JPH08151346A - Production of ketomalonic acid - Google Patents

Production of ketomalonic acid

Info

Publication number
JPH08151346A
JPH08151346A JP6315623A JP31562394A JPH08151346A JP H08151346 A JPH08151346 A JP H08151346A JP 6315623 A JP6315623 A JP 6315623A JP 31562394 A JP31562394 A JP 31562394A JP H08151346 A JPH08151346 A JP H08151346A
Authority
JP
Japan
Prior art keywords
acid
platinum
catalyst
bismuth
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6315623A
Other languages
Japanese (ja)
Inventor
Hiroshi Kimura
洋 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP6315623A priority Critical patent/JPH08151346A/en
Publication of JPH08151346A publication Critical patent/JPH08151346A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE: To obtain ketomalonic acid useful as a monomer for producing polymers by catalytically oxidizing tartronic acid in the presence of a specific catalyst. CONSTITUTION: Tartronic acid is catalytically oxidized in the presence of a two-component supported catalyst of bismuth and platinum or a three-component supported catalyst of cerium, bismuth and platinum at 0-100 deg.C and pH7-0.1 in the oxidizing reaction under atmospheric pressure to 10atm to afford ketomalonic acid. The supported catalyst Contains platinum as a main catalyst and further bismuth or bismuth and cerium as promoters supported on a carrier such as active carbon, cerium oxide or silica alumina. The compositional ratio of bismuth to platinum is 0.01-3.0 (atomic ratio) and that of cerium to platinum is 0.01-2.0 (atomic ratio). The rate of reaction can be raised by including cerium as an catalyst component. The tartronic acid is usually used as an aqueous solution at 5-60wt.% concentration and air is preferably used as an oxidizing agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポリマー製造用モノマー
として重要なケトマロン酸を、タルトロン酸から製造す
る方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing ketomalonic acid, which is important as a monomer for polymer production, from tartronic acid.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】ケト
マロン酸(メソキサル酸)の製造方法としては、アロキ
サン、ジブロムマロン酸の加水分解、ジブロムピルビン
酸と水酸化銀との反応、又はマロン酸ジエチルの三酸化
二窒素を使用する加水分解等の特殊原料を使用する有機
合成が知られているが、原料が高価であり、また毒性を
有し、取り扱いにくく、さらに収率が低い等の問題があ
り、いずれも工業的に満足のいくものではない。従っ
て、本発明の目的は、安価な原料から高収率で容易にケ
トマロン酸を製造する方法を提供することにある。
BACKGROUND OF THE INVENTION As a method for producing ketomalonic acid (mesoxalic acid), alloxane, dibromomalonic acid is hydrolyzed, dibromopyruvic acid is reacted with silver hydroxide, or diethyl malonate is used. Organic synthesis using special raw materials such as hydrolysis using dinitrogen trioxide is known, but there are problems that the raw materials are expensive, toxic, difficult to handle, and the yield is low. However, neither is industrially satisfactory. Therefore, an object of the present invention is to provide a method for easily producing ketomalonic acid in a high yield from an inexpensive raw material.

【0003】[0003]

【課題を解決するための手段】先に本発明者等は安価な
グリセリンの接触酸化によるタルトロン酸の製造方法を
開発し、出願した(特願平6−253062号)。そこ
で本発明者等は、安価なタルトロン酸を原料としてケト
マロン酸を製造するため鋭意研究を進めた。そして、上
記特許の方法で製造したタルトロン酸、あるいはその他
の有機合成的手法(硝酸酸化法、電解酸化法)で得られ
るタルトロン酸の接触酸化について研究した結果、2級
水酸基酸化能を有するBi、Pt2成分担持触媒又はC
e、Bi、Pt3成分担持触媒を用いることにより、高
収率でケトマロン酸を製造することに成功し本発明を完
成するに至った。
[Means for Solving the Problems] The present inventors previously developed and applied for an inexpensive method for producing tartronic acid by catalytic oxidation of glycerin (Japanese Patent Application No. 6-253062). Therefore, the present inventors have conducted earnest research to produce ketomalonic acid using inexpensive tartronic acid as a raw material. Then, as a result of research on catalytic oxidation of tartronic acid produced by the method of the above-mentioned patent, or tartronic acid obtained by other organic synthetic methods (nitric acid oxidation method, electrolytic oxidation method), Bi having a secondary hydroxyl group oxidizing ability, Pt two-component supported catalyst or C
By using e, Bi, and Pt3 component-supported catalysts, it was possible to produce ketomalonic acid in high yield and complete the present invention.

【0004】即ち、本発明の要旨は、(1) タルトロ
ン酸をビスマス、白金2成分担持触媒、又はセリウム、
ビスマス、白金3成分担持触媒の存在下に接触酸化する
ことを特徴とするケトマロン酸の製造方法、(2) 担
持触媒の担体が活性炭、酸化セリウム、シリカ、カーボ
ンブラック、およびアルミナからなる群より選択される
1種以上であることを特徴とする前記(1)記載の製造
方法、(3) ビスマスと白金の組成比(Bi/Pt)
が原子比で0.01〜3.0であることを特徴とする前
記(1)又は(2)記載の製造方法、(4) セリウム
と白金の組成比(Ce/Pt)が原子比で0.01〜
2.0であることを特徴とする前記(1)ないし(3)
いずれかに記載の製造方法、ならびに(5) 水中での
接触酸化時のpHが7以下であることを特徴とする前記
(1)ないし(4)いずれかに記載の製造方法、に関す
る。
That is, the gist of the present invention is: (1) Tartronic acid is added to bismuth, a platinum two-component-supported catalyst, or cerium,
A method for producing ketomalonic acid, which comprises catalytically oxidizing the catalyst in the presence of a bismuth-platinum three-component supported catalyst, (2) The carrier of the supported catalyst is selected from the group consisting of activated carbon, cerium oxide, silica, carbon black, and alumina. And (3) the composition ratio of bismuth and platinum (Bi / Pt).
Is 0.01 to 3.0 in atomic ratio, (4) The production method according to (1) or (2), (4) The composition ratio of cerium and platinum (Ce / Pt) is 0 in atomic ratio. .01-
The above (1) to (3), which is 2.0
The production method according to any one of the above, and (5) the production method according to any one of (1) to (4) above, wherein the pH at the time of catalytic oxidation in water is 7 or less.

【0005】以下に、本発明について詳細に説明する。
本発明はタルトロン酸をビスマス、白金2成分担持触
媒、又はセリウム、ビスマス、白金3成分担持触媒の存
在下に接触酸化することを特徴とするケトマロン酸の製
造方法である。本発明における担持触媒は、白金を主触
媒元素とし、ビスマス、又はビスマスとセリウムを助触
媒とする。
The present invention will be described in detail below.
The present invention is a process for producing ketomalonic acid, which comprises catalytically oxidizing tartronic acid in the presence of a bismuth-supported platinum two-component supported catalyst or a cerium-bismuth-supported platinum three-component supported catalyst. The supported catalyst in the present invention has platinum as a main catalyst element and bismuth or bismuth and cerium as a cocatalyst.

【0006】ビスマスと白金の組成比(Bi/Pt)は
原子比で0.01〜3.0、好ましくは0.1〜1.
0、特に好ましくは0.1〜0.5である。この範囲で
は、触媒活性が高く、また反応速度も高く、ケトマロン
酸を高収率で与える。その他の触媒成分としてセリウム
をも担持させることにより反応速度を一層向上させるこ
とができる。この場合、セリウムと白金の組成比(Ce
/Pt)は原子比で0.01〜2.0、好ましくは0.
05〜1.0である。この範囲では、反応速度の向上が
顕著である。このような3成分担持触媒でのBi/Pt
は前記の2成分担持触媒の場合と同様である。
The composition ratio (Bi / Pt) of bismuth and platinum is 0.01 to 3.0, preferably 0.1 to 1.
0, particularly preferably 0.1 to 0.5. Within this range, the catalytic activity is high, the reaction rate is high, and ketomalonic acid is provided in a high yield. The reaction rate can be further improved by also supporting cerium as another catalyst component. In this case, the composition ratio of cerium and platinum (Ce
/ Pt) is an atomic ratio of 0.01 to 2.0, preferably 0.1.
It is 05 to 1.0. Within this range, the reaction rate is remarkably improved. Bi / Pt with such a three-component supported catalyst
Is the same as in the case of the above-mentioned two-component supported catalyst.

【0007】本発明で使用される触媒であるBi、Pt
2成分担持触媒とCe、Bi、Pt3成分担持触媒はケ
トマロン酸製造用触媒として優れており、PtへのBi
複合化により2級水酸基酸化能が飛躍的に向上し、ケト
マロン酸の収率を向上させる。さらにCeをも複合化さ
せることにより反応速度を向上させることができる。本
発明で使用する担持触媒の白金担持量は、0.1〜10
重量%、好ましくは0.5〜6重量%、特に好ましくは
0.5〜5重量%である。
Bi, Pt which are the catalysts used in the present invention
The two-component supported catalyst and the Ce, Bi, Pt three-component supported catalyst are excellent as catalysts for the production of ketomalonic acid, and Bi to Pt is
The compounding dramatically improves the ability to oxidize secondary hydroxyl groups, and improves the yield of ketomalonic acid. Furthermore, the reaction rate can be improved by compounding Ce. The amount of platinum supported on the supported catalyst used in the present invention is 0.1 to 10.
%, Preferably 0.5 to 6% by weight, particularly preferably 0.5 to 5% by weight.

【0008】本発明で使用される担持触媒の原料として
は、塩化白金酸、白金アンモニア錯体等の通常の白金塩
を、塩化ビスマス、硝酸ビスマス、硫酸ビスマス等の通
常のビスマス塩を、また塩化セリウム、硝酸セリウム、
硫酸セリウム等の通常のセリウム塩を使用することがで
きる。
As a raw material of the supported catalyst used in the present invention, a usual platinum salt such as chloroplatinic acid and a platinum ammonia complex, a usual bismuth salt such as bismuth chloride, bismuth nitrate and bismuth sulfate, and cerium chloride are used. , Cerium nitrate,
Usual cerium salts such as cerium sulfate can be used.

【0009】本発明における担持触媒は、通常の含浸
法、共含浸法、浸漬法、共沈法、イオン交換法により、
触媒成分を水中で触媒担体に担持させ、ホルマリン、ヒ
ドラジン、水素化ホウ素ナトリウム、水素、低級アルコ
ール(メタノール、エタノール、グリセリン、エチレン
グリコール等)等による還元処理を行うことによって容
易に調製することができる。
The supported catalyst according to the present invention can be prepared by a conventional impregnation method, co-impregnation method, dipping method, co-precipitation method or ion exchange method.
It can be easily prepared by supporting the catalyst component in water on a catalyst carrier and performing a reduction treatment with formalin, hydrazine, sodium borohydride, hydrogen, lower alcohol (methanol, ethanol, glycerin, ethylene glycol, etc.). .

【0010】触媒担体としては活性炭、酸化セリウム、
シリカ、カーボンブラック、アルミナ等が挙げられる
が、高表面積を有する活性炭が特に有効である。例え
ば、武田薬品工業(株)製の水蒸気賦活活性炭WH
2 C、塩化亜鉛賦活活性炭、KL、及び粉末活性炭であ
るカルボラフィン等が有効であり、BET表面積はそれ
ぞれ1200、1500m2 /gである。その他、ノリ
ット社製のROX、RAX、DARCO、C、ELOR
IT等が挙げられるが、これらの活性炭に限定されるも
のではない。又、両性酸化物である酸化セリウムも使用
できる。
As the catalyst carrier, activated carbon, cerium oxide,
Examples thereof include silica, carbon black, and alumina. Activated carbon having a high surface area is particularly effective. For example, steam activated carbon WH manufactured by Takeda Pharmaceutical Co., Ltd.
2 C, zinc chloride activated activated carbon, KL, and powdered activated carbon such as carborafine are effective, and the BET surface areas are 1200 and 1500 m 2 / g, respectively. In addition, ROX, RAX, DARCO, C, ELOR manufactured by Norit
Examples thereof include IT, but are not limited to these activated carbons. Further, cerium oxide which is an amphoteric oxide can also be used.

【0011】本発明における反応を水溶液系で攪拌槽型
反応器を使用して実施する場合には、タルトロン酸の水
溶液に本発明の担持触媒をタルトロン酸水溶液に対して
1〜100重量%、好ましくは5〜20重量%添加し、
反応温度0〜100℃で攪拌下、pH7以下で空気、も
しくは酸素含有ガスの酸化剤の供給下に酸化反応を行
う。反応の進行は高速液体クロマトグラフィー(HPL
C)でモニターすることができる。
When the reaction of the present invention is carried out in an aqueous solution system using a stirred tank reactor, the supported catalyst of the present invention is added to an aqueous solution of tartronic acid in an amount of 1 to 100% by weight, preferably 1 to 100% by weight of the aqueous tartronic acid solution. Is added in an amount of 5 to 20% by weight,
The oxidation reaction is carried out at a reaction temperature of 0 to 100 ° C. with stirring and at a pH of 7 or less while supplying air or an oxidizing agent of an oxygen-containing gas. The reaction progresses according to high performance liquid chromatography (HPL
It can be monitored in C).

【0012】原料となるタルトロン酸は通常、水溶液と
して使用するが、その濃度は5〜60重量%、好ましく
は10〜50重量%である。この範囲では、目的物が高
収率で得られ、生産性、経済性も高い。本発明に使用さ
れる酸化剤としては、空気、酸素、又は酸素と窒素との
混合ガスが挙げられるが、触媒の安定性と経済的な面か
ら空気を使用することが好ましい。
The tartronic acid as a raw material is usually used as an aqueous solution, and its concentration is 5 to 60% by weight, preferably 10 to 50% by weight. Within this range, the desired product can be obtained in high yield, and the productivity and economy are high. Examples of the oxidant used in the present invention include air, oxygen, or a mixed gas of oxygen and nitrogen, and it is preferable to use air from the viewpoint of stability of the catalyst and economical efficiency.

【0013】反応温度は生成ケトマロン酸の脱炭酸分解
抑制と反応速度を考慮し、0〜100℃が好ましい。さ
らに好ましくは20〜60℃である。この範囲では、重
合反応も起こり難く、また脱炭酸も起こり難いので、ケ
トマロン酸の収率が高い。
The reaction temperature is preferably 0 to 100 ° C. in consideration of the decarboxylation decomposition inhibition of the formed ketomalonic acid and the reaction rate. More preferably, it is 20 to 60 ° C. Within this range, the polymerization reaction is unlikely to occur and decarboxylation is unlikely to occur, so that the yield of ketomalonic acid is high.

【0014】本発明における酸化反応中のpHは7〜
0.1、好ましくは4〜0.5である。このpH範囲で
は、ケトマロン酸の収率が高いので好ましい。反応圧力
は常圧〜10気圧であり、常圧が好ましい。この範囲で
は、反応速度が高く、酸素による触媒被毒も小さく、高
い反応速度が維持される。
The pH during the oxidation reaction in the present invention is 7-.
0.1, preferably 4-0.5. This pH range is preferable because the yield of ketomalonic acid is high. The reaction pressure is atmospheric pressure to 10 atm, and atmospheric pressure is preferred. Within this range, the reaction rate is high, the catalyst poisoning by oxygen is small, and the high reaction rate is maintained.

【0015】本発明の製造方法は回分式、連続式のいず
れにも適用することができる。又、反応器の形式は攪拌
槽型、インジェクター式、流動床式、固定床式等を用い
ることができる。担持触媒の形状は特に制限されず、粉
末状、粒状、成形品等を反応器の形状に応じて使用すれ
ばよい。本発明における担持触媒を使用して固定床反応
装置に適用した場合、高濃度系の反応が可能となりタル
トロン酸の濃度を50重量%にまでも高めることがで
き、大量生産の場合には生産性のよい手法となる。又、
固定床反応装置に適用した場合、触媒分離工程が省略で
きるため、この点でも生産性が大となる。反応終了後、
粗ケトマロン酸は水溶液として得られる。高純度品が必
要な場合には晶析法等により共存するシュウ酸を分離す
ることができる。本発明の反応は、非プロトン性非水溶
媒、例えば、アセトン、ジメチルスルホキシド、テトラ
クロロエチレン、ジクロロメタン等の中でも反応を進行
させることができる。この場合は還元処理した触媒を乾
燥して使用することが好ましい。
The manufacturing method of the present invention can be applied to both a batch system and a continuous system. The reactor may be of a stirred tank type, an injector type, a fluidized bed type, a fixed bed type or the like. The shape of the supported catalyst is not particularly limited, and powdery, granular, molded products, etc. may be used depending on the shape of the reactor. When the supported catalyst of the present invention is applied to a fixed bed reactor, a high-concentration reaction can be performed, and the concentration of tartronic acid can be increased to 50% by weight. Is a good technique. or,
When it is applied to a fixed bed reactor, the catalyst separation step can be omitted, and the productivity is high in this respect as well. After the reaction,
Crude ketomalonic acid is obtained as an aqueous solution. When a high-purity product is required, coexisting oxalic acid can be separated by a crystallization method or the like. The reaction of the present invention can be carried out in an aprotic non-aqueous solvent such as acetone, dimethyl sulfoxide, tetrachloroethylene, dichloromethane or the like. In this case, it is preferable to dry and use the reduced catalyst.

【0016】[0016]

【実施例】以下、触媒調製例及び実施例により本発明を
さらに詳しく説明するが、本発明はこれらの実施例等に
よりなんら限定されるものではない。なお、以下の実施
例等において触媒担持量に関して表示する%は、重量%
を示す。また、タルトロン酸転化率とは、仕込みタルト
ロン酸に対して酸化反応で消費されたモル数の割合を表
す。ケトマロン酸選択率とは、反応で消費されたタルト
ロン酸のモル数に対する生成ケトマロン酸のモル数の割
合を示す。ケトマロン酸収率とは(タルトロン酸転化
率)×(ケトマロン酸の選択率)より算出した値であ
る。又、シュウ酸の生成率は、反応で消費されたタルト
ロン酸のモル数に対する生成シュウ酸のモル数の割合
(即ち、シュウ酸の選択率)を算出し、この選択率×
(タルトロン酸の転化率)より算出したものである。
EXAMPLES The present invention will be described in more detail with reference to catalyst preparation examples and examples, but the present invention is not limited to these examples. In the following examples and the like,% indicated for the amount of supported catalyst is% by weight.
Indicates. The conversion rate of tartronic acid means the ratio of the number of moles consumed in the oxidation reaction to the charged tartronic acid. The ketomalonic acid selectivity refers to the ratio of the number of moles of ketomalonic acid produced to the number of moles of tartronic acid consumed in the reaction. The ketomalonic acid yield is a value calculated from (conversion rate of tartronic acid) × (selectivity of ketomalonic acid). Further, the production rate of oxalic acid is calculated by calculating the ratio of the number of moles of oxalic acid produced to the number of moles of tartronic acid consumed in the reaction (that is, the selectivity of oxalic acid).
It is calculated from (conversion rate of tartronic acid).

【0017】触媒調製例 <1%Bi5%Pt/C触媒の調製法>100mlのイ
オン交換水に濃塩酸2mlを添加し、さらに塩化白金酸
と塩化ビスマスをそれぞれ1.0g、0.11g添加し
て均一溶液とする。触媒担体としてカルボラフィンを特
に前処理することなく200mlのイオン交換水に分散
させておく。Bi、Ptの均一塩酸水溶液を常温で攪拌
下に10分かけて滴下し、5時間、室温で担持を行う。
この際、上澄液が無色透明でなく不溶解ビスマスにより
白濁している場合は、必要最小量の塩酸で均一溶解させ
る。触媒成分の担持終了後、上澄液は無色透明である。
触媒還元は、攪拌下に水酸化ナトリウムでpH12以上
とし、35%ホルマリン2mlを添加して80℃まで昇
温し、80℃にて20分還元処理を行う。この際、pH
の低下があるので水酸化ナトリウム水溶液を追加添加し
てpH12を維持するようにする。還元処理の終了後、
室温まで放冷し、500mlのイオン交換水で3回水洗
し、濾過後乾燥することなく含水品(水分含量約50重
量%)のまま反応に使用する。触媒成分としてさらにC
eを担持させる場合も塩化セリウムを必要量使用してC
e、Bi、Pt3成分均一塩酸溶液を調製し、Bi、P
t2成分担持触媒の場合と同じ調製手順に従ってCe、
Bi、Pt3成分担持触媒を調製することができる。
Catalyst Preparation Example <Preparation Method of 1% Bi5% Pt / C Catalyst> 2 ml of concentrated hydrochloric acid was added to 100 ml of ion-exchanged water, and 1.0 g and 0.11 g of chloroplatinic acid and bismuth chloride were added, respectively. To make a homogeneous solution. Carborafine as a catalyst carrier is dispersed in 200 ml of ion-exchanged water without any pretreatment. A uniform hydrochloric acid aqueous solution of Bi and Pt is added dropwise at room temperature with stirring over 10 minutes, and loading is carried out at room temperature for 5 hours.
At this time, when the supernatant liquid is not colorless and transparent but is cloudy due to insoluble bismuth, it is uniformly dissolved with a minimum necessary amount of hydrochloric acid. After the completion of supporting the catalyst component, the supernatant liquid is colorless and transparent.
For the catalytic reduction, the pH is adjusted to 12 or more with sodium hydroxide under stirring, 2 ml of 35% formalin is added, the temperature is raised to 80 ° C., and the reduction treatment is performed at 80 ° C. for 20 minutes. At this time, pH
Since there is a decrease in pH, an additional sodium hydroxide aqueous solution is added to maintain pH 12. After completing the redemption process,
The mixture is allowed to cool to room temperature, washed 3 times with 500 ml of ion-exchanged water, filtered, and then used for the reaction as a water-containing product (water content of about 50% by weight) without drying. Further C as a catalyst component
In the case of supporting e, the required amount of cerium chloride should be used for C
e, Bi, Pt 3 component uniform hydrochloric acid solution was prepared, and Bi, P
Following the same preparative procedure as for the t2 component supported catalyst, Ce,
A Bi, Pt three-component supported catalyst can be prepared.

【0018】実施例1 攪拌器、温度計、酸化用ガス導入管、pHメーター、サ
ンプリング口および排ガスラインのついた1リットルの
丸底フラスコに10%タルトロン酸水溶液300g、と
1%Bi5%Pt担持炭素触媒25gを添加し、酸化剤
としての空気を酸化用ガス導入管を通して常圧で毎時1
0リットルで反応器中にバブリング導入し、25℃にて
接触空気酸化を行った(反応時のpH1.2)。反応混
合物は1時間毎にサンプリングし触媒を濾別後、高速液
体クロマトグラフィー(HPLC)で組成分析を行っ
た。その結果、反応時間5時間後のタルトロン酸転化率
は100%であった。ケトマロン酸とシュウ酸の選択率
はそれぞれ95%、5%であった。出発原料及び反応終
了物のpHはそれぞれ3.1、0.8であった。
Example 1 A 1-liter round bottom flask equipped with a stirrer, a thermometer, an oxidizing gas introduction tube, a pH meter, a sampling port and an exhaust gas line was loaded with 300 g of 10% tartronic acid aqueous solution and 1% Bi5% Pt. 25 g of carbon catalyst was added, and air as an oxidant was passed through the oxidizing gas introduction pipe at atmospheric pressure to 1 hour / hour.
Bubbling was introduced into the reactor at 0 liter, and catalytic air oxidation was carried out at 25 ° C. (pH 1.2 at the time of reaction). The reaction mixture was sampled every hour, the catalyst was filtered off, and the composition was analyzed by high performance liquid chromatography (HPLC). As a result, the conversion rate of tartronic acid after a reaction time of 5 hours was 100%. The selectivity of ketomalonic acid and oxalic acid were 95% and 5%, respectively. The pH of the starting material and the finished product was 3.1 and 0.8, respectively.

【0019】HPLCの測定条件を以下に示す。 高速液体クロマトグラフィー:D−255/L−600
0型(日立製作所(株)製) ディテクター:L−3300型(RIモニター) カラム:C−610S 溶離液:0.5%リン酸水溶液、0.5ml/min 圧力:15kgf/cm2 温度:40℃
The HPLC measurement conditions are shown below. High performance liquid chromatography: D-255 / L-600
Type 0 (manufactured by Hitachi, Ltd.) Detector: L-3300 type (RI monitor) Column: C-610S Eluent: 0.5% phosphoric acid aqueous solution, 0.5 ml / min Pressure: 15 kgf / cm 2 Temperature: 40 ℃

【0020】実施例2 触媒が0.75%Ce1%Bi5%Pt担持炭素触媒で
あること以外は実施例1と同じ条件で反応を行った。そ
の結果、反応時間3時間後のタルトロン酸転化率は10
0%であった。ケトマロン酸とシュウ酸の選択率はそれ
ぞれ98%、2%であった。出発原料及び反応終了物の
pHはそれぞれ3.1、0.6であった。
Example 2 The reaction was carried out under the same conditions as in Example 1 except that the catalyst was a 0.75% Ce1% Bi5% Pt-supported carbon catalyst. As a result, the conversion rate of tartronic acid after a reaction time of 3 hours was 10
It was 0%. The selectivity of ketomalonic acid and oxalic acid were 98% and 2%, respectively. The pH of the starting material and the finished product was 3.1 and 0.6, respectively.

【0021】実施例3 3%白金担持酸化セリウム触媒の存在下に20%グリセ
リン水溶液を常温で接触空気酸化して合成した粗タルト
ロン酸(タルトロン酸70%、グリセリン酸15%、ケ
トマロン酸10%、グリコール酸5%)を原料として使
用すること以外は実施例1と同じ条件で反応を行った。
その結果、粗タルトロン酸中のタルトロン酸成分に関し
て反応時間5時間後のタルトロン酸転化率は100%で
あった。ケトマロン酸とシュウ酸の選択率はそれぞれ9
5%、5%であった。原料(粗タルトロン酸)及び反応
終了物のpHはそれぞれ2.6、0.6であった。
Example 3 Crude tartronic acid (70% tartronic acid, 15% glyceric acid, 10% ketomalonic acid) synthesized by contact air oxidation of a 20% aqueous glycerin solution at room temperature in the presence of a 3% platinum-supported cerium oxide catalyst. The reaction was performed under the same conditions as in Example 1 except that glycolic acid 5%) was used as a raw material.
As a result, with respect to the tartronic acid component in the crude tartronic acid, the conversion rate of tartronic acid after a reaction time of 5 hours was 100%. The selectivity of ketomalonic acid and oxalic acid is 9 each
It was 5% and 5%. The pHs of the raw material (crude tartronic acid) and the reaction finished product were 2.6 and 0.6, respectively.

【0022】実施例4 5%白金担持炭素触媒の存在下に20%グリセリン水溶
液を常温で接触酸化して粗グリセリン酸(グリセリン酸
90%、タルトロン酸7%、ケトマロン酸3%、グリセ
リン0%)を一旦合成し、次に反応混合物中の触媒を濾
過分離・除去して3%白金担持酸化セリウム触媒25g
と交換し、実施例1の反応装置を使用して反応温度40
℃、空気供給速度を毎時15リットルにして再反応し
た。グリセリン酸は逐次反応によってタルトロン酸に変
換され、32時間後のタルトロン酸の選択率は77%に
達した。その後、反応混合物中の触媒を分離し実施例1
と同じ条件でケトマロン酸への再反応を行った。粗タル
トロン酸成分に関して反応時間5時間後のタルトロン酸
転化率は100%であった。ケトマロン酸とシュウ酸の
選択率はそれぞれ94%、6%であった。粗タルトロン
酸及び反応終了物のpHはそれぞれ2.5、0.8であ
った。
Example 4 Crude glyceric acid (glyceric acid 90%, tartronic acid 7%, ketomalonic acid 3%, glycerin 0%) was obtained by catalytically oxidizing 20% glycerin aqueous solution at room temperature in the presence of 5% platinum-supported carbon catalyst. Once, and then the catalyst in the reaction mixture was separated and removed by filtration to obtain 25 g of a 3% platinum-supported cerium oxide catalyst.
And using the reactor of Example 1 at a reaction temperature of 40
Reacting was carried out at 0 ° C. and the air supply rate was 15 liters per hour. Glyceric acid was converted into tartronic acid by a sequential reaction, and the selectivity of tartronic acid after 32 hours reached 77%. After that, the catalyst in the reaction mixture was separated and Example 1 was used.
Re-reaction to ketomalonic acid was carried out under the same conditions. With respect to the crude tartronic acid component, the conversion rate of tartronic acid after a reaction time of 5 hours was 100%. The selectivity of ketomalonic acid and oxalic acid were 94% and 6%, respectively. The pH of the crude tartronic acid and the finished product were 2.5 and 0.8, respectively.

【0023】実施例5 内径20mm、高さ300mmのパイレックス製反応塔
に実施例1の触媒15gを45gのガラスビーズ(φ
1.2mm)で希釈して充填した。反応塔の温度を40
℃にして、反応塔塔頂より下向き並流で実施例3の粗タ
ルトロン酸を毎時12.0g、空気を毎時5リットルで
供給した(反応時のpH1.0)。定常後分析した結
果、粗タルトロン酸成分に関してタルトロン酸転化率は
100%であった。ケトマロン酸とシュウ酸の選択率は
それぞれ95%、5%であった。粗タルトロン酸及び反
応終了物のpHはそれぞれ2.4、0.8であった。
Example 5 A Pyrex reaction column having an inner diameter of 20 mm and a height of 300 mm was charged with 15 g of the catalyst of Example 1 and 45 g of glass beads (φ).
It was diluted with 1.2 mm) and filled. The temperature of the reaction tower is 40
C., 12.0 g / hr of crude tartronic acid of Example 3 and 5 liter / hr of air were supplied in a cocurrent downward flow from the top of the reaction tower (pH 1.0 during reaction). As a result of analysis after steady state, the conversion rate of tartronic acid was 100% with respect to the crude tartronic acid component. The selectivity of ketomalonic acid and oxalic acid were 95% and 5%, respectively. The pHs of the crude tartronic acid and the reaction product were 2.4 and 0.8, respectively.

【0024】[0024]

【発明の効果】本発明の方法は、Bi、Pt2成分担持
触媒、又はCe、Bi、Pt3成分担持触媒の特異的2
級水酸基酸化能を利用することにより、安価なタルトロ
ン酸の接触酸化によるケトマロン酸の優れた製造方法を
提供する。
INDUSTRIAL APPLICABILITY The method of the present invention is a specific catalyst of Bi, Pt two component-supported catalyst, or Ce, Bi, Pt three component-supported catalyst.
An excellent method for producing ketomalonic acid by catalytic oxidation of tartronic acid is provided by utilizing the ability to oxidize a primary hydroxyl group.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 51/347 // C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C07C 51/347 // C07B 61/00 300

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 タルトロン酸をビスマス、白金2成分担
持触媒、又はセリウム、ビスマス、白金3成分担持触媒
の存在下に接触酸化することを特徴とするケトマロン酸
の製造方法。
1. A method for producing ketomalonic acid, which comprises catalytically oxidizing tartronic acid in the presence of a bismuth-, platinum-two-component-supported catalyst, or a cerium, bismuth, platinum-three-component-supported catalyst.
【請求項2】 担持触媒の担体が活性炭、酸化セリウ
ム、シリカ、カーボンブラック、およびアルミナからな
る群より選択される1種以上であることを特徴とする請
求項1記載の製造方法。
2. The method according to claim 1, wherein the carrier of the supported catalyst is at least one selected from the group consisting of activated carbon, cerium oxide, silica, carbon black, and alumina.
【請求項3】 ビスマスと白金の組成比(Bi/Pt)
が原子比で0.01〜3.0であることを特徴とする請
求項1又は請求項2記載の製造方法。
3. A composition ratio of bismuth and platinum (Bi / Pt)
Is an atomic ratio of 0.01 to 3.0, The manufacturing method according to claim 1 or 2.
【請求項4】 セリウムと白金の組成比(Ce/Pt)
が原子比で0.01〜2.0であることを特徴とする請
求項1ないし請求項3いずれか1項に記載の製造方法。
4. A composition ratio of cerium and platinum (Ce / Pt)
Is 0.01 to 2.0 in atomic ratio, The manufacturing method according to any one of claims 1 to 3.
【請求項5】 水中での接触酸化時のpHが7以下であ
ることを特徴とする請求項1ないし請求項4いずれか1
項に記載の製造方法。
5. The method according to claim 1, wherein the pH during catalytic oxidation in water is 7 or less.
The manufacturing method according to item.
JP6315623A 1994-11-25 1994-11-25 Production of ketomalonic acid Pending JPH08151346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6315623A JPH08151346A (en) 1994-11-25 1994-11-25 Production of ketomalonic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6315623A JPH08151346A (en) 1994-11-25 1994-11-25 Production of ketomalonic acid

Publications (1)

Publication Number Publication Date
JPH08151346A true JPH08151346A (en) 1996-06-11

Family

ID=18067600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6315623A Pending JPH08151346A (en) 1994-11-25 1994-11-25 Production of ketomalonic acid

Country Status (1)

Country Link
JP (1) JPH08151346A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150548A1 (en) 2009-06-26 2010-12-29 イハラケミカル工業株式会社 Process for production of ketomalonic acid compounds or hydrates thereof
WO2015008629A1 (en) 2013-07-19 2015-01-22 イハラケミカル工業株式会社 Production method of ketomalonic acid compound
KR20160122770A (en) 2014-02-17 2016-10-24 이하라케미칼 고교가부시키가이샤 Method for continuously producing ketomalonic acid compound using flow reactor
WO2018105237A1 (en) * 2016-12-05 2018-06-14 クミアイ化学工業株式会社 Method for producing trioxopropane compound

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150548A1 (en) 2009-06-26 2010-12-29 イハラケミカル工業株式会社 Process for production of ketomalonic acid compounds or hydrates thereof
US8859803B2 (en) 2009-06-26 2014-10-14 Ihara Chemical Industry Co., Ltd. Process for production of ketomalonic acid compounds or hydrates thereof
WO2015008629A1 (en) 2013-07-19 2015-01-22 イハラケミカル工業株式会社 Production method of ketomalonic acid compound
KR20160033120A (en) 2013-07-19 2016-03-25 이하라케미칼 고교가부시키가이샤 Production method of ketomalonic acid compound
US9499469B2 (en) 2013-07-19 2016-11-22 Ihara Chemical Industry Co., Ltd. Production method of ketomalonic acid compound
KR20160122770A (en) 2014-02-17 2016-10-24 이하라케미칼 고교가부시키가이샤 Method for continuously producing ketomalonic acid compound using flow reactor
US10035753B2 (en) 2014-02-17 2018-07-31 Kumiai Chemical Industry Co., Ltd. Method for continuously producing ketomalonic acid compound using flow reactor
WO2018105237A1 (en) * 2016-12-05 2018-06-14 クミアイ化学工業株式会社 Method for producing trioxopropane compound
JPWO2018105237A1 (en) * 2016-12-05 2019-10-24 クミアイ化学工業株式会社 Method for producing trioxopropane compound

Similar Documents

Publication Publication Date Title
EP0147219B1 (en) Pd/re hydrogenation catalyst and process for making tetrahydrofuran and 1,4-butanediol
JPS5843384B2 (en) Manufacturing method of ethyl acetate
JP3543550B2 (en) Method for producing chlorine
EP3511313A1 (en) Method for preparing 1,3-cyclohexanedimethanol
JPH05124803A (en) Production of hydrogen peroxide
US6680385B2 (en) Catalytic preparation of aryl methyl ketones using a molecular oxygen-containing gas as the oxidant
JP2685130B2 (en) Ethanol production method
JPH08151346A (en) Production of ketomalonic acid
CA1101882A (en) Process for producing salts of pyruvic acid
CN115430418A (en) Catalyst, preparation method thereof and method for preparing acetic acid by using catalyst
JPH05245373A (en) Production of compound having carbonyl group and/or carboxyl group
JPH04221339A (en) Production of (poly)oxyethylene alkyl ether acetic acid
JP3285655B2 (en) Method for producing tartronate
JP2002255941A (en) Method for producing imidazole compound
US4100361A (en) Manufacture of butenediol diacetates
US11958799B2 (en) Method for producing hydrogen and carboxylic acid
JP3748588B2 (en) Method for producing glycolic acid
EP4342875A1 (en) Method for preparing 2, 5-hexanedione by catalyzing and converting biomass by one-pot synthesis
MXPA00002141A (en) PREPARATION OF BETAINA SOLUTIONS.
CN102329222A (en) Method for oxidizing cyclohexane to prepare hexane diacid through one-step method and catalyst used by same
CN111848555B (en) Preparation of 5,5 from 2-alkyl furan ′ -dialkyl-2, 2 ′ New process for the preparation of bisfurans
JPS5921855B2 (en) Production method of malonic acid diesters
JP3541448B2 (en) Method for producing acetamide
JPS63168404A (en) Selective oxidative carbonyzation of conjugated diene
JPH0892156A (en) Production of tartronic acid