. 50%
The ND filter 8 and each of the line sensors 61 to 63 are connected to each other, and the focus degree of the image signals a1 to a3 output from each of the line sensors 61 to 63 is detected to detect the focus degree signal b.
Focusing degree signals b2 and b3 from three focusing degree detecting means 9 for outputting 1 to b3 and two focusing degree detecting means 9 connected to the front focus line sensor 62 and the rear focus line sensor 63.
Is connected to the differential amplifier 10 for performing the differential amplification of the above and outputting the focus detection signal c and the three focus degree detecting means 9, and the correction value is calculated based on the values of the focus degree signals b1 to b3. Correction signal d
A multiplication circuit 1 which is connected to the correction value calculation means 11, which outputs the differential amplifier 10 and the correction value calculation means 11, and which outputs the defocus signal e by multiplying the focus detection signal c and the correction signal d.
2 is included.

【0012】図2は合焦度検出手段9の内部ブロック図
である。合焦度検出手段9は、微分回路91と、積分回
路92とで構成され、画像信号a1 〜a3 の画像信号波
形について微分回路91で微分の絶対値を演算し、積分
回路92でこの微分絶対値を1スキャン分積算し、合焦
度信号b1 〜b3 として出力する。
FIG. 2 is an internal block diagram of the focus degree detecting means 9. The focus degree detection means 9 is composed of a differentiating circuit 91 and an integrating circuit 92. The differentiating circuit 91 calculates the absolute value of the differential of the image signal waveforms of the image signals a1 to a3, and the integrating circuit 92 calculates the absolute difference. The values are integrated for one scan and output as focusing degree signals b1 to b3.

【0013】次に、
図1,図2に示す顕微鏡自動焦点装置の動作を説明す
る。
Next,
The operation of the microscope autofocus device shown in FIGS. 1 and 2 will be described.

【0014】図3は焦点位置による合焦度信号b2 〜b
3 の変化を示す図であり、図4は焦点位置による焦点検
出信号cの変化を示す図である。観察系の焦点が+z
(前焦点側)から−z(後焦点側)まで移動すると、前
焦点ラインセンサ62は、+zのときに最も焦点の合っ
た画像信号a2 を出力し、観察系の合焦点に近づくにつ
れて画像信号a2 はぼけてくる。このとき、従来技術で
も利用されているように、画像信号に含まれる高周波成
分の量は合焦の程度により変化する。よって、合焦度検
出部9で画像信号a2 の微分絶対値の積算量を求めて合
焦度信号b2 として出力すると、この合焦度信号b2 は
+zのときが最大値で合焦に近づくにつれて出力が低く
なる。また、後焦点ラインセンサ63では逆の動作とな
り、合焦度信号b3 は−zのときが最大値で合焦に近づ
くにつれて出力が低くなる。従って、差動アンプ10で
これら2つの合焦度信号b2 ,b3 の差動増幅を行う
と、前焦点側が正で後焦点側が負のいわゆるS曲線なる
焦点検出信号cが得られる。また、当然のことながら合
焦点ラインセンサ61による合焦度信号b1 は、合焦位
置で最大であり+zおよび−zに近づくに従い低くな
る。
FIG. 3 shows focusing degree signals b2 to b depending on the focus position.
3 is a diagram showing a change in 3 and FIG. 4 is a diagram showing a change in the focus detection signal c depending on the focus position. Focus of observation system is + z
When moving from (front focus side) to -z (back focus side), the front focus line sensor 62 outputs the most focused image signal a2 at + z, and the image signal becomes closer to the in-focus point of the observation system. a2 is blurred. At this time, the amount of high-frequency components included in the image signal changes depending on the degree of focusing, as is used in the related art. Therefore, when the focus degree detection unit 9 obtains the integrated amount of the differential absolute value of the image signal a2 and outputs it as the focus degree signal b2, the focus degree signal b2 is the maximum value when + z, and as the focus approaches the focus. Output is low. Further, in the rear focus line sensor 63, the reverse operation is performed, and the focus degree signal b3 has the maximum value at -z, and the output decreases as the focus approaches. Therefore, when the differential amplifier 10 differentially amplifies these two focusing degree signals b2 and b3, a focus detection signal c which is a so-called S curve in which the front focus side is positive and the rear focus side is negative is obtained. Further, as a matter of course, the focus degree signal b1 from the focus line sensor 61 is maximum at the focus position and becomes lower as it approaches + z and -z.

【0015】ここで、各合焦度信号b1 ,b2 ,b3
は、観察系の焦点位置を変数xとして、式(1)〜式
(3)の2次関数で近似でき、焦点検出信号cはb2 と
b3 の差分なので式(4)で表される。ここでp,qは
試料2のパターンにより決定される係数であり、パター
ンの高周波成分量と輝度差により変化する。
Here, each focus degree signal b1, b2, b3
Can be approximated by a quadratic function of the formulas (1) to (3) with the focus position of the observation system as a variable x, and the focus detection signal c is the difference between b2 and b3 and is represented by the formula (4). Here, p and q are coefficients determined by the pattern of the sample 2, and change depending on the high frequency component amount of the pattern and the brightness difference.

【0016】 b1 =−px2 +q ……… (1) b2 =−p(x−z)2 +q ……… (2) b3 =−p(x+z)2 +q ……… (3) c =b2 −b3 =4pzx ……… (4) 式(4)で示されるように、焦点検出信号cには試料2
のパターンにより値が変化する係数pが含まれる。その
ため従来技術のようにフォーカスサーボのフィードバッ
ク信号として焦点検出信号cを使用すると、フィードバ
ックゲインが観察パターンにより変化し、過大になって
制御系が発振したり、過小になって位置決め精度が劣化
する場合が生じる。
B1 = -px2+ Q ......... (1) b2 = -p (x-z)2+ Q ... (2) b3 = -p (x + z)2+ Q ………… (3) c = b2-b3 = 4pzx ………… (4)  As shown in the equation (4), the sample 2 is included in the focus detection signal c.
The coefficient p whose value changes depending on the pattern of is included. That
Therefore, the focus servo feedback
If the focus detection signal c is used as the
Clock gain changes depending on the observation pattern and becomes excessive
Positioning accuracy deteriorates because the control system oscillates or becomes too small.
There is a case to do.

【0017】そこで次に、各合焦度信号b1 ,b2 ,b
3 をもとに補正値演算手段11で1/pを求めて補正信
号dとし、乗算回路12により焦点検出信号cと乗算し
て得られる焦点ずれ信号eをフィードバック信号として
フォーカスサーボをかけ、図示しない制御・駆動手段に
より上下ステージ1を上下させて自動焦点合わせを行
う。ここで、補正値演算手段11は、式(1)〜式
(3)より、式(5)で表される演算を行う。よって、
焦点ずれ信号eは式(6)で表され、パターンにより変
化する係数p,qを含まないため、フィードバックゲイ
ンは一定となる。
Then, next, each focus degree signal b1, b2, b
Based on 3, the correction value calculation means 11 calculates 1 / p to obtain the correction signal d, and the focus shift signal e obtained by multiplying the focus detection signal c by the multiplication circuit 12 is used as a feedback signal to apply focus servo, The automatic focusing is performed by moving the upper and lower stages 1 up and down by the control / driving means. Here, the correction value calculation means 11 performs the calculation represented by the equation (5) from the equations (1) to (3). Therefore,
The defocus signal e is expressed by the equation (6) and does not include the coefficients p and q that change depending on the pattern, so that the feedback gain is constant.

【0018】 d=1/p=−2z2 /(b2 +b3 −2b1 ) ……… (5) e=c・d=4zx ……… (6) また、図5は本発明の別の実施例を示す構成図である。
図5に示す顕微鏡自動焦点装置は、無限遠光学系の光学
顕微鏡に本発明を適用したものであり、顕微鏡光軸上に
あって対物レンズ3の次段に配置され実像をつくる結像
レンズ13を含んで構成される以外は、図1の実施例と
同一構成である。
D = 1 / p = -2z 2 / (b 2 + b 3 -2b 1) (5) e = c · d = 4zx (6) FIG. 5 shows another embodiment of the present invention. It is a block diagram which shows.
The microscope auto-focusing device shown in FIG. 5 is obtained by applying the present invention to an optical microscope having an infinity optical system, and is arranged on the optical axis of the microscope at the next stage of the objective lens 3 to form a real image. The configuration is the same as that of the embodiment of FIG.

【0019】また、撮像手段としては、ラインセンサ以
外に、2次元センサも適用できる。
As the image pickup means, a two-dimensional sensor can be applied in addition to the line sensor.

【0020】また、合焦度検出手段としては、画像信号
の微分値の絶対値を検出する以外に、例えば特開平3−
44608号公報の「自動焦点合わせ方法」に示される
ような画像信号の輝度分散値を検出する方法
が適用できる。これは、像が合焦に近づくほどコントラ
ストが明瞭になって輝度分布が広がり、輝度分散値が大
きくなることを利用したもので、画像信号a1 〜a3 か
ら輝度分散値を求めてその値を合焦度信号b1 〜b3 と
して出力する。さらには、例えば、1993年度精密工
学会春期大会学術講演会講演論文集423〜424頁の
論文「画像合成による光学式顕微鏡の長焦点深度化」に
示されるような、画像信号の直交変換を行いこの直交変
換像の高次成分量を検出する方法も適用できる。
これは、像が合焦に近づくほど、直交変換後の高次成分
が大きくなることを利用したもので、画像信号a1〜a3
の直
交変換を行い、その直交変換像に含まれる高次成分量を
求めてその値を合焦度信号b1 〜b3 として出力する。
Further, as the focus degree detecting means, in addition to detecting the absolute value of the differential value of the image signal, for example, Japanese Unexamined Patent Publication No.
Method for detecting luminance dispersion value of image signal as shown in "Automatic focusing method" of Japanese Patent No. 44608
Can be applied. This is because the contra
Stroke becomes clear, brightness distribution spreads, and brightness dispersion value is large
Which was used to be a listening, image or signal a1 ~a3
Then, the brightness dispersion value is obtained from the
And output. Further , for example, the orthogonal transformation of the image signal is performed as shown in the paper “Long focal depth of optical microscope by image synthesis” on pages 423 to 424 of Proceedings of the 1993 Precision Engineering Society Spring Conference. A method of detecting the amount of higher-order components of this orthogonal transformation image can also be applied.
This is because the closer the image is to the focus, the higher order components after orthogonal transformation.
Utilizes the fact that the larger the image signal a1~a3
Directly
Performs alternating transformation, and calculates the amount of higher-order components included in the orthogonal transformation image.
Determined and outputs its value as focus degree signal b1 to b3.

【0021】[0021]

【発明の効果】本発明の顕微鏡自動焦点装置は、合焦位
置の前後に配置した2つの撮像手段からの画像信号の合
焦度値を差動増幅した焦点検出信号をフィードバック信
号としてフォーカスサーボをかける代わりに、合焦位置
および合焦位置の前後に配置した3つの撮像手段からの
画像信号の合焦度値をもとに算出した補正値で焦点検出
信号のゲインを一定に補正した信号をフィードバック信
号としてフォーカスサーボをかけるため、観察するパタ
ーンに影響されずに制御性のよい自動焦点合わせができ
るという効果を奏する。
According to the microscope auto-focusing apparatus of the present invention, the focus servo is performed by using the focus detection signal obtained by differentially amplifying the focus degree values of the image signals from the two image pickup means arranged before and after the focus position as a feedback signal. Instead of multiplying, a signal in which the gain of the focus detection signal is constantly corrected with a correction value calculated based on the in-focus position and the in-focus degree values of the image signals from the three image pickup units arranged before and after the in-focus position is used. for applying the focus servo as a feedback signal, that Sosu the effect that it is good autofocus controllability without being influenced by the pattern observation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】図1,図5,図6中の合焦度検出手段の内部ブ
ロック図である。
FIG. 2 is an internal block diagram of focusing degree detection means in FIGS . 1 , 5 and 6. FIG.

【図3】図1,図5,図6中の焦点位置による合焦度信
号b2 〜b3 の変化を示す図である。
FIG. 3 is a diagram showing changes in focus degree signals b2 to b3 depending on the focus position in FIGS . 1 , 5 and 6;

【図4】図1,図5,図6中の焦点位置による焦点検出
信号cの変化を示す図である。
FIG. 4 is a diagram showing changes in the focus detection signal c depending on the focus position in FIGS . 1 , 5 and 6.

【図5】本発明の別の実施例を示す構成図である。FIG. 5 is a configuration diagram showing another embodiment of the present invention.

【図6】従来の一例を示す構成図である。FIG. 6 is a configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 上下ステージ 2 試料 3 対物レンズ 41 観察光軸 42 焦点検出光軸 5 ハーフミラー 61 合焦点ラインセンサ 62 前焦点ラインセンサ 63 後焦点ラインセンサ 7 全反射ミラー 8 50%NDフィルタ 9 合焦度検出手段 91 微分回路 92 積分回路 10 差動アンプ 11 補正値演算手段 12 乗算回路 13 結像レンズ1 Upper and lower stage 2 Sample 3 Objective lens 41 Observation optical axis 42 Focus detection optical axis 5 Half mirror 61 Focusing line sensor 62 Front focus line sensor 63 Rear focus line sensor 7 Total reflection mirror 8 50% ND filter 9 Focusing degree detecting means 91 Differentiating circuit 92 Integrating circuit 10 Differential Amplifier 11 Correction value calculation means 12 Multiplier circuit 13 Imaging lens

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G03B 3/00 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G03B 3/00 A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 光学顕微鏡の結像光軸を観察光軸と3本
の焦点検出光軸とに分割する光分割器と、前記3本の各
焦点検出光軸上にあって、合焦時の対物レンズによる実
像位置と、観察対象が合焦位置から所定量だけ前焦点側
および後焦点側にずれたときの前記対物レンズによる実
像位置とに配置された3個の撮像手段と、前記撮像手段
のそれぞれから出力される画像信号をもとに合焦度を検
出して合焦度信号を出力する3個の合焦度検出手段と、
前焦点側と後焦点側の2つの合焦度信号の差動増幅を行
う差動アンプと、前記3個の合焦度検出手段からそれぞ
れ出力される3つの合焦度信号をもとに補正信号を演算
して出力する補正値演算手段と、前記差動アンプと前記
補正値演算手段との出力信号を乗算して焦点検出信号を
出力する乗算回路とを含むことを特徴とする顕微鏡自動
焦点装置。
1. An optical splitter for splitting an image forming optical axis of an optical microscope into an observation optical axis and three focus detecting optical axes, and an optical splitter on each of the three focus detecting optical axes, which is used for focusing. Image pickup means arranged at the real image position by the objective lens and the real image position by the objective lens when the observation target is deviated from the focus position to the front focus side and the rear focus side by a predetermined amount, and the image pickup means. Three focus degree detecting means for detecting the focus degree based on the image signal output from each of the means and outputting the focus degree signal;
Correction is performed based on a differential amplifier that differentially amplifies two focus degree signals on the front focus side and the rear focus side, and three focus degree signals respectively output from the three focus degree detecting means. A microscope automatic focus, comprising: a correction value calculation means for calculating and outputting a signal; and a multiplication circuit for multiplying the output signals of the differential amplifier and the correction value calculation means and outputting a focus detection signal. apparatus.
【請求項2】 前記光学顕微鏡は無限遠光学系であり、
顕微鏡の光軸上にあって対物レンズの次段に配置されて
実像をつくる結像レンズを含むことを特徴とする、請求
項1記載の顕微鏡自動焦点装置。
2. The optical microscope is an infinite optical system,
2. The microscope auto-focusing device according to claim 1, further comprising an image forming lens which is arranged on the optical axis of the microscope and which is arranged next to the objective lens to form a real image.
【請求項3】 前記撮像手段はラインセンサを使用した
手段であることを特徴とする、請求項1または請求項2
記載の顕微鏡自動焦点装置。
3. The image pickup means is a means using a line sensor, wherein the image pickup means is a means using a line sensor.
The described microscope autofocus device.
【請求項4】 前記撮像手段は2次元センサを使用した
手段であることを特徴とする、請求項1または請求項2
記載の顕微鏡自動焦点装置。
4. The image pickup means is a means using a two-dimensional sensor, according to claim 1 or 2.
The described microscope autofocus device.
【請求項5】 前記合焦度検出手段は画像信号の微分値
の絶対値を検出する手段であることを特徴とする、請求
項1,請求項2,請求項3,または請求項4記載の顕微
鏡自動焦点装置。
5. The focusing degree detecting means is means for detecting an absolute value of a differential value of an image signal, according to claim 1, claim 2, claim 3, or claim 4. Microscope autofocus device.
【請求項6】 前記合焦度検出手段は画像信号の輝度分
散値を検出する手段であることを特徴とする、請求項
1,請求項2,請求項3,または請求項4記載の顕微鏡
自動焦点装置。
6. The automatic microscope according to claim 1, wherein the focus degree detecting means is means for detecting a luminance dispersion value of an image signal. Focus device.
【請求項7】 前記合焦度検出手段は画像信号の直交変
換像の高次成分量を検出する手段であることを特徴とす
る、請求項1,請求項2,請求項3,または請求項4記
載の顕微鏡自動焦点装置。
7. The in-focus degree detecting means is means for detecting a higher-order component amount of an orthogonal transformation image of an image signal, claim 1, claim 2, claim 3, or claim. 4. The automatic microscope focusing device described in 4.
JP29284594A 1994-11-28 1994-11-28 Automatic focusing device of microscope Pending JPH08152550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29284594A JPH08152550A (en) 1994-11-28 1994-11-28 Automatic focusing device of microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29284594A JPH08152550A (en) 1994-11-28 1994-11-28 Automatic focusing device of microscope

Publications (1)

Publication Number Publication Date
JPH08152550A true JPH08152550A (en) 1996-06-11

Family

ID=17787114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29284594A Pending JPH08152550A (en) 1994-11-28 1994-11-28 Automatic focusing device of microscope

Country Status (1)

Country Link
JP (1) JPH08152550A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099497A1 (en) * 2001-06-04 2002-12-12 Fuji Photo Optical Co., Ltd. Device for determining focused state of taking lens
FR2843809A1 (en) * 2002-08-23 2004-02-27 Fuji Photo Optical Co Ltd Picture-taking lens focus controlling system for video camera, has focus evaluation value generation device generating value indicating degree of sharpness of image and corrector correcting sensitivity of evaluation value
JP2007264151A (en) * 2006-03-28 2007-10-11 Sysmex Corp Sample imaging apparatus and sample analyzing apparatus equipped with the same
US7576796B2 (en) 2002-08-23 2009-08-18 Fujinon Corporation Auto focus system
JP2014085217A (en) * 2012-10-23 2014-05-12 Nuflare Technology Inc Focus position detection device, inspection device, focus position detection method and inspection method
KR20220008044A (en) * 2020-07-13 2022-01-20 주식회사 에타맥스 Automatic Optical Focus Control Device and Optical Instrument Comprising The Same
JP2022071162A (en) * 2018-03-14 2022-05-13 ナノトロニクス イメージング インコーポレイテッド System, device, and method for automatic microscopic focus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595214A (en) * 1982-07-02 1984-01-12 Toshiba Corp Automatic focusing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595214A (en) * 1982-07-02 1984-01-12 Toshiba Corp Automatic focusing device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099497A1 (en) * 2001-06-04 2002-12-12 Fuji Photo Optical Co., Ltd. Device for determining focused state of taking lens
US6833538B2 (en) 2001-06-04 2004-12-21 Fuji Photo Optical Co., Ltd. Device for determining focused state of taking lens
FR2843809A1 (en) * 2002-08-23 2004-02-27 Fuji Photo Optical Co Ltd Picture-taking lens focus controlling system for video camera, has focus evaluation value generation device generating value indicating degree of sharpness of image and corrector correcting sensitivity of evaluation value
US7345706B2 (en) 2002-08-23 2008-03-18 Fuji Photo Optical Co., Ltd. Auto focus system
US7576796B2 (en) 2002-08-23 2009-08-18 Fujinon Corporation Auto focus system
DE10338249B4 (en) * 2002-08-23 2014-01-23 Fujifilm Corporation Autofocus device using the ratio of two focus evaluation values at positions of different optical path lengths
JP2007264151A (en) * 2006-03-28 2007-10-11 Sysmex Corp Sample imaging apparatus and sample analyzing apparatus equipped with the same
JP2014085217A (en) * 2012-10-23 2014-05-12 Nuflare Technology Inc Focus position detection device, inspection device, focus position detection method and inspection method
US9557277B2 (en) 2012-10-23 2017-01-31 Nuflare Technology, Inc. Inspection apparatus and inspection method
JP2022071162A (en) * 2018-03-14 2022-05-13 ナノトロニクス イメージング インコーポレイテッド System, device, and method for automatic microscopic focus
KR20220008044A (en) * 2020-07-13 2022-01-20 주식회사 에타맥스 Automatic Optical Focus Control Device and Optical Instrument Comprising The Same

Similar Documents

Publication Publication Date Title
EP0466277B1 (en) Passive ranging and rapid autofocusing
JP5869883B2 (en) Image processing device
JP5832424B2 (en) Imaging apparatus and distance measuring method
US7711201B2 (en) Method of and apparatus for generating a depth map utilized in autofocusing
WO2007058100A1 (en) In-focus detector
JPS58211721A (en) Focusing detecting method
JP3980799B2 (en) Automatic focusing device and focusing method thereof
US20070140677A1 (en) Automatic focusing methods and image capture devices utilizing the same
JPH08152550A (en) Automatic focusing device of microscope
JPH0328691B2 (en)
JPH0477289B2 (en)
JP3290606B2 (en) Autofocus device for microscope
JPS6236206B2 (en)
JPH08327891A (en) Patterned light projecting device
JPH11337812A (en) Autofocus device
JP3403447B2 (en) microscope
JPH1152221A (en) Focus detector and focus detecting method for microscope
JP2912691B2 (en) AF priority aperture control method
KR20190074585A (en) Method, apparatus and program stored in storage medium for focusing for video projector
JP2004037732A (en) Digital camera
JPH09127403A (en) Automatic focus detector
JP2004294076A (en) Apparatus and method for measuring modulation transfer function
JP3403445B2 (en) Automatic focusing device and microscope using this automatic focusing device
JP2893061B2 (en) Automatic focus adjustment device for microscope
JPS61143710A (en) Focus adjusting device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970212