JPH0815184A - Method and apparatus for measuring x-ray diffraction - Google Patents

Method and apparatus for measuring x-ray diffraction

Info

Publication number
JPH0815184A
JPH0815184A JP6145226A JP14522694A JPH0815184A JP H0815184 A JPH0815184 A JP H0815184A JP 6145226 A JP6145226 A JP 6145226A JP 14522694 A JP14522694 A JP 14522694A JP H0815184 A JPH0815184 A JP H0815184A
Authority
JP
Japan
Prior art keywords
ray
sample
rays
diffracted
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6145226A
Other languages
Japanese (ja)
Inventor
Naoki Yamamoto
直樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6145226A priority Critical patent/JPH0815184A/en
Publication of JPH0815184A publication Critical patent/JPH0815184A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To accurately and efficiently improve a distortion distribution in the depth direction and the surface of an infinitesimal part in an LSI or a magnetic device. CONSTITUTION:A sample to be measured is radiated by a continuous X-ray beam. The luminance-energy distribution 5 (in which the distribution 1 of a distortionless layer and the distribution 6 of a distortion layer are superimposed) of a diffraction X-rays is obtained, and the distribution 1 of the distortionless layer is obtained from the distribution of the region 4 in which the distribution 6 is not superimposed on the distortion layer of the distribution 5. The distribution 1 is subtracted from the distribution 5 to obtain the distribution 6. The interval between the distortion layer existing in the X-ray radiating region and the lattice surface of the distortionless layer is separately obtained from the luminance-energy distribution 6 of the measured diffraction X-ray, and the distortion distribution of the depth direction is obtained by the X-ray radiating angle dependence of the energy distribution shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はX線回折測定方法及びX
線回折測定装置、更に詳しくいえば、微細なX線ビーム
を試料に照射し、試料からの回折X線の空間分布又はエ
ネルギを検出、分析する測定方法及び装置、特に、試料
の微小部の歪、応力等の解析に有効な測定方法及び測定
装置に関する。
The present invention relates to an X-ray diffraction measuring method and X-ray diffraction measuring method.
Line diffraction measuring apparatus, more specifically, a measuring method and apparatus for irradiating a sample with a fine X-ray beam to detect and analyze the spatial distribution or energy of diffracted X-rays from the sample, and in particular, distortion of a minute portion of the sample. The present invention relates to a measuring method and a measuring device effective for analyzing stress and the like.

【0002】[0002]

【従来の技術】LSI(Large Scale Integrated Circui
t)、磁気ディスクや磁気ヘッド等の磁気デバイスあるい
はその他高密度微細装置の開発及び生産では、それらを
構成する構造体の極微小部での応力や歪を非破壊で評価
できる技術の重要性が増大している。評価の対象である
試料が単結晶であったり、試料のの深さ方向の歪や応力
分布がある場合も測定できる装置として、近年、XLP
(X-ray Light Pipe)又はXGT(X-ray Guide Tube)と呼
ばれるガラス製の細管を用いて約5μm径の微細X線ビ
ームを達成し、それを用いたX線回折・蛍光X線分析装
置が報告されている(デイベロップメント・オブ・アン・
イノベイチブ・5 ミクロンメートルファイ・フォーカス
ド・エックス−レイ・ビーム・エネルギ−デイスパーシブ・
スペクトルメータ・アンド・イッツ・アプリケーション、・
ジャパニーズ・ジャーナル・オブ・アプライド・フィジック
ス、27巻、1988年.L2203−L2206頁、De
velopment of an Innovative 5μmφ Focused X-Ray Be
am Energy-DispersiveSpectrometer and its Applicati
on, Vol.27, 1988, pp.L2203-L2206)。この報告では、
格子歪を測定するために、エネルギ分散型X線回折法を
用いている。このエネルギ分散型X線回折法は、連続的
なスペクトル分布を持つ連続X線ビームを試料に対して
任意の方向から照射し、ブラッグの回折条件を満たした
回折X線のエネルギを求めることにより試料の格子面間
隔を求める。このエネルギ分散型X線回折法では、フィ
ルター等のX線の単色化機構が不要なため、輝度の低下
がなく、試料や検出器等を静止した状態でX線回折の測
定を行なうことができるため、微細X線を利用した分析
法に適している。
2. Description of the Related Art LSI (Large Scale Integrated Circui)
t), in the development and production of magnetic devices such as magnetic disks and magnetic heads, and other high-density microdevices, the importance of technology that enables non-destructive evaluation of stress and strain in the microscopic portions of the structures that compose them. It is increasing. In recent years, the XLP has been used as an apparatus capable of measuring even when the sample to be evaluated is a single crystal or has a strain or stress distribution in the depth direction of the sample.
(X -ray L ight P ipe) or to achieve a fine X-ray beam of approximately 5μm diameter with a glass capillary called XGT (X -ray G uide T ube ), X -ray diffraction and fluorescence using the same An X-ray analyzer has been reported (Development of Ann
Innovative 5 micron phi focused X-ray beam energy-dispersive
Spectrum Meter &It's Application,
Japanese Journal of Applied Physics, 27, 1988. L2203-L2206 page, De
velopment of an Innovative 5 μm φ Focused X-Ray Be
am Energy-Dispersive Spectrometer and its Applicati
on, Vol.27, 1988, pp.L2203-L2206). In this report,
The energy dispersive X-ray diffraction method is used to measure the lattice strain. This energy dispersive X-ray diffraction method irradiates a sample with a continuous X-ray beam having a continuous spectral distribution from an arbitrary direction, and obtains the energy of the diffracted X-ray that satisfies the Bragg diffraction condition. Find the lattice spacing of. This energy dispersive X-ray diffraction method does not require a monochromatic mechanism for X-rays such as a filter, so that there is no reduction in brightness and X-ray diffraction can be measured while the sample, detector, etc. are stationary. Therefore, it is suitable for an analysis method using fine X-rays.

【0003】[0003]

【発明が解決しようとする課題】上記従来知られている
エネルギ分散型X線回折法では、X線照射領域の深さ方
向の一部に歪層が存在する場合、一般に、歪による格子
面間隔の変化量が小さいため、歪層及び同じ面指数の無
歪層から回折してきた回折X線のエネルギ分布のピーク
は、X線の輝度−エネルギ関係図において、ほぼ同じエ
ネルギ近傍に重畳して現われる。上記報告では、これら
の回折X線のエネルギ分布から歪層の成分を分離するこ
となく、輝度が最大になるX線エネルギを求めて試料の
X線照射領域の格子面間隔をもとめ、同様にして同一の
試料の中で無歪の箇所を探し、その場所の測定格子面間
隔を求め、その変化率を歪としている。また、同一の試
料に無歪の箇所が無い場合は、被検物と同じ物質の粉末
の回折X線データを無歪状態の格子面間隔として利用し
ている。いずれも無歪の箇所と歪の箇所の測定の位置が
異なるため、測定結果は測定箇所の正確な歪とは言い難
い。さらに、上記従来のエネルギ分散型X線回折法で
は、試料の深さ方向に分布した歪層を精度良く評価する
ことが難しいという問題があった。
In the above-mentioned conventionally known energy dispersive X-ray diffraction method, when a strained layer exists in a part of the X-ray irradiation region in the depth direction, the lattice plane spacing due to strain is generally generated. , The peak of the energy distribution of the diffracted X-rays diffracted from the strained layer and the non-strained layer having the same surface index appears in the vicinity of the same energy in the X-ray luminance-energy relationship diagram. . In the above report, without separating the components of the strained layer from the energy distributions of these diffracted X-rays, the X-ray energy that maximizes the brightness is obtained, the lattice plane spacing of the X-ray irradiation region of the sample is determined, and similarly. A non-strained portion is searched for in the same sample, the measured lattice plane spacing at that location is obtained, and the rate of change is taken as the strain. Further, when there is no strain-free portion in the same sample, the diffraction X-ray data of the powder of the same substance as the test object is used as the lattice plane spacing in the strain-free state. In both cases, the measurement positions of the non-strained portion and the strained portion are different, so the measurement result cannot be said to be the accurate strain of the measured portion. Further, the conventional energy dispersive X-ray diffraction method has a problem that it is difficult to accurately evaluate the strained layer distributed in the depth direction of the sample.

【0004】本発明の主な目的は、X線照射域内の深さ
方向に歪層が存在する試料に対して、その微小部での歪
を正確に求められるX線回折測定方法及び装置を実現す
ることである。本発明の他の目的は、微小部の歪を求め
るのに適したエネルギ分散型X線回折測定法を改善し、
従来問題であった、歪を求めるために同一の評価対象物
の中で無歪の箇所を探したり、あるいは無歪箇所が無い
場合に用いていた粉末の回折X線データを利用すること
無く、所望箇所を測定するだけで歪が求められるように
するX線歪測定方法及び装置を実現するすることであ
る。
The main object of the present invention is to realize an X-ray diffraction measuring method and apparatus capable of accurately obtaining the strain in a minute portion of a sample having a strained layer in the depth direction within the X-ray irradiation region. It is to be. Another object of the present invention is to improve an energy dispersive X-ray diffraction measurement method suitable for obtaining strain of a minute portion,
The conventional problem was to search for a non-strained portion in the same evaluation object in order to obtain strain, or without using the powder diffraction X-ray data that was used when there was no non-strained portion. An object is to realize an X-ray strain measuring method and apparatus that can obtain strain only by measuring a desired portion.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明のX線回折測定方法は、試料に連続X線を所
望の角度から照射し、検出器を空間的に移動させ上記試
料からの回折X線を検出し、各照射角度において上記試
料から放射される回折X線の空間分布又はエネルギ分布
を求めるようにした。特に、深さ方向に歪層が存在する
試料の格子間隔及び歪を測定するために、回折X線の輝
度−エネルギ分布を求め、輝度−エネルギ分布の形状か
ら無歪層及び歪層によるに回折X線成分を分離して、そ
れぞれの格子面間隔を求め、無歪層及び歪層の変化率を
歪層の歪として評価する。同一のX線照射領域における
無歪層及び歪層によるに回折X線成分の分離は、無歪層
及び歪層から回折したX線が重畳した輝度−エネルギ分
布で、輝度がピークを示すエネルギからの広がりの狭い
分布から無歪層のみの第1の輝度−エネルギ分布を信号
処理によって求め、重畳した輝度−エネルギ分布から第
1の輝度−エネルギ分布を信号処理を差引き残余の分布
を歪層のみの第2の輝度−エネルギ分布として分離す
る。
In order to achieve the above object, the method of X-ray diffraction measurement of the present invention comprises irradiating a sample with continuous X-rays from a desired angle and moving the detector spatially from the sample. The X-ray diffracted X-rays were detected and the spatial distribution or energy distribution of the diffracted X-rays emitted from the sample at each irradiation angle was obtained. In particular, in order to measure the lattice spacing and strain of a sample in which a strained layer exists in the depth direction, the luminance-energy distribution of diffracted X-rays is obtained, and the shape of the luminance-energy distribution is used to diffract the strained layer and the strained layer. The X-ray components are separated, the respective lattice plane intervals are obtained, and the change rates of the strain-free layer and the strain layer are evaluated as the strain of the strain layer. The separation of the diffracted X-ray component by the strain-free layer and the strained layer in the same X-ray irradiation region is a luminance-energy distribution in which the X-rays diffracted from the strain-free layer and the strained layer are superimposed, and from the energy at which the luminance peaks. The first luminance-energy distribution of only the unstrained layer is obtained from the distribution with a narrow spread by signal processing, the first luminance-energy distribution is subtracted from the superimposed luminance-energy distribution by signal processing, and the residual distribution is distorted layer. The second luminance-energy distribution of only.

【0006】試料の深さ方向の歪分布を求める場合は、
試料に連続X線を照射角を種々設定し照射して、回折X
線を検出する検出器を移動させ、各設定したX線照射角
ごとに上記試料の同一面指数の格子面から回折した回折
X線を検出し、上記回折X線の輝度−エネルギ分布を求
め、上記輝度−エネルギ分布から試料の歪層及び無歪層
による輝度−エネルギ分布を分離し、上記X線照射角と
の関連より深さ方向の歪分布を求める信号処理を行う。
更に、連続X線に微細化(1μm以下)したX線を使用
し、試料上の照射点を移動し、各照射点において上記測
定処理を行うことによって、試料の面及び深さ方向の3
次元の歪分布を求めることができる。
When obtaining the strain distribution in the depth direction of the sample,
Diffract X-rays by irradiating the sample with continuous X-rays at various irradiation angles.
The detector for detecting the X-ray is moved, the diffracted X-ray diffracted from the lattice plane of the same plane index of the sample is detected for each set X-ray irradiation angle, and the brightness-energy distribution of the diffracted X-ray is obtained. The brightness-energy distribution by the strained layer and the non-strained layer of the sample is separated from the brightness-energy distribution, and signal processing is performed to obtain the strain distribution in the depth direction from the relationship with the X-ray irradiation angle.
Further, by using a miniaturized X-ray (1 μm or less) as the continuous X-ray, moving the irradiation point on the sample, and performing the above-described measurement processing at each irradiation point, the three points in the plane and the depth direction of the sample are measured.
The dimensional strain distribution can be obtained.

【0007】上記X線回折測定方法を実施するため、X
線回折測定装置として、測定すべき試料を搭載する試料
台と、連続X線を上記試料の表面に対して所望の角度か
ら照射するX線照射手段と、上記所望の射角における上
記試料から放射される回折X線を検出する検出器と、上
記検出器の信号から、空間分布又はエネルギを得る信号
処理手段を有し、かつ上記検出器を3次元的に移動可能
で、かつ試料上のX線照射位置を中心に回転可能とする
する駆動手段と、上記試料の表面が上記試料へ照射する
X線と上記回折X線とから形成される平面に垂直で、上
記試料の表面のX線の照射位置に対して上記格子面が上
記平面に対して垂直を保持した状態で回転可能なように
試料台を構成した。
In order to carry out the above X-ray diffraction measurement method, X
As a line diffraction measuring device, a sample stage on which a sample to be measured is mounted, X-ray irradiation means for irradiating the surface of the sample with a desired angle of X-rays, and radiation from the sample at the desired angle of incidence Has a detector for detecting the diffracted X-rays, and a signal processing means for obtaining a spatial distribution or energy from the signal of the detector, and the detector can be moved three-dimensionally, and X on the sample can be moved. A driving unit that is rotatable about a radiation irradiation position; a surface of the sample is perpendicular to a plane formed by the X-rays that irradiate the sample and the diffracted X-rays; The sample table was constructed so that it could rotate with the lattice plane held perpendicular to the plane with respect to the irradiation position.

【0008】[0008]

【作用】試料の中の歪層はその表面近傍に局在すること
が多い。このような場合、エネルギの高いX線は、歪層
を突き抜け、歪層下の内部の無歪層まで容易に到達でき
る。エネルギ分散法では、d=hc/(E・sin θ)で
示されるブラッグの回折式を用いる。ここでdは格子面
間隔、Eは回折X線のエネルギ、θは格子面に対するX
線の入射角であり、任意に選べる。hとcはそれぞれプ
ランクの定数と光速である。この式から明らかなよう
に、回折格子面に対して垂直方向に圧縮され圧縮歪が存
在する場合は歪層から回折したX線は、ブラッグの回折
式において、格子面間隔dが小さくなるため、回折X線
のエネルギEは大きくなる。逆に引張歪が存在する場合
は、格子面間隔dが大きくなるため、回折X線のエネル
ギEは小さくなる。従って、無歪層と歪層が混在する試
料に連続X線を照射して得られる回折X線のエネルギ分
布は図1のようになる。図1の(a)は無歪層と圧縮歪
の歪層が混在する場合で、無歪層からの回折X線のエネ
ルギ分布1(ピークエネルギ値3をもつ)の高エネルギ
側2に歪層による回折X線のエネルギ分布6が重畳し、
エネルギ分布5となる。図1の(b)は無歪層と伸長歪
の歪層が混在する場合で、無歪層からの回折X線のエネ
ルギ分布1(ピークエネルギ値3をもつ)の低エネルギ
側2に歪層による回折X線のエネルギ分布6が重畳し、
エネルギ分布5となる。従って、この分布のピークエネ
ルギ値3に対し、歪層からの回折X線が重畳した側と反
対側4では、無歪層からの回折X線のエネルギ分布形状
1をより正確に残している。
[Function] The strained layer in the sample is often localized near the surface thereof. In such a case, high-energy X-rays penetrate through the strained layer and can easily reach the non-strained layer inside the strained layer. In the energy dispersion method, the Bragg diffraction equation represented by d = hc / (E · sin θ) is used. Where d is the lattice spacing, E is the energy of the diffracted X-rays, and θ is the X with respect to the lattice plane.
It is the incident angle of the line and can be selected arbitrarily. h and c are Planck's constant and the speed of light, respectively. As is clear from this equation, when there is a compressive strain due to compression in the direction perpendicular to the diffraction grating surface, the X-ray diffracted from the strained layer has a smaller grating surface spacing d in the Bragg diffraction equation, The energy E of the diffracted X-ray becomes large. On the contrary, when the tensile strain is present, the lattice spacing d becomes large, and the energy E of the diffracted X-ray becomes small. Therefore, the energy distribution of the diffracted X-rays obtained by irradiating the sample in which the unstrained layer and the strained layer are mixed with the continuous X-rays is as shown in FIG. FIG. 1A shows a case where a strain-free layer and a strain layer having compressive strain coexist, and the strain layer is on the high energy side 2 of the energy distribution 1 (having a peak energy value 3) of the diffracted X-ray from the strain-free layer. The energy distribution 6 of the diffracted X-ray by
The energy distribution is 5. FIG. 1B shows a case where a non-strain layer and a strain layer with extension strain coexist, and the strain layer is on the low energy side 2 of the energy distribution 1 (having a peak energy value 3) of the diffracted X-ray from the non-strain layer. The energy distribution 6 of the diffracted X-ray by
The energy distribution is 5. Therefore, with respect to the peak energy value 3 of this distribution, the energy distribution shape 1 of the diffracted X-rays from the non-strained layer is left more accurately on the side 4 opposite to the side on which the diffracted X-rays from the strained layer are superposed.

【0009】本発明の好ましい実施形態では、重畳した
エネルギ分布5を検出し、この歪層からの回折X線が重
畳した側2と反対側4の分布形状より無歪層の回折X線
の全体のエネルギ分布1を求め、無歪層の格子面間隔を
導出し、さらに、重畳したX線のエネルギ分布5から上
記無歪層のエネルギ分布1を差引き、その残余から歪層
から回折してきたX線エネルギ分布6を求める。そして
エネルギ分布6から歪層の格子面間隔を求め、無歪域の
エネルギ分布1から求められた格子面間隔からの変化率
を歪層の歪とする。
In a preferred embodiment of the present invention, the superposed energy distribution 5 is detected, and the entire diffraction X-ray of the non-strained layer is obtained from the distribution shape on the side 2 and the side 4 on which the diffraction X-ray from the strained layer is superposed. Energy distribution 1 of the non-strained layer is derived, the energy distribution 1 of the non-strained layer is subtracted from the energy distribution 5 of the superposed X-rays, and the rest is diffracted from the strained layer. The X-ray energy distribution 6 is obtained. Then, the lattice plane spacing of the strained layer is obtained from the energy distribution 6, and the rate of change from the lattice plane spacing obtained from the energy distribution 1 in the non-strained region is taken as the strain of the strained layer.

【0010】試料の深さ方向の歪分布は次の方法で求め
る。図2に示すように、連続X線7の格子面への入射角
θを大きくすると、同じ格子面でも低エネルギのX線が
回折する。すなわち、歪層10からの回折X線のX線侵
入領域11全体から回折したX線の輝度−エネルギ分布
に対する影響度は大きくなる。これは、高入射角ほど回
折X線のエネルギが低くなり、図2の(b)のように、
歪層10以外の無歪層28からの回折X線量1が相対的
に小さくなるためである。一方、低角度から照射した場
合は、回折X線のエネルギが高くなるため、図2の
(a)のように、対象物へのX線侵入深さが深くなり、
歪層10の全体分布への影響度は相対的に小さくなる。
この影響度の角度依存性より深さ方向の歪分布を求め
る。特に表面近傍の数ミクロンメータ領域に歪層が存在
する試料の場合は、高角度入射では歪層より深い領域ま
でX線が侵入しなくなるため、この角度依存性より正確
に歪分布を求めることが可能になる。
The strain distribution in the depth direction of the sample is obtained by the following method. As shown in FIG. 2, when the incident angle θ of the continuous X-rays 7 on the lattice plane is increased, low-energy X-rays are diffracted even on the same lattice plane. That is, the degree of influence of the diffracted X-rays from the strained layer 10 on the luminance-energy distribution of the X-rays diffracted from the entire X-ray penetration region 11 becomes large. This is because the higher the incident angle, the lower the energy of the diffracted X-ray, and as shown in FIG.
This is because the diffraction X-ray dose 1 from the non-strain layer 28 other than the strain layer 10 becomes relatively small. On the other hand, when the irradiation is performed from a low angle, the energy of the diffracted X-rays becomes high, so that the X-ray penetration depth into the object becomes deep as shown in FIG.
The degree of influence on the overall distribution of the strained layer 10 is relatively small.
The strain distribution in the depth direction is obtained from the angle dependence of this degree of influence. In particular, in the case of a sample in which a strained layer exists in a region of several micrometers near the surface, X-rays do not penetrate into a region deeper than the strained layer at high-angle incidence, so that the strain distribution can be accurately determined from this angle dependence. It will be possible.

【0011】上述のように本発明では、X線照射域の歪
層と無歪域からの回折X線を同時に測定し、歪層と無歪
域の格子面間隔を別々に求めることができるため、従来
のような無歪の場合の格子面間隔を別途求める必要が無
く、被検物に即した正確な歪が求められる。また、微小
部のX線回折測定は、一般的に長時間要するため、別途
無歪域を測定する必要が無いことは歪評価の効率を飛躍
的に高める。
As described above, in the present invention, the strained layer in the X-ray irradiation region and the diffracted X-rays from the unstrained region can be simultaneously measured, and the lattice plane spacings in the strained layer and the unstrained region can be obtained separately. Since it is not necessary to separately obtain the lattice plane spacing in the case of no strain as in the conventional case, accurate strain according to the object to be inspected is required. Further, since X-ray diffraction measurement of a minute portion generally takes a long time, it is not necessary to separately measure the non-strained area, which dramatically improves the efficiency of strain evaluation.

【0012】さらに、微小部の深さ方向の歪分布が求め
られることにより、従来困難であった、多層配線等多層
構造体を基板表面に有するLSIの基板内歪分布の解析
が可能になり、応力による歪の発生を低減した信頼性の
高い半導体素子の開発が可能になる。
Further, by obtaining the strain distribution in the depth direction of the minute portion, it becomes possible to analyze the strain distribution within the substrate of an LSI having a multilayer structure such as multilayer wiring on the substrate surface, which has been difficult in the past. It becomes possible to develop a highly reliable semiconductor element in which the occurrence of strain due to stress is reduced.

【0013】[0013]

【実施例】【Example】

<実施例1>図3は本発明によるX線回折測定装置の一
実施例の構成を示す分解斜視図である。X線発生機16
から放射された連続X線はガラス細管支持台33に内挿
された微細X線ビーム形成用ガラス細管15を通過し、
試料23に照射される。ガラス細管15は内径が1mm
のガラス管の一部を加熱軟化させながら管軸両方向に引
っ張り伸ばすことにより作製されたもので、内径が0.
9μmで長さが250mmの細管である。ガラス細管1
5を通過した連続X線ビーム7は試料位置での径は0.
9μm径の微細なビームである。
<Embodiment 1> FIG. 3 is an exploded perspective view showing the construction of an embodiment of the X-ray diffraction measuring apparatus according to the present invention. X-ray generator 16
The continuous X-rays emitted from the glass tube 15 pass through the glass tube 15 for forming a fine X-ray beam, which is inserted in the glass tube support 33.
The sample 23 is irradiated. Glass thin tube 15 has an inner diameter of 1 mm
The glass tube was produced by pulling and stretching a part of the glass tube in both directions while heating and softening the glass tube.
It is a narrow tube with a length of 9 mm and a length of 250 mm. Glass tube 1
The diameter of the continuous X-ray beam 7 that has passed through 5 is 0.
It is a fine beam with a diameter of 9 μm.

【0014】試料23上のX線照射位置と照射角度を任
意に設定可能とするため、試料台(図示せず)は、試料
23を矢印17で示すように水平、垂直方向に平行移動
できる共に、矢印31で示すように照射位置を軸として
任意の方向に回転できるよう構成されている。試料23
から反射又は回折されたX線29はX線検出器18に加
えられる。試料の連続X線ビーム7の照射位置及び照射
角度を任意に設定できるように試料台を駆動する駆動装
置(図は省略されている。)が設けられている。X線検
出器18は試料台やX線照射系と独立して、検出素子の
面内方向及びX線照射位置を軸として矢印32に示す方
向に回転できるよう構成されている。すなわち、検出器
18の受光面が試料の照射位置に対向しながら3次元的
に移動できるように構成されている。X線検出器18は
エネルギを検出できるLiをドーピングしたSiからな
るX線半導体検出器(ソリッド ステート ディテクタ
Solid State Detector)が使用される。
Since the X-ray irradiation position and the irradiation angle on the sample 23 can be arbitrarily set, the sample table (not shown) can move the sample 23 in the horizontal and vertical directions in parallel as indicated by the arrow 17. , As shown by arrow 31, the irradiation position can be rotated in any direction. Sample 23
X-rays 29 reflected or diffracted from are applied to the X-ray detector 18. A drive device (not shown) is provided to drive the sample stage so that the irradiation position and irradiation angle of the continuous X-ray beam 7 on the sample can be arbitrarily set. The X-ray detector 18 is configured to be rotatable independently of the sample stage and the X-ray irradiation system in the direction indicated by the arrow 32 about the in-plane direction of the detection element and the X-ray irradiation position. That is, the light receiving surface of the detector 18 is configured to be movable three-dimensionally while facing the irradiation position of the sample. The X-ray detector 18 is an X-ray semiconductor detector (solid-state detector) made of Li-doped Si capable of detecting energy.
Solid State Detector) is used.

【0015】X線検出器18で検出されたX線はマルチ
チャンネルアナライザー19で信号変換され、エネルギ
ごとの輝度データに変換される。変換された信号はコン
ピュータ20で処理され、輝度とエネルギの関係を示す
スペクトル表示を行ったり、試料23の深さ方向の格子
間隔、歪分布等の演算処理を行う。
The X-rays detected by the X-ray detector 18 are signal-converted by the multi-channel analyzer 19 and converted into luminance data for each energy. The converted signal is processed by the computer 20 to perform spectrum display showing the relationship between brightness and energy, and calculation processing of the lattice spacing in the depth direction of the sample 23, strain distribution and the like.

【0016】図4は試料23であるLSIの一例の断面
図で有る。図4においてLSIはAlの多層配線21及び
0.05μm厚さのTi珪化物電極22を有する。36、
37及び38はそれぞれ拡散層、多結晶Si電極配線及
び層間絶縁膜である。以下、Si基板内35の歪を評価す
る実施例について説明する。Ti 珪化物電極22の端部
にX線ビーム7を照射したとき得られた回折X線のエネ
ルギスペクトルを図5に示す。スペクトルは照射領域内
に存在する物質から放射された蛍光X線24、X線発生
機16の特性X線25、Ti珪化物22からの回折X線2
6、そしてその電極下のSi単結晶基板35の(400)
格子面から回折したX線27を含む。
FIG. 4 is a cross-sectional view of an example of the LSI which is the sample 23. In FIG. 4, the LSI has a multilayer wiring 21 of Al and a Ti silicide electrode 22 having a thickness of 0.05 μm. 36,
Reference numerals 37 and 38 respectively denote a diffusion layer, a polycrystalline Si electrode wiring and an interlayer insulating film. Hereinafter, examples for evaluating the strain in the Si substrate 35 will be described. The energy spectrum of the diffracted X-rays obtained when the end portion of the Ti silicide electrode 22 is irradiated with the X-ray beam 7 is shown in FIG. The spectra are fluorescent X-rays 24 emitted from the substances existing in the irradiation area, characteristic X-rays 25 of the X-ray generator 16, and diffraction X-rays 2 from the Ti silicide 22.
6, and (400) of the Si single crystal substrate 35 under the electrode
It contains X-rays 27 diffracted from the lattice plane.

【0017】Si基板35から回折したX線の輝度−エ
ネルギ分布を拡大したものがの前述のが図1の(a)で
ある。このエネルギ分布は高エネルギ側に広がってお
り、先に述べたブラッグの回折式より照射領域内には、
Si基板35の表面((100)面)の垂直方向に格子
面が圧縮された歪層が存在することがわかった。図1の
(a)の輝度−エネルギ分布において歪層からの回折X
線の重畳成分が少ない側4の分布に合うガウス関数を求
め、これを無歪層からの回折X線のエネルギ分布1と
し、これを全体のエネルギ分布5から差引き、歪層から
のエネルギ分布6を求めた。歪層と無歪層のX線エネル
ギ分布のピークエネルギより上記歪層及び上記無歪層の
それぞれの格子面間隔を求め、無歪層からの歪層の格子
面間隔の変化率より、電極下の基板表面近傍には0.0
008の圧縮歪が存在することが分かった。この測定に
は約1時間要したが、無歪領域を探してその格子面間隔
から歪量を求めていた従来の方法の4分の1以下に短縮
された。
The above-mentioned FIG. 1 (a) is an enlarged view of the luminance-energy distribution of the X-ray diffracted from the Si substrate 35. This energy distribution spreads toward the high energy side, and according to the Bragg diffraction formula described above, the irradiation area is
It was found that there is a strained layer whose lattice plane is compressed in the direction perpendicular to the surface ((100) plane) of the Si substrate 35. Diffraction X from the strained layer in the luminance-energy distribution of FIG.
A Gaussian function that fits the distribution on the side 4 where the line superimposition component is small is obtained, and this is defined as the energy distribution 1 of the diffracted X-ray from the non-strained layer, and this is subtracted from the overall energy distribution 5 to obtain the energy distribution from the strained layer. I asked for 6. From the peak energy of the X-ray energy distribution of the strained layer and the non-strained layer, the lattice plane spacings of the strained layer and the non-strained layer are obtained, and the rate of change of the lattice plane spacing of the strained layer from the non-strained layer 0.0 near the substrate surface of
It was found that there was a compressive strain of 008. This measurement took about one hour, but it was shortened to less than one-fourth of that in the conventional method in which the strain-free region was searched for and the strain amount was calculated from the lattice plane spacing.

【0018】<実施例2>本発明による評価方法の他の
実施例を以下に説明する。使用したX線回折測定装置は
図3に示す装置と同じである。また、試料は図4に示し
たものと同じ構造をしたLSIであるが、Ti とSi 基
板を反応させる熱処理条件及びその結果形成されたTi珪
化物電極22の厚さが異なる試料について、実施例1で
は求めなかった電極下の基板35内の歪層の深さ方向の
歪分布を評価した。本実施例ではSi (400)回折面
に対するX線入射角θを8度から80度まで変えて、各
設定入射角ごとに実施例1と同様の方法で無歪層からの
回折X線のエネルギ分布1を求め、それぞれの角度にお
ける歪層からの回折X線成分6を抽出した。
<Embodiment 2> Another embodiment of the evaluation method according to the present invention will be described below. The X-ray diffraction measuring device used is the same as the device shown in FIG. The sample is an LSI having the same structure as that shown in FIG. 4, but the heat treatment conditions for reacting the Ti and Si substrates and the thickness of the Ti silicide electrode 22 formed as a result are different from each other. The strain distribution in the depth direction of the strain layer in the substrate 35 under the electrode which was not obtained in 1 was evaluated. In the present embodiment, the X-ray incident angle θ with respect to the Si (400) diffraction surface is changed from 8 degrees to 80 degrees, and the energy of the diffracted X-ray from the non-strained layer is changed by the same method as in Example 1 for each set incident angle. The distribution 1 was obtained, and the diffracted X-ray component 6 from the strained layer at each angle was extracted.

【0019】図6は、実施例2におけるX線の入射角を
変えた場合の回折X線の輝度−エネルギ分布図を示す。
同図で(a)、(b)及び(c)は、X線の入射角は、
(a)<(b)<(c)の順で大きくなる場合をしめ
す。図から明らかなように、X線の入射角が高角度の場
合は、全エネルギ分布12のなかに占める無歪層からの
回折X線の成分14は、歪層からの成分13より少なく
なる。このため、高角度入射における無歪層からのエネ
ルギ分布6の成分12は、低角度入射で求められた分布
1より、回折X線のエネルギ変化を考慮に入れて求め
た。
FIG. 6 is a luminance-energy distribution diagram of diffracted X-rays when the incident angle of X-rays in Example 2 was changed.
In (a), (b) and (c) of the figure, the incident angle of X-ray is
The case is shown in which (a) <(b) <(c) increases. As is clear from the figure, when the incident angle of the X-ray is high, the component 14 of the diffracted X-ray from the non-strained layer in the total energy distribution 12 is smaller than the component 13 from the strained layer. Therefore, the component 12 of the energy distribution 6 from the non-strained layer at high angle incidence was obtained from the distribution 1 obtained at low angle incidence, taking into account the energy change of the diffracted X-rays.

【0020】入射角を高角度にしたとき、無歪層からの
回折X線成分が検出できなくなる照射角を各層からの回
折X線成分の照射各依存性から求め、その角度における
回折X線のエネルギを求めることにより、Si 基板内へ
のX線の侵入深さを算出し、それより表面近傍に分布す
る歪層の深さを求めた。さらに、照射角を高角度にして
いくと回折を生じるX線のエネルギが低くなるため、X
線の侵入深さがさらに浅くなり、歪層内の歪量の深さ分
布を反映して回折X線のエネルギ分布が変化した。すな
わち、測定に用いた試料では、表面近傍になるほど圧縮
歪量が大きかったため、照射角が大きくなると共にエネ
ルギ分布のピーク値は高エネルギになった。
When the incident angle is set to a high angle, the irradiation angle at which the diffracted X-ray component from the unstrained layer cannot be detected is determined from the irradiation dependences of the diffracted X-ray component from each layer, and the diffracted X-ray component at that angle is determined. By calculating the energy, the penetration depth of X-rays into the Si substrate was calculated, and the depth of the strained layer distributed in the vicinity of the surface was calculated. Furthermore, as the irradiation angle is increased, the energy of X-rays that cause diffraction decreases, so that X
The penetration depth of the line became shallower, and the energy distribution of the diffracted X-ray changed, reflecting the depth distribution of the strain amount in the strained layer. That is, in the sample used for the measurement, the amount of compressive strain increased toward the surface, so that the irradiation angle increased and the peak value of the energy distribution became high energy.

【0021】図7は上記歪層内にX線侵入深さが留まる
範囲の照射角において、各照射角ごとのエネルギ分布の
変化量より各深さにおける歪量を求めたものを示す。図
において、39、40及び41はそれぞれTi珪化物膜
厚の100nm(瞬間ランプ熱処理を施した場合)、T
i珪化物膜厚の50nm(瞬間ランプ熱処理を施した場
合)及びTi珪化物膜厚の100nm(電気炉で熱処理
を施した場合)を示す。形成したTi珪化物の厚さが厚
いほど基板内に生じる歪量が大きく、電気炉熱処理と瞬
間ランプ熱処理では後者の方が歪量が大きいことがわ
る。
FIG. 7 shows the strain amount at each depth obtained from the change amount of the energy distribution for each irradiation angle in the irradiation angle within the range where the X-ray penetration depth remains in the strained layer. In the figure, 39, 40, and 41 are Ti silicide film thicknesses of 100 nm (in case of instantaneous lamp heat treatment) and T, respectively.
The i-silicide film thickness is 50 nm (when instantaneous lamp heat treatment is applied) and the Ti silicide film thickness is 100 nm (when heat treatment is performed in an electric furnace). The larger the thickness of the formed Ti silicide, the larger the amount of strain generated in the substrate. In the electric furnace heat treatment and the instantaneous lamp heat treatment, the latter has a larger strain amount.

【0022】本実施例より、従来測定ができなかった多
層配線層を有するLSIのSi 基板内の歪分布を、チッ
プ状態のままで評価できることがわかった。なお、上記
の各実施例では、LSIのSi 単結晶基板内の歪分布を
求めたが、これらの歪測定装置および歪測定方法は、磁
気ヘッドのセラミック磁性体部分のような多結晶体にも
適用できることは言うまでもない。また、近年注目され
ているマイクロマシンの微小部での歪も、ほぼ同様の方
法で評価できる。なお、X線照射位置を移動させながら
上記の歪測定を行うことにより、試料の面方向及び深さ
方向における歪の3次元分布を求めることができる。
From this example, it was found that the strain distribution in the Si substrate of the LSI having the multilayer wiring layer, which could not be measured conventionally, can be evaluated in the chip state. In each of the above embodiments, the strain distribution in the Si single crystal substrate of the LSI was obtained. However, these strain measuring devices and strain measuring methods can be applied to a polycrystalline body such as a ceramic magnetic body portion of a magnetic head. It goes without saying that it can be applied. Further, the strain in the minute part of the micromachine, which has been receiving attention in recent years, can be evaluated by almost the same method. By performing the above strain measurement while moving the X-ray irradiation position, the three-dimensional distribution of strain in the plane direction and the depth direction of the sample can be obtained.

【0023】[0023]

【発明の効果】本発明によれば、一度の測定で歪層と無
歪層の格子面間隔が求められるため、歪評価の時間を短
縮でき、かつその歪層の深さ方向歪分布が求められる。
さらに歪評価の探針に微細X線ビームを用いているた
め、LSIや磁気デバイスなどにおいて、従来難しかっ
た多層構造体の下に存在する層の数μm以下の微細領域
の歪評価を上層が存在したままの状態で行える。また、
X線照射位置を移動しながら評価することにより、面内
と深さ方向の3次元歪分布を求めることができる。
According to the present invention, since the lattice plane distance between the strained layer and the non-strained layer can be obtained by one measurement, the strain evaluation time can be shortened and the strain distribution in the depth direction of the strained layer can be obtained. To be
Further, since a fine X-ray beam is used as a probe for strain evaluation, an upper layer exists for strain evaluation of a fine region of several μm or less of a layer existing under a multilayer structure, which has been difficult in the past in LSIs and magnetic devices. You can do it as it is. Also,
By evaluating while moving the X-ray irradiation position, the three-dimensional strain distribution in the plane and in the depth direction can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】X線照射領域内に歪層と無歪層が存在する試料
からの回折X線の輝度−エネルギ分布図。
FIG. 1 is a luminance-energy distribution diagram of diffracted X-rays from a sample in which a strained layer and a non-strained layer exist in an X-ray irradiation region.

【図2】X線照射角(入射角)とX線侵入深さの関係
図。
FIG. 2 is a relationship diagram of an X-ray irradiation angle (incident angle) and an X-ray penetration depth.

【図3】本発明によるX線回折測定装置の一実施例の構
成を示す図。
FIG. 3 is a diagram showing the configuration of an embodiment of an X-ray diffraction measuring device according to the present invention.

【図4】本発明の一実施例に使用した試料であるLSI
の断面図。
FIG. 4 is an LSI that is a sample used in one embodiment of the present invention.
Sectional view of.

【図5】図4の試料から得られたX線のエネルギスペク
トル。
5 is an X-ray energy spectrum obtained from the sample of FIG.

【図6】X線照射角と回折X線の輝度−エネルギ分布の
関係図。
FIG. 6 is a diagram showing the relationship between the X-ray irradiation angle and the luminance-energy distribution of diffracted X-rays.

【図7】Ti珪化物電極の下のSi基板内深さ方向歪分布。FIG. 7: Strain distribution in the depth direction in the Si substrate under the Ti silicide electrode.

【符号の説明】[Explanation of symbols]

1…無歪層から回折したX線の輝度−エネルギ分布、 2…歪層からのX線が重畳し、分布が広がった側の回折
X線輝度−エネルギ分布、 3…ピークエネルギ値、 4…歪層からの回折X線が重畳していない側の輝度−エ
ネルギ分布、 5…歪層と無歪層からの回折X線の全体の輝度−エネル
ギ分布、 6…全エネルギ分布から無歪層からの分布を差し引いた
残余の分布、 7…照射した微細径の連続X線ビーム、 8…回折格子面、 9…X線入射(照射)角、 10…歪層、 11…X線侵入領域、 12…歪層と無歪層全体からの回折X線の輝度−エネル
ギ分布における面積、 13…重畳歪成分の面積、 14…無歪層からの回折X線成分の面積、 15…微細X線ビーム形成用ガラス細管、 16…X線発生機、 17…試料台移動方向、 18…X線検出器、 19…マルチチャンネルアナライザー、 20…コンピュータ、 21…多層Al配線、 22…Ti珪化物、 23…被検対象物、 24…蛍光X線、 25…X線発生機からの特性X線、 26…Ti珪化物からの回折X線、 27…Si単結晶基板の(400)格子面からの回折X
線、 28…無歪層、 29…回折X線、 30…蛍光X線、 31…試料台の回転軸、 32…検出器の回転方向、 33…微細X線ビーム形成用ガラス細管支持台、 34…評価装置チャンバー、 35…Si基板、 36…拡散層、 37…多結晶Si電極配線、38…層間絶縁膜、 39…Ti珪化物膜厚の100nm(瞬間ランプ熱処理
を施した場合)、 40…Ti珪化物膜厚の50nm(瞬間ランプ熱処理を
施した場合)、 41…Ti珪化物膜厚の100nm(電気炉で熱処理を
施した場合)。
1 ... Brightness-energy distribution of X-rays diffracted from the non-strained layer, 2 ... Diffraction X-ray brightness-energy distribution on the side where the X-rays from the strained layer are superposed and the distribution is widened, 3 ... Peak energy value, 4 ... Brightness-energy distribution on the side where the diffracted X-rays from the strained layer do not overlap, 5 ... Overall brightness-energy distribution of diffracted X-rays from the strained layer and the non-strained layer, 6 ... From the total energy distribution to the non-strained layer Residual distribution obtained by subtracting the distribution of 7 ... Irradiated fine X-ray beam, 8 ... Diffraction grating surface, 9 ... X-ray incident (irradiation) angle, 10 ... Strained layer, 11 ... X-ray penetration area, 12 ... area in luminance-energy distribution of diffracted X-rays from the entire strained layer and unstrained layer, 13 ... area of superimposed strain component, 14 ... area of diffracted X-ray component from unstrained layer, 15 ... fine X-ray beam formation Glass tube, 16 ... X-ray generator, 17 ... Sample stage moving direction, 18 ... X-ray Deliverer, 19 ... Multi-channel analyzer, 20 ... Computer, 21 ... Multi-layer Al wiring, 22 ... Ti silicide, 23 ... Inspected object, 24 ... Fluorescent X-ray, 25 ... Characteristic X-ray from X-ray generator, 26 ... Diffraction X-ray from Ti silicide, 27 ... Diffraction X from (400) lattice plane of Si single crystal substrate
Rays, 28 ... Unstrained layer, 29 ... Diffracted X-rays, 30 ... Fluorescent X-rays, 31 ... Rotation axis of sample stage, 32 ... Rotation direction of detector, 33 ... Glass capillary support for forming fine X-ray beam, 34 ... Evaluation apparatus chamber, 35 ... Si substrate, 36 ... Diffusion layer, 37 ... Polycrystalline Si electrode wiring, 38 ... Interlayer insulating film, 39 ... Ti silicide film thickness of 100 nm (when subjected to instantaneous lamp heat treatment), 40 ... Ti silicide film thickness of 50 nm (when instantaneous lamp heat treatment is applied), 41 ... Ti silicide film thickness of 100 nm (when heat treatment is performed in an electric furnace).

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】測定すべき試料を搭載する試料台と、連続
X線を上記試料の表面に対して所望の角度から照射する
X線照射手段と、上記所望の射角における上記試料から
放射される回折X線を検出する検出器と、上記検出器の
信号から、空間分布又はエネルギを得る信号処理手段を
有し、かつ上記検出器を3次元的に移動可能で、かつ試
料上のX線照射位置を中心に回転可能とするする駆動手
段と、上記試料内の所望結晶格子面が上記試料へ照射す
るX線と上記回折X線とから形成される平面に垂直で、
上記試料の表面のX線の照射位置に対して上記格子面が
上記平面に対して垂直を保持した状態で回転可能なよう
に試料台が構成されたことを特徴とするX線回折測定装
置。
1. A sample stage on which a sample to be measured is mounted, X-ray irradiating means for irradiating the surface of the sample with a continuous X-ray from a desired angle, and radiation from the sample at the desired angle of incidence. X-ray on the sample, which has a detector for detecting diffracted X-rays and a signal processing means for obtaining a spatial distribution or energy from the signal of the detector, and which can move the detector three-dimensionally A driving unit that is rotatable about an irradiation position, and a desired crystal lattice plane in the sample is perpendicular to a plane formed by the X-rays that irradiate the sample and the diffracted X-rays,
An X-ray diffraction measuring apparatus, wherein a sample table is configured so as to be rotatable with respect to an X-ray irradiation position on the surface of the sample while the lattice plane is kept perpendicular to the plane.
【請求項2】上記信号処理手段が上記検出器からの信号
から回折X線の輝度−エネルギ分布を求めるスペクトル
アナライザと、上記輝度−エネルギ分布から上記試料の
X線照射位置における格子間隔及び格子歪を求める信号
処理手段をもつことを特徴とするX線回折測定装置。
2. A spectrum analyzer for obtaining the luminance-energy distribution of diffracted X-rays from the signal from the detector by the signal processing means, and a lattice spacing and lattice distortion at the X-ray irradiation position of the sample from the luminance-energy distribution. An X-ray diffraction measuring apparatus having a signal processing means for obtaining
【請求項3】試料に連続X線を照射し、上記試料からの
回折X線を検出し、上記回折X線の輝度−エネルギ分布
を求め、上記輝度−エネルギ分布を求め試料の評価する
方法において、上記試料に対する上記連続X線の入射角
を固定しておき、上記回折X線を検出する検出器を移動
させ、回折X線の空間分布あるいはエネルギもしくはこ
れらの両者を検出する信号処理を行うことを特徴とする
X線回折測定方法。
3. A method for evaluating a sample by irradiating a sample with continuous X-rays, detecting diffracted X-rays from the sample, obtaining a brightness-energy distribution of the diffracted X-rays, and obtaining the brightness-energy distribution. , Fixing the incident angle of the continuous X-rays to the sample, moving the detector for detecting the diffracted X-rays, and performing signal processing for detecting the spatial distribution or energy of the diffracted X-rays or both of them. An X-ray diffraction measurement method characterized by:
【請求項4】上記信号処理において、X線侵入深さ内の
一部に歪層が存在する被検対象物に連続X線を照射した
とき得られる回折X線の輝度−エネルギ分布において、
歪層と無歪層の同一面指数の結晶面で回折し、ほぼ同じ
エネルギ域に重畳した回折X線輝度−エネルギ分布か
ら、上記無歪層からの回折X線成分を分離抽出し、無歪
層の格子面間隔を求め、分離されて残った回折X線の輝
度−エネルギ分布から歪層の格子面間隔を求めることを
特徴とする請求項3記載のX線回折測定方法。
4. The luminance-energy distribution of diffracted X-rays obtained by irradiating an object to be inspected having a strained layer in a part of the X-ray penetration depth with continuous X-rays in the signal processing,
Diffracted X-ray components from the unstrained layer are separated and extracted from the diffracted X-ray luminance-energy distribution which is diffracted by the crystal planes of the same plane index of the strained layer and the unstrained layer and is superimposed on almost the same energy region, and the strain-free layer 4. The X-ray diffraction measurement method according to claim 3, wherein the lattice plane spacing of the layer is obtained, and the lattice plane spacing of the strained layer is obtained from the luminance-energy distribution of the diffracted X-rays remaining after separation.
【請求項5】上記無歪層からの回折X線成分を分離抽出
し、無歪層の格子面間隔を求める処理において、上記輝
度−エネルギ分布で、輝度がピークを示すエネルギから
の広がりが狭い方の分布から、上記無歪層の回折X線の
輝度−エネルギ分布を求める処理をおこなうことを特徴
とする請求項3又は4記載のX線回折測定方法。
5. In the process of separating and extracting the diffracted X-ray component from the non-strain layer to obtain the lattice plane spacing of the non-strain layer, the spread from the energy at which the brightness peaks in the brightness-energy distribution is narrow. The X-ray diffraction measuring method according to claim 3 or 4, wherein the luminance-energy distribution of the diffracted X-ray of the non-strained layer is obtained from the other distribution.
【請求項6】試料に連続X線を種々の照射角で照射し
て、回折X線を検出する検出器を移動させ、各射角ごと
に上記試料の同一面指数の格子面から回折した回折X線
を検出し、上記回折X線の輝度−エネルギ分布を求め、
上記輝度−エネルギ分布から試料の歪層及び無歪層によ
る輝度−エネルギ分布を分離し、上記X線照射角との関
連より上記試料の回折X線から空間分布あるいはエネル
ギもしくはこれらの両者を検出する信号処理を行う深さ
方向の歪分布を求める信号処理を行うことを特徴とする
X線回折測定方法。
6. Diffraction obtained by irradiating a sample with continuous X-rays at various irradiation angles, moving a detector for detecting diffracted X-rays, and diffracting from the lattice plane of the same plane index of the sample for each angle of incidence. X-rays are detected, and the luminance-energy distribution of the diffracted X-rays is obtained.
The luminance-energy distribution by the strained layer and the non-strained layer of the sample is separated from the luminance-energy distribution, and the spatial distribution or energy or both of them are detected from the diffracted X-ray of the sample in relation to the X-ray irradiation angle. An X-ray diffraction measurement method, which comprises performing signal processing for obtaining a strain distribution in a depth direction for performing signal processing.
【請求項7】上記試料の表面近傍の層の歪成分を求める
場合には、高角度からX線を照射し、上記試料の上記表
面近傍より深い層の歪成分を求める場合は上記高角度よ
り低角度からX線を照射することを特徴とする請求項6
記載のX線回折測定方法。
7. A strain component of a layer near the surface of the sample is irradiated with X-rays from a high angle, and a strain component of a layer deeper than the surface of the sample is determined from the high angle. 7. The X-ray is emitted from a low angle.
The described X-ray diffraction measurement method.
【請求項8】上記試料上のX線照射位置を移動させ、各
移動位置における上記格子間隔又は歪分布の少なくとも
一方を求め、上記試料の面内と深さ方向の3次元の格子
間隔又は歪分布を求めることを特徴とする請求項3ない
し7の一に記載のX線回折測定方法。
8. An X-ray irradiation position on the sample is moved to obtain at least one of the lattice spacing or strain distribution at each moving position, and the three-dimensional lattice spacing or strain in the plane and the depth direction of the sample is obtained. The X-ray diffraction measurement method according to claim 3, wherein a distribution is obtained.
JP6145226A 1994-06-28 1994-06-28 Method and apparatus for measuring x-ray diffraction Pending JPH0815184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6145226A JPH0815184A (en) 1994-06-28 1994-06-28 Method and apparatus for measuring x-ray diffraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6145226A JPH0815184A (en) 1994-06-28 1994-06-28 Method and apparatus for measuring x-ray diffraction

Publications (1)

Publication Number Publication Date
JPH0815184A true JPH0815184A (en) 1996-01-19

Family

ID=15380266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6145226A Pending JPH0815184A (en) 1994-06-28 1994-06-28 Method and apparatus for measuring x-ray diffraction

Country Status (1)

Country Link
JP (1) JPH0815184A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151882A (en) * 1997-08-07 1999-02-26 Fujitsu Ltd Method and device for measuring x-ray reflectance, magnetic sensor and its manufacture
JP2005140777A (en) * 2003-11-05 2005-06-02 Jordan Valley Applied Radiation Ltd Sample inspection method, its device, cluster tool for manufacturing microelectronics device, and device for manufacturing microelectronics device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151882A (en) * 1997-08-07 1999-02-26 Fujitsu Ltd Method and device for measuring x-ray reflectance, magnetic sensor and its manufacture
JP2005140777A (en) * 2003-11-05 2005-06-02 Jordan Valley Applied Radiation Ltd Sample inspection method, its device, cluster tool for manufacturing microelectronics device, and device for manufacturing microelectronics device
JP4677217B2 (en) * 2003-11-05 2011-04-27 ジョーダン・バレー・セミコンダクターズ・リミテッド Sample inspection method, sample inspection apparatus, cluster tool for manufacturing microelectronic devices, apparatus for manufacturing microelectronic devices

Similar Documents

Publication Publication Date Title
US7023955B2 (en) X-ray fluorescence system with apertured mask for analyzing patterned surfaces
US4169228A (en) X-ray analyzer for testing layered structures
US7120228B2 (en) Combined X-ray reflectometer and diffractometer
US6882739B2 (en) Method and apparatus for rapid grain size analysis of polycrystalline materials
US6697454B1 (en) X-ray analytical techniques applied to combinatorial library screening
WO2006005246A1 (en) A measuring device for the shortwavelength x ray diffraction and a method thereof
US6885726B2 (en) Fluorescent X-ray analysis apparatus
JPWO2016103834A1 (en) Obliquely incident X-ray fluorescence analyzer and method
JP5031215B2 (en) Multifunctional X-ray analysis system
JP2016502119A (en) Apparatus and method for surface mapping using in-plane oblique incidence diffraction
Pease et al. Accurate X-ray absorption spectra obtained from concentrated bulk samples by fluorescence detection
TWI329736B (en) X-ray scattering with a polychromatic source
JP3968350B2 (en) X-ray diffraction apparatus and method
JPH0815184A (en) Method and apparatus for measuring x-ray diffraction
JP2002214165A (en) Fluorescent x-ray spectroscopic method and device
JP5332801B2 (en) Sample analyzer and sample analysis method
JPH0627056A (en) Method for alalyzing composition and structure of substance
WO2003081222A1 (en) Screening of combinatorial library using x-ray analysis
JP2006133000A (en) Minute-part layered structure inspection device
JPH02107952A (en) X-ray diffraction measurement for powder
JP2957482B2 (en) Surface analysis method and device
JPS6073445A (en) Fluorescent x-ray analyzing device
Stopford Stresses and strain in silicon: 3-dimensional analytical capabilities for the non-invasive evaluation of strain fields in Si wafers and packaged chips
JPH01244344A (en) Apparatus for measuring x-ray absorbing spectrum
JPH0293355A (en) Apparatus for x-ray fluorescence analysis of angle of total reflection