JPH0815186A - Quantifying method for local internal strain of processed crystalline material - Google Patents

Quantifying method for local internal strain of processed crystalline material

Info

Publication number
JPH0815186A
JPH0815186A JP6147268A JP14726894A JPH0815186A JP H0815186 A JPH0815186 A JP H0815186A JP 6147268 A JP6147268 A JP 6147268A JP 14726894 A JP14726894 A JP 14726894A JP H0815186 A JPH0815186 A JP H0815186A
Authority
JP
Japan
Prior art keywords
diffraction
internal strain
measured
sample
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6147268A
Other languages
Japanese (ja)
Inventor
Genichi Shigesato
元一 重里
Riyuuji Uemori
龍治 植森
Hirobumi Morikawa
博文 森川
Takeshi Hamada
健 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6147268A priority Critical patent/JPH0815186A/en
Publication of JPH0815186A publication Critical patent/JPH0815186A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure a local internal strain amount in the infinitesimal region of a material having a large internal strain by obtaining an electron diffraction image from the region by using a transmission electron microscope for a crystalline material, and analyzing the integral width of a diffraction spot. CONSTITUTION:An electron diffraction image from an infinitesimal region is obtained by using a transmission electron microscope, and integral widths B01 (i=1, 2, 3,...) of a radial direction are measured for i-ary diffraction spots of primary to tertiary diffraction spots at the crystalline surface having an index of plane (h k l). Then, the extension of the spot of an original apparatus is removed for the respective G01, and the true integral width Bi of the measured original material is obtained. The diffraction angle of the i-ary diffraction spot is thetai, the wavelength of the incident electron beam is lambda, Bi.cos thetai/lambda is plotted at an ordinate axis and sin thetai/lambda is plotted at an abscissa axis. The plotted points are connected by linear lines, and the internal strain amount of the region is obtained by the inclination of the line.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加工された結晶質材料内
部の微小領域における内部歪量の測定方法に関するもの
であり、測定手段として電子回折像を用いるものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring an internal strain amount in a minute region inside a processed crystalline material, and uses an electron diffraction image as a measuring means.

【0002】[0002]

【従来の技術】結晶質材料の内部歪を定量化する事は、
材料を評価、管理する上で重要である。特に、加工によ
る歪の場所的不均一性、特に個々の結晶粒内での不均一
性(例えば粒界近傍、析出物周辺、変形帯等では他の部
分よりも歪量が大きいと考えられている)を定量的に評
価することは、加工材の再結晶挙動を解明する上で不可
欠であり、再結晶集合組織の制御技術を開発する上で極
めて重要である。この様なニーズに対応して、従来、鉄
鋼等の結晶質材料の内部歪量の測定方法としては、硬度
測定法、X線回折法等が一般に用いられている。
2. Description of the Related Art Quantifying the internal strain of a crystalline material is
It is important in evaluating and managing materials. In particular, the spatial non-uniformity of strain due to processing, especially the non-uniformity within individual crystal grains (for example, near the grain boundaries, around precipitates, deformation zones, etc., is considered to have a larger amount of strain than other portions. It is indispensable to elucidate the recrystallization behavior of the processed material and is extremely important in developing the control technology of the recrystallization texture. In response to such needs, conventionally, a hardness measuring method, an X-ray diffraction method, etc. have been generally used as a method for measuring the internal strain amount of a crystalline material such as steel.

【0003】まず硬度測定法は、例えば、R.E.Glenn,H.
H.Smith,D.J.Michel,Metallography,Vol.15,p.409-422
(1982) において述べられている様に、測定試料の硬度
が、試料の転位密度(歪量)に応じて変化することを利
用する測定方法であり、ある程度(例えば数μm以上の
分解能)の局所内部歪が評価できる。しかし、結晶中の
固溶元素や析出物も試料の硬度に影響を与え、硬度と転
位密度の相関が定かでないため、この方法で評価した局
所内部歪量は測定精度が低いという問題がある。また、
原理的にサブミクロン以下の領域について局所内部歪を
定量化する事は困難である。
First, the hardness measuring method is, for example, REGLEN, H.
H. Smith, DJ Michel, Metallography, Vol. 15, p. 409-422
As described in (1982), this is a measurement method that utilizes the fact that the hardness of the measurement sample changes according to the dislocation density (strain amount) of the sample, and it has a certain degree of local (resolution of several μm or more) locality. Internal distortion can be evaluated. However, the solid solution elements and precipitates in the crystals also affect the hardness of the sample, and the correlation between the hardness and the dislocation density is not clear, so that the local internal strain amount evaluated by this method has a problem that the measurement accuracy is low. Also,
In principle, it is difficult to quantify the local internal strain in the submicron region or less.

【0004】X線回折法は、例えばW.H.Hall,Proc.Phy
s.Soc.London,vol.62A,p.741-743(1949) において述べ
られている様に、歪によって回折線の幅が広がることを
利用した測定方法であるが、X線の照射領域を数10μ
m以下に絞ることが難しく、ミクロンオーダー以下の微
小領域の歪測定に応用することは実質的に不可能であ
る。そのため、多数の結晶粒の平均の内部歪量を精度良
く測定することはできるが、個々の結晶粒内での歪の不
均一性を評価することは困難である。
The X-ray diffraction method is, for example, WH Hall, Proc. Phy.
As described in s.Soc.London, vol.62A, p.741-743 (1949), this is a measurement method that utilizes the widening of the diffraction line due to strain. Tens of μ
It is difficult to narrow it down to m or less, and it is practically impossible to apply it to the strain measurement of a minute region of micron order or less. Therefore, the average internal strain amount of many crystal grains can be accurately measured, but it is difficult to evaluate the non-uniformity of strain within each crystal grain.

【0005】また近年、Y.Yoshitomi,K.Ohta,Y.Suga,T.
Nakayama,N.Takahashi,J.Japan Inst.Metals,vol.55,p.
22-28(1991) において述べられている様に、ECP(El
ectron Channeling Pattern )が内部歪の存在によって
不鮮明になることを利用した微小領域の内部歪評価方法
が考案されているが、歪量の小さい範囲(鉄鋼材料の場
合で圧延率15%程度以下)でしか測定できず、実用材
(例えば鉄鋼材料の冷延時には通常70%以上の圧延
率)の局所内部歪を評価する事は困難である。
In recent years, Y. Yoshitomi, K. Ohta, Y. Suga, T.
Nakayama, N.Takahashi, J.Japan Inst.Metals, vol.55, p.
22-28 (1991), as described in ECP (El
ectron Channeling Pattern) has been devised by utilizing the fact that it becomes unclear due to the presence of internal strain, but a method for evaluating internal strain in a minute area has been devised, but in the range where the amount of strain is small (rolling rate of about 15% or less for steel materials) However, it is difficult to evaluate the local internal strain of a practical material (for example, the rolling ratio is usually 70% or more when cold rolling a steel material).

【0006】この様に、従来の測定方法では、内部歪量
の大小にかかわらず、ミクロンオーダー以下の微小領域
における局所的な内部歪量を精度良く測定することが実
質上不可能であった。
As described above, according to the conventional measuring method, it is practically impossible to accurately measure the local internal strain amount in a micro area of micron order or less, regardless of the magnitude of the internal strain amount.

【0007】[0007]

【発明が解決しようとする課題】本発明は、大きな内部
歪を有する材料の微小領域における局所的な内部歪量を
精度良く測定することが困難であるという問題点を解決
することができる定量方法を提供する事を目的とする。
The present invention can solve the problem that it is difficult to accurately measure the local internal strain amount in a minute region of a material having a large internal strain. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明は、結晶質材料の
局所内部歪を測定する方法において、まず透過型電子顕
微鏡を用いて1μm〜10μmφの微小領域からの電子
回折像を得、面指数が(h k l)の結晶面による最
低次の回折スポットを選択し、更にこのスポットの少な
くとも3次以上までの高次の各回折スポットにつき、ラ
ジアル方向における積分幅B0i(i=1,2,3,4,
5・・・)を各々測定し、次いで、各々のB0iに対し、
参照試料についての前記同様の積分幅Bref,i を測定
し、装置由来のスポットの広がりを除去して、材料の内
部歪に由来する真の積分幅Bi を算出し、更に、各i次
の回折スポットの回折角度をθi 、入射電子線のドブロ
イ波長をλとし、Bi ・cos θi /λを縦軸に、sin θ
i /λを横軸にプロットし、プロットした点を直線で結
び、その傾きを求める事を特徴とする加工された結晶質
材料の局所内部歪の定量方法を要旨とする。
According to the present invention, in a method for measuring local internal strain of a crystalline material, an electron diffraction image from a minute region of 1 μm to 10 μmφ is first obtained using a transmission electron microscope, and a surface index is obtained. Is selected to be the lowest diffraction spot by the (h k l) crystal plane, and for each diffraction spot of higher order up to at least the third order of this spot, the integration width B 0i (i = 1, 2, 1) in the radial direction is selected. , 3, 4,
5 ...), and then for each B 0i ,
The same integral width B ref, i for the reference sample is measured, the spread of the spot derived from the device is removed, and the true integral width B i derived from the internal strain of the material is calculated. Let θ i be the diffraction angle of the diffracted spot and λ be the de Broglie wavelength of the incident electron beam, and let B i · cos θ i / λ be the vertical axis and sin θ
The gist is a method for quantifying the local internal strain of a processed crystalline material, which is characterized by plotting i / λ on the horizontal axis, connecting the plotted points with a straight line, and determining the slope.

【0009】[0009]

【作用】本発明者は、結晶質材料に関し、透過型電子顕
微鏡を用いて微小領域からの電子回折像を得、得られた
回折スポットの積分幅を回析する事によって、その局所
領域における内部歪量を定量化する事が可能となる事を
見いだし本発明を完成した。
With respect to the crystalline material, the inventor of the present invention obtains an electron diffraction image from a minute area by using a transmission electron microscope, and diffracts the integrated width of the obtained diffraction spot, thereby The present invention has been completed by finding that it becomes possible to quantify the amount of strain.

【0010】本発明が内部歪測定の対象としているもの
は鉄鋼などの結晶質材料である。ここで結晶質材料と
は、X線または電子線回折法等によって、少なくとも一
つの面指数系列(h k l)、(2h 2k 2
l)、・・・に対応する回折スポットが、各々他の面指
数に対応する回折スポットから明確に分離して測定でき
るものを指す。
The object of the present invention for internal strain measurement is a crystalline material such as steel. Here, the crystalline material means at least one plane index series (h kl), (2h 2k 2) by X-ray or electron beam diffraction method.
The diffraction spots corresponding to l), ... Can be measured separately from the diffraction spots corresponding to other surface indices.

【0011】測定すべき試料が均一でなく多相からなっ
ており、その中に結晶質でない部分または相があったと
しても、少なくとも一つの結晶質の相または一部分に結
晶質の部分が存在するならば、その領域に関して本発明
の定量方法を適用する事が可能である。
If the sample to be measured is not homogeneous and consists of multiple phases, even if there are non-crystalline portions or phases therein, at least one crystalline phase or portion has a crystalline portion. Then, the quantification method of the present invention can be applied to that region.

【0012】測定すべき結晶質材料は、まず通常の方
法、例えば電解研磨法、イオンミリング法、ミクロトー
ム法等によって透過型電子顕微鏡観察用の薄膜試料とす
る。薄膜試料の厚さは、加速電圧が400kVのTEM
を用いた場合、0.1μm〜0.7μmの範囲である事
が必要である。ここで0.1μmという下限値は試料中
の転位が試料表面に抜ける事を防ぐために必要であり、
0.7μmという上限値は電子線が試料を透過するため
に必要な条件である。
The crystalline material to be measured is first prepared into a thin film sample for transmission electron microscope observation by a usual method such as an electrolytic polishing method, an ion milling method and a microtome method. The thickness of the thin film sample is TEM with an acceleration voltage of 400 kV.
When using, it is necessary that the thickness is in the range of 0.1 μm to 0.7 μm. Here, the lower limit of 0.1 μm is necessary to prevent dislocations in the sample from escaping to the sample surface,
The upper limit of 0.7 μm is a condition necessary for the electron beam to pass through the sample.

【0013】次いで、上記薄膜試料を透過型電子顕微鏡
にセットして、明視野像を観察し、局所内部歪の測定を
おこなう領域を決定する。続いて、上記領域からの制限
視野電子回折像、またはマイクロディフラクション像を
観察し、局所歪測定に用いる一つの面指数系列(ih
ik il)(i=1,2,3,・・・)に対応する回
折スポットがあらわれている事を確認する。次いで、面
指数(h k l)に対するブラッグ条件が成立する様
に入射電子線に対する試料の角度を設定し、面指数(h
k l)に対応する回折スポットを記録媒体に記録す
る。このとき、内部歪を有する材料の電子回折法では、
菊地パターンが不鮮明、あるいは観察されないため正確
な電子線入射方位の判定が難しく、面指数(h k
l)に対するブラッグ条件を厳密に成立させる事は困難
である。
Then, the thin film sample is set in a transmission electron microscope, a bright field image is observed, and a region where the local internal strain is measured is determined. Subsequently, a selected area electron diffraction image or a micro-diffraction image from the above region is observed, and one surface index series (ih
ik il) (i = 1, 2, 3, ...) Confirm that diffraction spots appear. Next, the angle of the sample with respect to the incident electron beam is set so that the Bragg condition for the surface index (h k l) is satisfied, and the surface index (h
The diffraction spot corresponding to k l) is recorded on the recording medium. At this time, in the electron diffraction method of the material having internal strain,
Since the Kikuchi pattern is unclear or not observed, it is difficult to accurately determine the electron beam incident direction, and the surface index (h k
It is difficult to satisfy the Bragg condition for l) exactly.

【0014】そのため、まず、面指数(h k l)に
対するブラッグ条件がほぼ成立する様に入射電子線に対
する試料の角度を設定し、この状態で面指数(h k
l)に対応する回折スポットを記録媒体に記録し、次い
で、入射電子線に対する試料の角度をこの状態の近傍で
少しずつ変化させ、各々の状態において面指数(hk
l)に対応する回折スポットを記録する。後述する様
に、回折スポットを記録した後、その積分幅を測定する
が、その際、最も積分幅の値が小さいものを、面指数
(h k l)に対するブラッグ条件が成立した状態と
みなした。記録媒体は、例えばイメージングプレート
等、回折された電子線の実際の強度に対する記録した強
度の線形性が高く、ダイナミックレンジの広いものであ
れば良い。図1は、Ti添加極低炭素鋼の試料を観察し
た際に、面指数(1 1 0)および(1 0 1)に
対するブラッグ条件を成立させた場合に得られた電子回
折像を模式的に示したものである。
Therefore, first, the angle of the sample with respect to the incident electron beam is set so that the Bragg condition for the surface index (h k l) is substantially satisfied, and in this state, the surface index (h k l) is set.
The diffraction spot corresponding to 1) is recorded on a recording medium, and then the angle of the sample with respect to the incident electron beam is gradually changed in the vicinity of this state, and the surface index (hk
Record the diffraction spot corresponding to l). As will be described later, after recording the diffraction spot, the integral width thereof is measured. At that time, the one having the smallest integral width value is regarded as the state in which the Bragg condition for the surface index (h k l) is satisfied. . The recording medium may be, for example, an imaging plate or the like, which has a high linearity of the recorded intensity with respect to the actual intensity of the diffracted electron beam and has a wide dynamic range. FIG. 1 schematically shows electron diffraction images obtained when the Bragg conditions for the surface indices (1 10) and (1 0 1) were satisfied when observing a Ti-added ultra-low carbon steel sample. It is shown.

【0015】次いで、面指数(2h 2k 2l)に対
してブラッグ条件が成立する様に入射電子線に対する試
料の角度を設定し、面指数(2h 2k 2l)に対応
する回折スポットを記録媒体に記録する。以下、面指数
(2h 2k 2l)、(3h 3k 3l)・・・に
対応する一連の回折スポットに対して同様の手続きを行
って、各々の回折スポットを記録する。
Next, the angle of the sample with respect to the incident electron beam is set so that the Bragg condition is satisfied with respect to the surface index (2h 2k 2l), and a diffraction spot corresponding to the surface index (2h 2k 2l) is recorded on the recording medium. To do. Hereinafter, a similar procedure is performed for a series of diffraction spots corresponding to the surface indices (2h 2k 2l), (3h 3k 3l), and the respective diffraction spots are recorded.

【0016】この様に回折スポットの記録が終了後、面
指数(h k l)に対するブラッグ条件を成立させて
記録した電子回折像において、面指数(h k l)に
対応する回折スポットと原点(ダイレクトビーム位置)
を結ぶ直線方向(ラジアル方向)に沿って、その回折ス
ポットの強度分布を測定し、その積分幅を求め、これを
0iとする。図2は図1において面指数(1 1 0)
に対応する回折スポットについて測定した強度分布を模
式的に示したものである。
In this way, after the recording of the diffraction spot is completed, in the electron diffraction image recorded by satisfying the Bragg condition for the surface index (h k l), the diffraction spot corresponding to the surface index (h k l) and the origin ( Direct beam position)
The intensity distribution of the diffracted spot is measured along the straight line direction (radial direction) connecting the two, and the integrated width is obtained, and this is defined as B 0i . Fig. 2 shows the plane index (1 1 0) in Fig. 1.
3 schematically shows the intensity distribution measured for the diffraction spot corresponding to.

【0017】同様にして、面指数(2h 2k 2
l)、(3h 3k 3l)・・・に対応する一連の回
折スポットについて各々積分幅を測定し、これを各々B
02、B03、・・・とする。
Similarly, the surface index (2h 2k 2
l), (3h 3k 3l) ... A series of diffraction spots corresponding to (3h 3k 3l) ...
02 , B 03 , ...

【0018】次いで、上で測定したB0i(i=1,2,
3,・・・)から、装置由来による回折強度分布の広が
りの効果を取り除くために次の測定をおこなう。まず、
上で歪測定をした材料から内部歪を取り除く。これは通
常の焼鈍処理、例えば鉄鋼材料であれば真空下800℃
で10分間保持する事で達成できる。
Then, the B 0i (i = 1, 2,
3, ...), the following measurement is performed in order to remove the effect of the spread of the diffraction intensity distribution due to the device. First,
Remove the internal strain from the strain-measured material above. This is a normal annealing treatment, for example, 800 ° C under vacuum for steel materials.
It can be achieved by holding for 10 minutes.

【0019】この様にしてB0iを測定した結晶質材料か
ら得られた実質上内部歪を有しない結晶質材料(以下こ
れを参照試料と呼ぶ)から、先に述べた方法と同様の方
法で薄膜試料を作製し、B0iを測定した時と同様の条件
で、この参照材料からの薄膜試料の各面指数(h k
l)、(2h 2k 2l)、・・・に対応する回折ス
ポットの積分幅を測定する。この場合、歪を含んだ試料
の測定の場合と違って、菊地図形が観察されるために、
電子線入射方位が正確に測定でき、測定したい反射に対
するブラッグ条件をかなり厳密に成立させる事ができ
る。しかし、測定したい反射に対するブラッグ条件を成
立させると、対応する回折スポットに菊地線が重なるた
め、回折スポットの積分幅が測定できない。このため、
入射電子線に対する試料の角度を、測定したい反射に対
するブラッグ条件を成立させた状態から僅かに変化さ
せ、この状態で回折スポットの積分幅を測定し、これを
ref, i (i=1,2,3,・・・)とする。
From a crystalline material having substantially no internal strain (hereinafter referred to as a reference sample) obtained from the crystalline material whose B 0i was measured in this manner, the same method as that described above was used. Each surface index (h k of the thin film sample from this reference material was prepared under the same conditions as when the thin film sample was prepared and B 0i was measured.
l), (2h 2k 2l), ..., Integral widths of diffraction spots are measured. In this case, the chrysanthemum map shape is observed, which is different from the case of measurement of a sample containing strain.
The electron beam incident direction can be accurately measured, and the Bragg condition for the reflection to be measured can be established quite strictly. However, when the Bragg condition for the reflection to be measured is satisfied, the Kikuchi line overlaps with the corresponding diffraction spot, so the integrated width of the diffraction spot cannot be measured. For this reason,
The angle of the sample with respect to the incident electron beam is slightly changed from the state where the Bragg condition for the reflection to be measured is satisfied, and the integrated width of the diffraction spot is measured in this state, and this is calculated as B ref, i (i = 1, 2, , 3, ...).

【0020】B0iから装置由来の回折強度分布の広がり
の効果を除いた真の広がりBi はX線回折法で通常用い
られる方法、例えばWarren法(B.E.Warren,J.App
l.Phys.,12,375(1941))、Jones法(F.W.Jones,Pr
oc.Roy.Soc.,A166,376(1938))などによって求める事が
できる。
The true spread B i obtained by removing the effect of the spread of the diffraction intensity distribution derived from the apparatus from B 0i is a method usually used in the X-ray diffraction method, for example, Warren method (BEWarren, J.App.
l.Phys., 12,375 (1941)), Jones method (FWJones, Pr
oc.Roy.Soc., A166,376 (1938)) and the like.

【0021】この様にして求めた結晶質材料の局所内部
歪の情報を有する各面指数(ihik il)(i=
1,2,3・・・)に対応する回折スポットの真の積分
幅Bi に対して、面指数(ih ik il)に対応す
る電子線の回折角度をθi 、電子線のドブロイ波長をλ
とする。図3に模式的に示した様に、sin θi /λを横
軸に、Bi ・cos θi /λの値を縦軸にプロットし、直
線で結ぶ。Bi の値をラジアン単位で表した時のこの直
線の傾きが局所測定領域における内部歪量を与える。従
って、この傾きの値を100倍すれば%表示の内部歪量
が得られる。以下に本発明の内容を具体的に説明するた
めの実施例を示す。
Each plane index (ihik il) (i =) having information on the local internal strain of the crystalline material obtained in this way
1, 2, 3 ...) with respect to the true integration width B i of the diffraction spot, the diffraction angle of the electron beam corresponding to the surface index (ih ik il) is θ i , and the de Broglie wavelength of the electron beam is λ
And As schematically shown in FIG. 3, sin θ i / λ is plotted on the abscissa and the value of B i · cos θ i / λ is plotted on the ordinate, which are connected by a straight line. The slope of this straight line when the value of B i is expressed in radians gives the amount of internal strain in the local measurement region. Therefore, if the value of this inclination is multiplied by 100, the internal strain amount in% can be obtained. Examples for specifically explaining the content of the present invention will be shown below.

【0022】[0022]

【実施例】【Example】

(実施例1)4mm厚のTi添加極低炭素鋼(Mn:0.
09%,Al:0.05%,Ti:0.01%,C:
0.003%含有)熱延板を80%冷間圧延した材料
(以下これを冷延材と呼ぶ)と、これを真空下800℃
で10分間焼鈍した材料(以下これを焼鈍材と呼ぶ)
を、化学研磨と電解研磨で薄膜化した試料を作製した。
(Example 1) 4 mm thick Ti-added ultra-low carbon steel (Mn: 0.
09%, Al: 0.05%, Ti: 0.01%, C:
A material obtained by cold-rolling a hot-rolled sheet by 80% (containing 0.003%) (hereinafter referred to as a cold-rolled material) and 800 ° C. under vacuum.
Material annealed for 10 minutes (hereinafter referred to as "annealed material")
A thin film sample was prepared by chemical polishing and electrolytic polishing.

【0023】まず歪量の測定をおこなうために、冷延材
の試料を透過型電子顕微鏡にセットした。電子顕微鏡
は、加速電圧が400kV、フィラメント電流が約2μA
で、記録媒体としてイメージングプレートを装着したも
のを用いた。
First, a sample of a cold rolled material was set in a transmission electron microscope in order to measure the amount of strain. The electron microscope has an acceleration voltage of 400 kV and a filament current of about 2 μA.
Then, a recording medium equipped with an imaging plate was used.

【0024】明視野像を観察し、試料全体に転位が多数
存在する事を確認した後、制限視野電子回折像を得た。
電子回折像を得た領域は大きさ約20μmの結晶粒のほ
ぼ中央付近の領域で、制限視野絞りの大きさは直径0.
2μmと結晶粒の大きさに比べて十分小さく、電子線入
射方位はほぼ<1 1 1>方向であった。比較的試料
厚さの厚い領域(厚さ0.5μm程度)から電子回折像
を得たが、転位密度が高いため菊地線は観察されなかっ
た。
After observing the bright field image and confirming that many dislocations exist in the entire sample, a selected area electron diffraction image was obtained.
The region where the electron diffraction image was obtained is a region near the center of a crystal grain having a size of about 20 μm, and the size of the selected area diaphragm was 0.
The size was 2 μm, which was sufficiently smaller than the size of the crystal grain, and the electron beam incident direction was almost the <1 1 1> direction. An electron diffraction image was obtained from a region having a relatively large sample thickness (thickness of about 0.5 μm), but the Kikuchi line was not observed because of a high dislocation density.

【0025】回折強度分布の広がりを測定するに、ま
ず、試料を傾斜させ面指数(1 10)に対するブラッ
グ条件をほぼ成立させ、この状態で面指数(1 1
0)に対応する回折スポットをイメージングプレートに
記録し、次いで、試料傾斜角度をこの近傍で少しずつ変
化させ、面指数(1 1 0)に対応する回折スポット
をイメージングプレートに記録した。次に、この様にし
て記録した、各々の状態での面指数(1 1 0)に対
応する回折スポットから、その回折強度分布を各々測定
し、バックグラウンドの強度を差し引き、積分幅を求め
た。その結果、面指数(1 1 0)に対するブラッグ
条件をほぼ成立させた状態では、その積分幅は5.3×
10-4radianであり、この試料傾斜状態の近傍(<約5
×10-3radian)では、積分幅の値はほぼ一定であっ
た。面指数(1 1 0)に対するブラッグ条件を成立
させた状態から試料を大きく(約5×10-3radian以
上)傾斜させると、積分幅の値は大きくなっていった。
In order to measure the spread of the diffraction intensity distribution, first, the sample is tilted to substantially satisfy the Bragg condition for the surface index (1 10), and in this state, the surface index (1 1
The diffraction spot corresponding to 0) was recorded on the imaging plate, then the sample tilt angle was gradually changed in the vicinity thereof, and the diffraction spot corresponding to the surface index (1 10) was recorded on the imaging plate. Next, the diffraction intensity distributions were measured from the diffraction spots thus recorded corresponding to the surface index (1 10) in each state, and the background intensity was subtracted to obtain the integral width. . As a result, when the Bragg condition for the surface index (1 1 0) is almost satisfied, the integration width is 5.3 ×
10 -4 radian, which is near the tilted state of this sample (<about 5
In the case of × 10 −3 radian), the value of the integration width was almost constant. When the sample was tilted largely (about 5 × 10 −3 radian or more) from the state where the Bragg condition for the surface index (1 10) was satisfied, the value of the integration width became large.

【0026】以上のことから、面指数(1 1 0)に
対応する回折スポットの広がり(積分幅)を3.6×1
-4radianと評価した。同様の手法で面指数(2 2
0)、(3 3 0)、(4 4 0)、(5 5
0)に対応する回折スポットについて、各々の積分幅を
測定し、それぞれ3.8×10-4radian、4.2×10
-4radian、4.6×10-4radian、4.8×10-4radi
anと評価した。
From the above, the spread (integral width) of the diffraction spot corresponding to the surface index (1 1 0) is 3.6 × 1.
It was evaluated as 0 -4 radian. The surface index (2 2
0), (3 3 0), (4 4 0), (5 5
The integral width of each of the diffraction spots corresponding to 0) was measured to be 3.8 × 10 −4 radian and 4.2 × 10, respectively.
-4 radian, 4.6 × 10 -4 radian, 4.8 × 10 -4 radian
Evaluated as an.

【0027】次に、装置由来による回折強度分布の広が
りを測定するため、焼鈍材の試料を透過型電子顕微鏡に
セットした。明視野像で転位が観察されないことを確認
した後、制限視野電子回折像を観察した。電子回折像を
得た領域は大きさ約30μmの結晶粒のほぼ中央付近
で、制限視野絞りは、冷延材の測定の時と同じく、直径
0.2μmのものを用いた。電子線入射方位はほぼ<1
1 1>方向であった。転位がほとんど含まれず、比
較的試料厚さの厚い領域(厚さ0.5μm程度)から電
子回折像を得たため、電子回折像には菊地図形が鮮明に
観察された。
Next, in order to measure the spread of the diffraction intensity distribution due to the device, the sample of the annealed material was set in a transmission electron microscope. After confirming that no dislocation was observed in the bright field image, a selected area electron diffraction image was observed. The region where the electron diffraction image was obtained was near the center of the crystal grains having a size of about 30 μm, and the selected area diaphragm used had a diameter of 0.2 μm as in the measurement of the cold rolled material. Electron beam incident direction is almost <1
11> direction. Since the electron diffraction image was obtained from a region (thickness of about 0.5 μm) in which the dislocations were scarcely contained and the sample thickness was relatively large, the chrysanthemum map shape was clearly observed in the electron diffraction image.

【0028】菊地線を観察することによって、面指数
(1 1 0)に対するブラッグ条件が成立する様に入
射電子線に対する試料の角度を設定し、この状態の近傍
で、入射電子線に対する試料の角度を少しずつ変化させ
て、冷延材の測定の場合と同様の手法で回折スポットの
積分幅を測定した。この時、ブラッグ条件を成立させた
状態の近傍では菊地線が回折スポットに重なるため積分
幅の測定が不可能であり、この状態から入射電子線に対
する試料の角度を4×10-3radian以上変化させて積分
幅を測定した。その結果、ブラッグ条件が成立した状態
からの、入射電子線に対する試料の角度の変化が4×1
-3〜6×10-3radianの範囲内では積分幅は2.4×
10-4radianで一定であった。この事から面指数(1
1 0)に対応する回折スポットの、装置由来による回
折強度分布の広がり(積分幅)を2.4×10-4radian
と評価した。同様にして、面指数(2 2 0)、(3
30)、(4 4 0)、(5 5 0)に対応する
回折スポットの積分幅を測定すると、すべて2.4×1
-4radianであった。
By observing the Kikuchi ray, the angle of the sample with respect to the incident electron beam is set so that the Bragg condition with respect to the surface index (1 1 0) is established, and in the vicinity of this state, the angle of the sample with respect to the incident electron beam is set. Was changed little by little, and the integrated width of the diffraction spot was measured by the same method as in the measurement of the cold rolled material. At this time, the Kikuchi line overlaps the diffraction spot in the vicinity of the condition where the Bragg condition is satisfied, so that the integration width cannot be measured. From this condition, the angle of the sample with respect to the incident electron beam is changed by 4 × 10 -3 radian or more. Then, the integration width was measured. As a result, the change in the angle of the sample with respect to the incident electron beam after the Bragg condition is satisfied is 4 × 1.
The integration width is 2.4 × within the range of 0 −3 to 6 × 10 −3 radian.
It was constant at 10 −4 radian. From this, the area index (1
The spread (integral width) of the diffraction intensity distribution due to the device of the diffraction spot corresponding to 10) is 2.4 × 10 -4 radian.
It was evaluated. Similarly, the surface indices (2 2 0), (3
30), (4 4 0), and the integral width of the diffraction spots corresponding to (5 5 0) are all 2.4 × 1.
It was 0 -4 radian.

【0029】冷延材を用いて測定した各々の積分幅から
の装置由来の回折強度分布の広がりの効果を取り除くた
めの補正方法はWarren法を用いた。ただし、冷延
材、焼鈍材を用いた測定で得られた回折強度分布がいず
れもコーシー分布であると仮定した。この様にして求め
た真の回折強度分布の広がりBi をもとに作成したグラ
フを図4に示した。この直線の傾きから内部歪量を求め
ると7.57×10-3であった。
The Warren method was used as a correction method for removing the effect of the spread of the diffraction intensity distribution derived from the apparatus from each integral width measured using the cold rolled material. However, it was assumed that the diffraction intensity distributions obtained by the measurement using the cold rolled material and the annealed material were both Cauchy distributions. A graph created based on the spread B i of the true diffraction intensity distribution thus obtained is shown in FIG. The amount of internal strain was calculated from the slope of this straight line and found to be 7.57 × 10 −3 .

【0030】上記の内部歪測定を同一試料の同一領域に
おいて5回繰り返しておこない、内部歪測定の定量性に
関する再現性の試験をおこなった。その結果、測定値の
ばらつき(標準偏差σ)は0.09×10-3であった。
一方、上記の測定をおこなった材料と同じ材料を用い
て、X線回折法(W.H.Hall,Proc.Phys.Soc.London,vol.
62A,p.741-743(1949) )によってバルクの内部歪量を測
定した結果、内部歪量は8.36×10-3で、測定値の
ばらつきはσ=0.14×10-3であった。ただし測定
は5回おこなった。
The above internal strain measurement was repeated 5 times in the same region of the same sample, and a reproducibility test concerning the quantitativeness of the internal strain measurement was conducted. As a result, the variation in measured values (standard deviation σ) was 0.09 × 10 −3 .
On the other hand, X-ray diffraction method (WHHall, Proc. Phys. Soc. London, vol.
62A, p.741-743 (1949)), the internal strain amount of the bulk was measured. As a result, the internal strain amount was 8.36 × 10 -3 , and the variation of the measured value was σ = 0.14 × 10 -3 . there were. However, the measurement was performed 5 times.

【0031】(実施例2)実施例1で内部歪測定をおこ
なった冷延材の試料を用いて、冷延材の結晶粒界近傍で
の内部歪量を測定した。実施例1の場合と同様に、冷延
材の試料を透過型電子顕微鏡にセットし、明視野像を観
察し、試料全体に転位が多数観察される事を確認した
後、直径約30μmの結晶粒の結晶粒界近傍から電子回
折像を得た。実施例1の場合と同じく、制限視野絞りの
大きさは直径0.2μmで、電子回折像を得た領域の試
料厚さは0.5μm程度、電子線入射方位はほぼ<1
1 1>方位であった。
(Example 2) Using the sample of the cold rolled material for which the internal strain was measured in Example 1, the amount of internal strain in the vicinity of the crystal grain boundaries of the cold rolled material was measured. As in the case of Example 1, the cold rolled material sample was set in a transmission electron microscope, a bright field image was observed, and after confirming that many dislocations were observed in the entire sample, a crystal having a diameter of about 30 μm was observed. An electron diffraction image was obtained from the vicinity of the grain boundary of the grain. As in the case of Example 1, the size of the selected area diaphragm was 0.2 μm in diameter, the sample thickness in the region where the electron diffraction image was obtained was about 0.5 μm, and the electron beam incident direction was approximately <1.
11> orientation.

【0032】次いで、実施例1と同じ手法を用いて、面
指数(1 1 0)、(2 2 0)、(3 3
0)、(4 4 0)、(5 5 0)に対応する回折
スポットの積分幅を測定した。その結果、積分幅はそれ
ぞれ3.8×10-4radian、4.1、4.6×10-4ra
dian、5.0×10-4radian、5.4×10-4radianで
あった。
Then, using the same technique as in Example 1, the surface indices (1 1 0), (2 2 0), (3 3
0), (4 4 0), and the integral width of the diffraction spot corresponding to (5 5 0) were measured. As a result, the integration widths are 3.8 × 10 -4 radian, 4.1 and 4.6 × 10 -4 ra, respectively.
It was dian, 5.0 × 10 -4 radian and 5.4 × 10 -4 radian.

【0033】次いで、上で測定した各々の積分幅から装
置由来の回折強度分布の広がりの効果を取り除き真の積
分幅を各々求めた。装置由来の回折強度分布の広がり
(積分幅)は実施例1で求めた値を用いた。真の回折強
度分布の広がりを求めるための補正方法は、実施例1と
同じく、Warren法を用いた。この場合も測定した
回折強度分布はすべてコーシー分布であると仮定した。
Next, the true integration width was obtained by removing the effect of the spread of the diffraction intensity distribution derived from the apparatus from each integration width measured above. For the spread (integral width) of the diffraction intensity distribution derived from the device, the value obtained in Example 1 was used. As the correction method for obtaining the spread of the true diffraction intensity distribution, the Warren method was used as in Example 1. In this case as well, it was assumed that the measured diffraction intensity distributions were all Cauchy distributions.

【0034】この様にして求めた真の回折強度分布の広
がりを用いて、横軸にsin θi /λを、縦軸にBi ・co
s θi /λを取り、測定点を直線で結び(図5)、その
直線の傾きから、測定領域における内部歪量を求めた。
測定は5回おこない、その結果、上記領域における内部
歪量は10.2×10-3で、測定値のばらつきはσ=
0.10×10-3であった。
Using the spread of the true diffraction intensity distribution thus obtained, the horizontal axis represents sin θ i / λ and the vertical axis represents B i · co.
s θ i / λ was taken, the measurement points were connected by a straight line (FIG. 5), and the internal strain amount in the measurement region was obtained from the slope of the straight line.
The measurement was performed 5 times, and as a result, the internal strain amount in the above region was 10.2 × 10 −3 , and the variation of the measured value was σ =
It was 0.10 × 10 −3 .

【0035】(比較例)実施例1および2で局所内部測
定をおこなった材料と同じ材料を用いて、X線回折法
(W.H.Hall,Proc.Phys.Soc.London,vol.62A,p.741-743
(1949) )によってバルクの内部歪量を測定した。
(Comparative Example) Using the same material as the material used for the local internal measurement in Examples 1 and 2, an X-ray diffraction method (WHHall, Proc. Phys. Soc. London, vol. 62A, p. 741- 743
(1949)) to measure the amount of internal strain in the bulk.

【0036】測定に用いたX線は、Niフィルターを通
したCuKα線を、直径10μmのコリメーターで細束
化したものを用い、検出器には位置検出型比例計数管を
用いた。X線を細束化した事によるX線強度の減少を補
うため、X線出力は60kV、50mAと高出力にした。測
定試料は0.8mm厚の冷延材を10mm×10mmに切り出
し、試料面を入射X線に垂直にして試料台に取り付け
た。試料台はX線入射軸(水平軸)およびX線入射軸と
検出器を含む平面に垂直な軸(鉛直軸)の周りに回転可
能なものを用いた。測定装置の模式図を図6に示す。
The X-ray used for the measurement was a CuKα ray passed through a Ni filter, which was finely bundled with a collimator having a diameter of 10 μm, and a position detection type proportional counter tube was used as a detector. The X-ray output was set to a high output of 60 kV and 50 mA in order to compensate for the decrease in X-ray intensity due to the fine X-ray flux. A 0.8 mm thick cold-rolled material was cut into a size of 10 mm × 10 mm, and the measurement sample was mounted on a sample table with the sample surface perpendicular to the incident X-ray. The sample stage was rotatable about an X-ray incident axis (horizontal axis) and an axis (vertical axis) perpendicular to a plane including the X-ray incident axis and the detector. A schematic view of the measuring device is shown in FIG.

【0037】X線照射領域が結晶粒の大きさよりも小さ
いため、測定は1個の結晶粒についておこなっており、
ブラッグ条件を成立させるために、試料を水平軸の周り
に360°、鉛直軸の周りに±50°(試料面が入射X
線に対して垂直な状態を0°とする)回転させて測定し
た。その結果、8時間X線照射をおこなったが、回折X
線強度が弱く、回折強度分布は測定できなかった。また
X線照射をおこなっている結晶粒を特定することはでき
ず、まして結晶粒内のどの部分に照射されているかを判
別することは実質上不可能であった。
Since the X-ray irradiation area is smaller than the size of the crystal grain, the measurement is carried out for one crystal grain,
In order to satisfy the Bragg condition, the sample is 360 ° around the horizontal axis and ± 50 ° around the vertical axis (where the sample plane is incident X
The measurement was carried out by rotating the sample in a state perpendicular to the line at 0 °. As a result, X-ray irradiation was performed for 8 hours, but diffraction X
The line intensity was weak and the diffraction intensity distribution could not be measured. Further, it is impossible to specify the crystal grains that are being irradiated with X-rays, and it is virtually impossible to determine which part of the crystal grains is irradiated.

【0038】[0038]

【発明の効果】本発明の結晶質材料の局所内部歪の定量
方法は、大きな内部歪を有する材料の微小領域における
局所的な内部歪量を精度良く測定でき、かつその測定の
再現性に優れている。そのために、加工による材料内部
の歪の場所的不均一性を定量的に評価することが可能で
あり、加工材の再結晶挙動の解明に大きく寄与するもの
である。
The method of quantifying the local internal strain of a crystalline material of the present invention is capable of accurately measuring the local internal strain amount in a minute region of a material having a large internal strain and is excellent in the reproducibility of the measurement. ing. Therefore, it is possible to quantitatively evaluate the spatial non-uniformity of the strain inside the material due to the processing, which greatly contributes to the elucidation of the recrystallization behavior of the processed material.

【図面の簡単な説明】[Brief description of drawings]

【図1】Ti添加極低炭素鋼の面指数(1 1 1)お
よび(1 0 1)に対するブラッグ条件を成立させて
得られた電子回折像の模式図である。
FIG. 1 is a schematic diagram of an electron diffraction image obtained by satisfying the Bragg conditions for the surface indexes (1 1 1) and (1 0 1) of a Ti-added ultra-low carbon steel.

【図2】図1において面指数(1 1 0)に対応する
回折スポットについて測定した強度分布の模式図であ
る。ただしIは回折電子線強度、θは電子線回折角度で
ある。
FIG. 2 is a schematic diagram of an intensity distribution measured for a diffraction spot corresponding to a surface index (1 10) in FIG. Where I is the intensity of the diffracted electron beam, and θ is the electron beam diffraction angle.

【図3】面指数(ih ik il)(i=1,2,
3,・・・・)に対する回折スポットの材料由来の真の
積分幅をBi 、面指数(ih ik il)に対応する
電子線回折角度をθi 、電子線のドブロイ波長をλと
し、Bi ・cos θi /λを横軸に、sin θi /λを縦軸
にプロットし、直線で結んだものを模式的に示したもの
である。
FIG. 3 is a surface index (ih ik il) (i = 1, 2,
, ...)), the true integral width of the diffraction spot derived from the material is B i , the electron beam diffraction angle corresponding to the surface index (ih ik il) is θ i , and the de Broglie wavelength of the electron beam is λ. i · cos θ i / λ is plotted on the abscissa and sin θ i / λ is plotted on the ordinate, which is schematically shown as a straight line.

【図4】Ti添加極低炭素鋼の80%冷延材について、
面指数(i i 0)(i=1,2,3・・・)に対応
する回折スポットの材料由来の真の積分幅Bi を、各々
結晶粒内、結晶粒界近傍で測定し、Bi ・cos θi /λ
を横軸に、sin θi /λを縦軸にプロットし、直線で結
んだものである。ただしθi は面指数(i i0)(i
=1,2,3・・・)に対応する電子線回折角度、λは
電子線のドブロイ波長である。
FIG. 4 is an 80% cold rolled material of Ti-added ultra-low carbon steel.
The true integral width B i derived from the material of the diffraction spot corresponding to the surface index (i i 0) (i = 1, 2, 3 ...) Was measured in the crystal grains and in the vicinity of the crystal grain boundaries. i・ cos θ i / λ
Is plotted on the horizontal axis, and sin θ i / λ is plotted on the vertical axis, and they are connected by a straight line. Where θ i is the surface index (i i0) (i
= 1, 2, 3 ...), and λ is the de Broglie wavelength of the electron beam.

【図5】図4における材料を用いて実施例2に基づいて
得た真の回折強度分布の広がりをもとに作成したグラ
フ。
5 is a graph created based on the spread of the true diffraction intensity distribution obtained based on Example 2 using the material in FIG.

【図6】X線回折法に用いたX線回折強度分布測定器の
模式図である。
FIG. 6 is a schematic diagram of an X-ray diffraction intensity distribution measuring device used in an X-ray diffraction method.

【符号の説明】[Explanation of symbols]

1 ダイレクトビーム 2 面指数(1 1 0)に対応する回折スポッ
ト 3 面指数(1 0 1)に対応する回折スポッ
ト 4 面指数(0 1 1)に対応する回折スポッ
ト 5 面指数(1 1 0)に対応する回折スポッ
ト 6 面指数(1 0 1)に対応する回折スポッ
ト 7 面指数(0 1 1)に対応する回折スポッ
ト 8 X線発生装置 9 コリメーター 10 2軸回転試料台 11 試料 12 位置検出型比例計数間 13 入射X線 14 回折X線
1 Direct beam 2 Diffraction spot corresponding to surface index (1 1 0) 3 Diffraction spot corresponding to surface index (1 0 1) 4 Diffraction spot corresponding to surface index (0 1 1) 5 Surface index (1 1 0) Diffraction spot corresponding to 6 Diffraction spot corresponding to plane index (1 0 1) 7 Diffraction spot corresponding to plane index (0 1 1) 8 X-ray generator 9 Collimator 10 2-axis rotating sample stage 11 Sample 12 Position detection Type proportional count between 13 incident X-ray 14 diffracted X-ray

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱田 健 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ken Hamada 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Co., Ltd. Technology Development Division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加工された結晶質材料の局所内部歪を測
定する方法において、透過型電子顕微鏡を用いて0.
1μm〜10μmφの微小領域からの電子回折像を得、
面指数が(h k l)の結晶面による最低次の回折
スポットを選択し、更にこのスポットの少なくとも3次
以上までの高次の各回折スポットにつき、ラジアル方向
における積分幅B0i(i=1,2,3,・・・)を各々
測定し、次いで各々のB0iに対し、参照試料について
の前記同様の積分幅Bref,i を測定し、装置由来のスポ
ットの広がりを除去して、材料の内部歪に由来する真の
積分幅Bi を算出し、更に各i次の回折スポットの回
折角度をθi 、入射電子線のドブロイ波長をλとし、B
i ・cos θi /λを縦軸に、sin θi /λを横軸にプロ
ットし、前記のプロットした点を直線で結び、その傾
きを求める事を特徴とする加工された結晶質材料の局所
内部歪の定量方法。
1. A method for measuring a local internal strain of a processed crystalline material, the method comprising:
Obtain an electron diffraction image from a minute region of 1 μm to 10 μmφ,
The lowest diffraction spot of the crystal plane having a surface index of (h kl) is selected, and for each diffraction spot of higher order up to at least the third order, the integral width B 0i (i = 1 in the radial direction) is selected. , 2, 3, ...), and then for each B 0i , the same integration width B ref, i for the reference sample as described above is measured to remove the spread of the spot derived from the device, The true integral width B i derived from the internal strain of the material is calculated, and the diffraction angle of each i-th order diffraction spot is θ i , and the de Broglie wavelength of the incident electron beam is λ.
i · cos θ i / λ is plotted on the ordinate and sin θ i / λ is plotted on the abscissa, the plotted points are connected by a straight line, and the slope thereof is obtained. Method for quantifying local internal strain.
JP6147268A 1994-06-29 1994-06-29 Quantifying method for local internal strain of processed crystalline material Withdrawn JPH0815186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6147268A JPH0815186A (en) 1994-06-29 1994-06-29 Quantifying method for local internal strain of processed crystalline material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6147268A JPH0815186A (en) 1994-06-29 1994-06-29 Quantifying method for local internal strain of processed crystalline material

Publications (1)

Publication Number Publication Date
JPH0815186A true JPH0815186A (en) 1996-01-19

Family

ID=15426384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6147268A Withdrawn JPH0815186A (en) 1994-06-29 1994-06-29 Quantifying method for local internal strain of processed crystalline material

Country Status (1)

Country Link
JP (1) JPH0815186A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263739A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp Evaluation method of amount of distortion in local area of formed ferrite steel plate
JP2010014548A (en) * 2008-07-03 2010-01-21 Hitachi High-Technologies Corp Method for analysis of electron beam diffraction image and transmissive electron microscope
JP2017090083A (en) * 2015-11-04 2017-05-25 新日鐵住金株式会社 Radiation thickness measuring device, and its calibration method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263739A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp Evaluation method of amount of distortion in local area of formed ferrite steel plate
JP2010014548A (en) * 2008-07-03 2010-01-21 Hitachi High-Technologies Corp Method for analysis of electron beam diffraction image and transmissive electron microscope
JP2017090083A (en) * 2015-11-04 2017-05-25 新日鐵住金株式会社 Radiation thickness measuring device, and its calibration method

Similar Documents

Publication Publication Date Title
Rae Quantitative studies of thin foils in the transmission electron microscope
Goehner et al. Phase identification in a scanning electron microscope using backscattered electron Kikuchi patterns
Baba-Kishi Review Electron backscatter Kikuchi diffraction in the scanning electron microscope for crystallographic analysis
Rozgonyi et al. X‐Ray Determination of Stresses in Thin Films and Substrates by Automatic Bragg Angle Control
Gentsch et al. Measurement of the top bottom effect in scanning transmission electron microscopy of thick amorphous specimens
Schröder et al. Zero-loss energy filtering as improved imaging mode in cryoelectronmicroscopy of frozen-hydrated specimens
JP2004509356A (en) A method for quantifying texture homogeneity in polycrystalline materials.
Bishop et al. Crystalline effects in Auger electron spectroscopy
Pan et al. Quantitative imaging and diffraction of zeolites using a slow-scan CCD camera
Kobayashi et al. Experimental evaluation of uncertainty in sub-nanometer metrology using transmission electron microscopy due to magnification variation
US4990779A (en) Method and apparatus for evaluating strains in crystals
JPH0815186A (en) Quantifying method for local internal strain of processed crystalline material
Humphreys The determination of crystallographic textures from selected areas of a specimen by electron diffraction
Schwarzer Measurement of local textures with transmission and scanning electron microscopes
Thomas et al. Transmission electron microscopy at 2.5 MeV
US6462340B1 (en) Device for measuring crystal orientation and crystal distortion in polycrystalline materials
Smith et al. Progress towards quantitative high-resolution electron microscopy
JP3750762B2 (en) Evaluation method of fatigue damage of metal
Slade Jr et al. Study of Imperfections of Crystal Structure in Polycrystalline Materials: Low Carbon Alloy and Silicon Ferrite
Hashimoto et al. Construction and application of a 400 kV analytical atom resolution electron microscope
Kawasaki et al. Rapid mapping of texture in polycrystalline materials using an imaging plate on a synchrotron radiation source
Norton Application of the Microemission X-Ray Spectrograph. Comparison of Analyses from Small Areas
JP2650702B2 (en) Method and apparatus for evaluating crystal strain
Schafer et al. SAD pole figures in transmission and reflection using a high-grade CCD camera as an area detector
Martikainen et al. Determination of grain boundary rotation parameters from Kikuchi patterns. II. Experimental optimization of the analysis of grain boundary orientation relationships and verification of the accuracy of the proposed method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904