JPH0815058A - Method for measuring load constant of motor drive system - Google Patents

Method for measuring load constant of motor drive system

Info

Publication number
JPH0815058A
JPH0815058A JP6150203A JP15020394A JPH0815058A JP H0815058 A JPH0815058 A JP H0815058A JP 6150203 A JP6150203 A JP 6150203A JP 15020394 A JP15020394 A JP 15020394A JP H0815058 A JPH0815058 A JP H0815058A
Authority
JP
Japan
Prior art keywords
speed
load
electric motor
steady state
speed command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6150203A
Other languages
Japanese (ja)
Other versions
JP3479922B2 (en
Inventor
Shu Ando
周 安藤
Toshifumi Takeuchi
利文 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP15020394A priority Critical patent/JP3479922B2/en
Publication of JPH0815058A publication Critical patent/JPH0815058A/en
Application granted granted Critical
Publication of JP3479922B2 publication Critical patent/JP3479922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To provide a method for measuring the inertia load of an electric motor drive system wherein load can be simply measured without the influence of backlash, static friction, dynamic friction or the like of a machine system independent of the control method of the motor in an electric motor drive system. CONSTITUTION:A second speed command different from a first speed command is given to the drive device of an electric motor 1 which is in a steady state for the first speed command, and inertia load J is found as a load constant from integration value E of output torques T1, T2 of the drive device, integration value L of the speed of the electric motor 1, speed difference omega2-omega1 of the motor 1 in the steady state for the first and the second speed commands, a viscous friction coefficient R and Coulomb's friction torque D up to the steady state omega2 from the steady state omega1 for the first speed command for finding the viscous friction coefficient R and the Coulomb's friction torque D as a load constant from speeds omega1, omega2 of the electric motor and output torques T1, T2 betaof the drive device which are in a steady state for the first and the second speed commands.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電動機駆動系の負荷定
数測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a load constant measuring method for an electric motor drive system.

【0002】[0002]

【従来の技術】電動機の負荷定数測定方式としては、い
くつかの方法が行われていた。 (1)電動機に速度指令として正弦波を加え、正弦波の
周波数を変化させながら繰り返し運転し、その周波数応
答より慣性負荷を計算する。 (2)速度のステップ応答により、その立ち上がりの応
答時間から速度ループの時定数を求め、それより慣性負
荷を計算する(特願平4−355144号)。 (3)電動機の発生トルクを積分し、その値と回転速度
差との比から慣性負荷を求める(特公平4−10319
号公報)。 (4)2回の加速処理において、電動機の発生トルク差
と回転速度差から粘性摩擦係数を求め、その値と電動機
の発生トルクの積分値の差と移動距離差と回転速度差と
から慣性負荷を求める(特願平5−29869号)。
2. Description of the Related Art Several methods have been used to measure load constants of electric motors. (1) A sine wave is added to the electric motor as a speed command, the sine wave is repeatedly operated while changing the frequency, and the inertial load is calculated from the frequency response. (2) The time constant of the speed loop is obtained from the response time of the rising of the speed step response, and the inertial load is calculated from the time constant (Japanese Patent Application No. 4-355144). (3) The torque generated by the electric motor is integrated, and the inertial load is obtained from the ratio of the value and the rotational speed difference (Japanese Patent Publication No. 4-10319).
Issue). (4) In the two acceleration processes, the viscous friction coefficient is obtained from the torque difference and the rotational speed difference generated by the electric motor, and the inertia load is calculated from the difference between the value and the integrated value of the torque generated by the electric motor, the moving distance difference, and the rotational speed difference. (Japanese Patent Application No. 5-29869).

【0003】[0003]

【発明が解決しようとする課題】前記(1)の方法で
は、NC(数値制御)工作機等には電動機と負荷の間に
ボールねじ等の減速機によるバックラッシュが存在する
ため、速度指令として前記の正弦波を与えるのは機械の
減速機を破壊する等の問題がある。前記(2)の方法で
は、サーボアンプにおける電流出力の遅れや静止摩擦等
の影響により、むだ時間が生じたり、応答中における動
摩擦の影響により、速度指令に応じたトルクが出力でき
ずに立ち上がり時間が長くなる等の問題により、正確な
時定数を求めることができず、よって正確な慣性負荷を
求めることができなかった。前記(3)の方法では、一
定の加減速レートおよび回転速度変化幅で加減速を行
い、加速時および減速時における電動機発生トルクに比
例する信号の積分量の里回転速度の変化幅を演算するこ
とにより、負荷イナーシャを推定する方法を挙げている
が、加速状態から減速する際に減速機によるバックラッ
シュが生じるためトルクの積分値に誤差を生じたり、加
速時と減速時では静止摩擦による影響が異なり、静止摩
擦の大きな駆動系では正確な慣性負荷を求めることはで
きなかった。前記(4)の方法では、2つの異なる速度
で加速し、定常状態における回転速度差と駆動装置の出
力トルク差から粘性摩擦係数を演算し、その値と2回の
加速処理における駆動装置の出力トルクの積分量と移動
距離と回転速度を演算することにより負荷イナーシャを
推定しているが、この方法では2回の加速処理を行う必
要があり、できるだけ同じ条件で加速処理を行うために
は、同じ位置からしばらく時間をおいて2回目の加速処
理を行う必要がある。本発明が解決すべき課題は、電動
機駆動系において、機械系のバックラッシュや静止摩
擦、動摩擦等の影響を受けず、かつ電動機の制御方式に
よらずに簡単に負荷を測定できる電動機駆動系の慣性負
荷測定方式を提供することにある。
In the method (1), since the NC (numerical control) machine tool or the like has a backlash due to a speed reducer such as a ball screw between the electric motor and the load, the speed command is issued. Providing the above-mentioned sine wave has a problem such as breaking down the reducer of the machine. In the method (2), the delay time of the current output in the servo amplifier and the effect of static friction cause dead time, and the dynamic friction during the response causes the torque corresponding to the speed command to be unable to be output and the rise time. Due to problems such as lengthening, it was not possible to obtain an accurate time constant and therefore an accurate inertial load. In the method (3), acceleration / deceleration is performed at a constant acceleration / deceleration rate and a constant rotation speed variation range, and a variation range of the rotational speed of the integral amount of the signal proportional to the motor-generated torque during acceleration and deceleration is calculated. The method of estimating the load inertia is described above.However, when decelerating from the acceleration state, backlash by the reducer causes an error in the integrated value of the torque, and the influence of static friction during acceleration and deceleration. However, it was not possible to obtain an accurate inertial load in a drive system with large static friction. In the method of (4), acceleration is performed at two different speeds, the viscous friction coefficient is calculated from the rotational speed difference in the steady state and the output torque difference of the driving device, and the value and the output of the driving device in the two acceleration processes are calculated. The load inertia is estimated by calculating the integrated amount of torque, the moving distance, and the rotation speed. However, this method requires two times of acceleration processing, and in order to perform acceleration processing under the same conditions as much as possible, It is necessary to wait a while from the same position and perform the second acceleration process. The problem to be solved by the present invention is to provide an electric motor drive system that is not affected by backlash, static friction, dynamic friction, etc. of a mechanical system and that can easily measure a load regardless of the electric motor control system. It is to provide an inertial load measurement method.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するた
め、本発明の第1の電動機駆動系の負荷定数測定方法
は、第1の速度指令に対して定常状態にある電動機の駆
動装置に前記第1の速度指令と異なる第2の速度指令を
与え、前記第1および第2の速度指令に対する定常状態
における前記電動機の速度ω1 ,ω2 と前記駆動装置の
出力トルクT1 ,T2 より負荷定数である粘性摩擦係数
Rおよびクーロン摩擦トルクDを求め、前記第1の速度
指令に対する定常状態ω1 から前記第2の速度指令に対
する定常状態ω2 に至るまでの前記駆動装置の出力トル
クT1 ,T2 の積分値Eおよび前記電動機の速度の積分
値Lと、前記第1と第2の速度指令に対する定常状態に
おける前記電動機の速度差ω2 −ω1 、および前記粘性
摩擦係数Rと前記クーロン摩擦トルクDから負荷定数で
ある慣性負荷Jを求めるものである。
In order to solve the above-mentioned problems, a first method of measuring a load constant of an electric motor drive system according to the present invention is applied to an electric motor drive device in a steady state with respect to a first speed command. A second speed command different from the first speed command is given, and from the speeds ω 1 and ω 2 of the electric motor and the output torques T 1 and T 2 of the drive device in a steady state with respect to the first and second speed commands. The viscous friction coefficient R and the Coulomb friction torque D, which are load constants, are obtained, and the output torque T of the drive device from the steady state ω 1 for the first speed command to the steady state ω 2 for the second speed command. 1 , the integral value E of T 2 and the integral value L of the speed of the electric motor, the speed difference ω 2 −ω 1 of the electric motor in a steady state with respect to the first and second speed commands, and the viscous friction coefficient R. Coulomb friction The inertia load J, which is a load constant, is obtained from the torque D.

【0005】本発明の第2の電動機駆動系の負荷定数測
定方法は、前記第1の方法において、出力トルクおよび
速度の積分値から慣性負荷Jを求める代わりに、ある瞬
間における駆動装置の出力トルクTから前記で求めた粘
性摩擦係数Rと電動機の速度ωの積と動摩擦トルクDを
減じた値と当該瞬間における電動機の加速度dω/dt
の比より負荷定数である慣性負荷Jを求めるものであ
る。
According to a second method for measuring a load constant of a motor drive system of the present invention, instead of obtaining the inertial load J from the integrated value of the output torque and the speed in the first method, the output torque of the drive device at a certain moment. A value obtained by subtracting the product of the viscous friction coefficient R and the speed ω of the motor and the dynamic friction torque D obtained from T and the acceleration dω / dt of the motor at the instant
The inertia load J, which is a load constant, is calculated from the ratio of.

【0006】[0006]

【作用】本発明の第1の方法では、電動機を速度ω1
定常状態から異なる速度ω2 まで速度を変化させ、2つ
の定常状態における速度と出力トルクより負荷定数であ
る粘性摩擦係数およびクーロン摩擦トルクを求め、次に
2つの定常状態における速度差と、速度変化開始点から
速度ω2 の定常状態に至った時刻tまでの出力トルクお
よび速度の積分値と、先に求めた粘性摩擦係数およびク
ーロン摩擦トルクより負荷定数である慣性負荷を求める
ものである。以下に、その根拠を説明する。
In the first method of the present invention, the speed of the electric motor is changed from the steady state of the speed ω 1 to the different speed ω 2 , and the viscous friction coefficient and the Coulomb which are load constants are calculated from the speed and the output torque in the two steady states. The friction torque is obtained, then the speed difference between the two steady states, the output torque and the integrated value of the speed from the speed change start point to the time t when the steady state of the speed ω 2 is reached, and the previously obtained viscous friction coefficient. In addition, the inertial load, which is a load constant, is obtained from the Coulomb friction torque. The reason for this will be described below.

【0007】一般に、電動機の駆動系は、図2のような
ブロック図で表され、電動機軸に換算した全慣性負荷を
J、ωを角速度、電動機のトルクをT、負荷に要するト
ルクをT1 とすれば、運動方程式は式(1)で表され
る。 J(dω/dt)=T−T1 (1) 電動機の負荷として角速度に比例する粘性摩擦、クーロ
ン摩擦を考えると式(1)は式(2)となる。 J(dω/dt)=T−D−Rω (2) ここで、D、Rはそれぞれ負荷定数であるクーロン摩擦
トルク、粘性摩擦係数である。定常状態においては、d
ω/dt=0であるから、式(2)は式(3)となる。 T−D−Rω=0 (3) ここで、2つの定常状態における出力トルクをT1 、T
2 、角速度をω1 、ω2 とすると、次の式(4)、
(5)で表せる。 T1 −D−Rω1 =0 (4) T2 −D−Rω2 =0 (5) したがって、式(4)、(5)より、式(6)、(7)
に示すように粘性摩擦係数Rとクーロン摩擦トルクDを
求めることができる。 R=(T1 −T2 )/(ω1 −ω2 ) (6) D=(T2 ω1 −T1 ω2 )/(ω1 −ω2 ) (7) つづいて、式(2)を時刻0からtまで積分すると次の
式(8)が得られる。
Generally, a drive system of an electric motor is represented by a block diagram as shown in FIG. 2. J is the total inertia load converted to the electric motor shaft, ω is the angular velocity, T is the torque of the electric motor, and T 1 is the torque required for the load. Then, the equation of motion is expressed by equation (1). J (dω / dt) = T−T 1 (1) Considering viscous friction and Coulomb friction that are proportional to the angular velocity as the load of the motor, formula (1) becomes formula (2). J (dω / dt) = TD−Rω (2) Here, D and R are Coulomb friction torque and viscous friction coefficient, which are load constants, respectively. In steady state, d
Since ω / dt = 0, the equation (2) becomes the equation (3). T−D−Rω = 0 (3) Here, output torques in two steady states are T 1 , T
2 and the angular velocities are ω 1 and ω 2 , the following equation (4),
It can be represented by (5). T 1 −D−Rω 1 = 0 (4) T 2 −D−Rω 2 = 0 (5) Therefore, from the equations (4) and (5), the equations (6) and (7) are obtained.
As shown in, the viscous friction coefficient R and the Coulomb friction torque D can be obtained. R = (T 1 −T 2 ) / (ω 1 −ω 2 ) (6) D = (T 2 ω 1 −T 1 ω 2 ) / (ω 1 −ω 2 ) (7) Then, the expression (2 ) Is integrated from time 0 to t, the following equation (8) is obtained.

【数1】 ここで定常状態中における角速度ω1 、ω2 、時刻0か
らtまでの出力トルクの積分値E、時刻0からtまでの
角速度の積分値L(図3(a)の斜線の部分の面積)が
測定されたとすると次の式(9)、(10)が成り立
つ。
[Equation 1] Here, the angular velocities ω 1 and ω 2 in the steady state, the integrated value E of the output torque from time 0 to t, and the integrated value L of the angular velocity from time 0 to t (the area of the shaded portion in FIG. 3A) Then, the following equations (9) and (10) are established.

【数2】 これより、式(8)は式(11)と表すことができる
(図3(b)参照)。 J(ω2 −ω1)=E−Dt−RL (11) 式(11)よりJを求めれば、次の式(12)が得られ
る。 J=(E−Dt−RL)/(ω2 −ω1) (12) 従って、すでに求めたR、Dと測定値ω1 、ω2 、L、
Eより、負荷定数である慣性負荷Jは求められることに
なる。
[Equation 2] From this, Expression (8) can be expressed as Expression (11) (see FIG. 3B). J (ω 2 −ω 1 ) = E−Dt−RL (11) If J is obtained from the equation (11), the following equation (12) is obtained. J = (E-Dt-RL) / (ω 2 −ω 1 ) (12) Therefore, R and D already obtained and the measured values ω 1 , ω 2 , L,
From E, the inertial load J which is a load constant can be obtained.

【0008】本発明の第2の方法では、式(6),
(7)によって粘性摩擦係数Rとクーロン摩擦トルクD
を求めるところまでは同じであるが、慣性負荷Jを式
(2)によって求めるようにしている。すなわち、式
(2)を変形すると、 J=(T−D−Rω)/(dω/dt) (13) になるため、ある瞬間における出力トルクTと、角速度
ωと、加速度dω/dt=Aにより、すでに求めた粘性
摩擦係数Rとクーロン摩擦トルクDを用いて慣性負荷J
を求めるものである。
In the second method of the present invention, equations (6),
According to (7), viscous friction coefficient R and Coulomb friction torque D
Although it is the same up to the point of obtaining, the inertial load J is obtained by the equation (2). That is, when the equation (2) is transformed, J = (T−D−Rω) / (dω / dt) (13), so that the output torque T, the angular velocity ω, and the acceleration dω / dt = A at a certain moment. By using the viscous friction coefficient R and the Coulomb friction torque D already obtained,
Is to seek.

【0009】[0009]

【実施例】以下、本発明の具体的実施例を図に基づいて
説明する。図1は第1実施例の構成図である。図中1は
電動機、2は電動機1に加わる負荷、3は電動機1の回
転量および回転速度を検出するパルスジェネレータ、4
は位置指令を出力する上位のコントローラ、5は上位コ
ントローラ4からの位置指令とパルスジェネレータ3か
らのフィードバックパルスから電動機1に駆動電流を出
力するサーボコントローラである。まず、初めに上位コ
ントローラ4は速度ω1 が一定になるような速度指令を
サーボコントローラ5に出力する。サーボコントローラ
5は速度指令とフィードバックパルスをもとにトルクに
比例した駆動電流を計算し、電動機1に出力する。上位
コントローラ4はサーボコントローラ5を通して返され
る速度ω1 が定常状態になったら、速度ω1 とトルクT
1 を測定し、一時記憶バッファ41に記憶する。速度が
ω1 の定常状態から、上位コントローラ4は速度ω2
一定になるような速度指令をサーボコントローラ5に出
力し、サーボコントローラ5から返される速度ω2 とト
ルクT2 を測定し、かつそれぞれを速度ω2 の定常状態
になるまでの時間tについて積算し、一時記憶バッファ
41に記憶する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of the first embodiment. In the figure, 1 is an electric motor, 2 is a load applied to the electric motor 1, 3 is a pulse generator that detects the amount of rotation and the rotational speed of the electric motor 1, and 4 is a pulse generator.
Is a higher-level controller that outputs a position command, and 5 is a servo controller that outputs a drive current to the electric motor 1 from the position command from the higher-level controller 4 and the feedback pulse from the pulse generator 3. First, the host controller 4 first outputs a speed command to the servo controller 5 so that the speed ω 1 becomes constant. The servo controller 5 calculates a drive current proportional to the torque based on the speed command and the feedback pulse, and outputs it to the electric motor 1. When the speed ω 1 returned via the servo controller 5 reaches a steady state, the host controller 4 determines the speed ω 1 and the torque T
1 is measured and stored in the temporary storage buffer 41. From the steady state where the speed is ω 1, the host controller 4 outputs a speed command to the servo controller 5 so that the speed ω 2 becomes constant, measures the speed ω 2 and the torque T 2 returned from the servo controller 5, and Each of them is integrated for the time t until the steady state of the speed ω 2 and stored in the temporary storage buffer 41.

【0010】以上の処理から、一時記憶バッファ41に
記憶されたデータはトルクT1 、T2 、速度ω1
ω2 、そして加速開始点から時刻tまでの出力トルクお
よび速度の積算値をそれぞれE、Lとして、前記の式
(6)、(7)に代入し、粘性摩擦係数Rとクーロン摩
擦トルクDを計算し、次に式(12)に基づいて演算器
44から慣性負荷Jを計算して出力する。出力トルクの
積算値Eは、サーボコントローラ5内部の電流アンプに
電流指令を書き込む周期ごとに、電流指令に変換する前
のトルク指令値を時刻0からtまでの間、積算し、上位
コントローラ4の一時記憶バッファ41に保存すること
により得る。また、速度の積算値Lは、パルスジェネレ
ータ3からのフィードバックデータの検出周期ごとに速
度フィードバック値を時刻0からtの間積算し、上位コ
ントローラ4の一時記憶バッファ41に保存することに
より得る。
From the above processing, the data stored in the temporary storage buffer 41 are torque T 1 , T 2 , speed ω 1 ,
ω 2 , and the integrated values of the output torque and the speed from the acceleration start point to time t are respectively substituted into Eqs. (6) and (7), and the viscous friction coefficient R and the Coulomb friction torque D are substituted. Then, the inertial load J is calculated and output from the computing unit 44 based on the equation (12). The integrated value E of the output torque is obtained by accumulating the torque command value before conversion into the current command for each cycle of writing the current command to the current amplifier in the servo controller 5 from time 0 to t, and the integrated value E of the host controller 4 is obtained. It is obtained by storing it in the temporary storage buffer 41. Further, the integrated value L of speeds is obtained by accumulating the speed feedback values for each detection cycle of the feedback data from the pulse generator 3 from time 0 to t, and storing the result in the temporary storage buffer 41 of the host controller 4.

【0011】図4は本発明の第2実施例の構成を示すブ
ロック図である。図1に示す第1実施例との相違点は、
上位コントローラ4内の一時記憶バッファ41内に、時
々刻々t0 ,t1 ,・・・の出力トルクT0 ,T1 ,・
・・、角速度ω0 ,ω1 ,・・・、角加速度A0
1 ,・・・を格納するテーブルを設けたことである。
すなわち、上位コントローラ4は、運転中、定期的にサ
ーボコントローラ5より出力トルクTi 、位置フィード
バックθi を取り込む。そして位置フィードバックθi
から角速度ωi 、角加速度Ai を差分等の周知の方法で
求め、出力トルクiと共に状態値として一時記憶バッフ
ァ41に記憶する。次に、上位コントローラ4は一時記
憶バッファ41中のデータより式(13)を用いて負荷
定数のうち慣性モーメントJを計算する。この演算のフ
ローチャートを図5に示す。なお、式(13)におい
て、A=0の場合、解が求まらないが、この場合には、
慣性モーメントJが求まらない状態値のうち最新の2組
より(6),(7)式を用いて粘性摩擦係数Rとクーロ
ン摩擦トルクDを再計算することが可能である。負荷定
数計算を、データを変えて繰り返し、平均化などの周知
の統計的手法を用いることによって負荷定数測定精度が
向上し、かつ動的な負荷変動も測定可能となる。測定さ
れた負荷定数は、サーボコントローラのチューニング等
に利用することができる。
FIG. 4 is a block diagram showing the configuration of the second embodiment of the present invention. The difference from the first embodiment shown in FIG. 1 is that
In the temporary storage buffer 41 in the host controller 4, the output torques T 0 , T 1 , ... Of t 0 , t 1 , ...
.., angular velocities ω 0 , ω 1 , ..., Angular acceleration A 0 ,
That is, a table for storing A 1 , ... Is provided.
That is, the host controller 4 periodically takes in the output torque T i and the position feedback θ i from the servo controller 5 during operation. And position feedback θ i
From the above, the angular velocity ω i and the angular acceleration A i are obtained by a known method such as a difference, and are stored in the temporary storage buffer 41 as a state value together with the output torque i . Next, the host controller 4 calculates the moment of inertia J of the load constants using the equation (13) from the data in the temporary storage buffer 41. A flowchart of this calculation is shown in FIG. In equation (13), when A = 0, no solution is obtained, but in this case,
It is possible to recalculate the viscous friction coefficient R and the Coulomb friction torque D using the equations (6) and (7) from the latest two sets of the state values for which the inertia moment J cannot be obtained. The load constant measurement accuracy is improved and dynamic load fluctuations can be measured by repeating the load constant calculation by changing the data and using a well-known statistical method such as averaging. The measured load constant can be used for tuning the servo controller or the like.

【0012】[0012]

【発明の効果】以上説明したように、本発明では、電動
機において、機械系のバックラッシュや静止摩擦、動摩
擦等の影響を受けず、かつ電動機の制御方式によらずに
簡単に負荷を測定できることになる。
As described above, according to the present invention, the load of the electric motor can be easily measured without being affected by backlash, static friction, dynamic friction, etc. of the mechanical system and regardless of the control system of the electric motor. become.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例を示すブロック図であ
る。
FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】 電動機の出力トルクと負荷トルクの釣合いを
示すブロック図である。
FIG. 2 is a block diagram showing a balance between output torque and load torque of an electric motor.

【図3】 負荷定数測定方法の原理を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing the principle of a load constant measuring method.

【図4】 本発明の第2実施例を示すブロック図であ
る。
FIG. 4 is a block diagram showing a second embodiment of the present invention.

【図5】 第2実施例における演算のフローチャートで
ある。
FIG. 5 is a flowchart of calculation in the second embodiment.

【符号の説明】[Explanation of symbols]

1 電動機、2 負荷、3 パルスジェネレータ、4
上位コントローラ、5サーボコントローラ
1 electric motor, 2 load, 3 pulse generator, 4
Upper controller, 5 servo controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1の速度指令に対して定常状態にある
電動機の駆動装置に前記第1の速度指令と異なる第2の
速度指令を与え、前記第1および第2の速度指令に対す
る定常状態における前記電動機の速度ω1 ,ω2 と前記
駆動装置の出力トルクT1 ,T2 より負荷定数である粘
性摩擦係数Rおよびクーロン摩擦トルクDを求め、前記
第1の速度指令に対する定常状態ω1 から前記第2の速
度指令に対する定常状態ω2 に至るまでの前記駆動装置
の出力トルクT1 ,T2 の積分値Eおよび前記電動機の
速度の積分値Lと、前記第1と第2の速度指令に対する
定常状態における前記電動機の速度差ω2 −ω1 、およ
び前記粘性摩擦係数Rと前記クーロン摩擦トルクDから
負荷定数である慣性負荷Jを求めることを特徴とする電
動機駆動系の負荷定数測定方法。
1. A steady state for the first and second speed commands, wherein a second speed command different from the first speed command is given to a drive device of an electric motor in a steady state for the first speed command. In the steady state ω 1 for the first speed command, the viscous friction coefficient R and the Coulomb friction torque D, which are load constants, are obtained from the motor speeds ω 1 and ω 2 and the output torques T 1 and T 2 of the drive device. To the steady state ω 2 in response to the second speed command, the integrated value E of the output torques T 1 and T 2 of the drive device and the integrated value L of the speed of the electric motor, and the first and second speeds. the speed difference omega 2 - [omega] 1 of the motor, and the load constant measurement of the motor drive system, characterized in that determining the said viscous friction coefficient R is the load constant from the Coulomb friction torque D inertial load J in the steady state with respect to the command Law.
【請求項2】 第1の速度指令に対して定常状態にある
電動機の駆動装置に前記第1の速度指令と異なる第2の
速度指令を与え、前記第1および第2の速度指令に対す
る定常状態における前記電動機の速度ω1 ,ω2 と前記
駆動装置の出力トルクT1 ,T2 より負荷定数である粘
性摩擦係数Rおよびクーロン摩擦トルクDを求め、かつ
ある瞬間における駆動装置の出力トルクTから前記で求
めた粘性摩擦係数Rと電動機の速度ωの積と動摩擦トル
クDを減じた値と当該瞬間における電動機の加速度dω
/dtの比より負荷定数である慣性負荷Jを求めること
を特徴とする電動機駆動系の負荷定数測定方法。
2. A steady state for the first and second speed commands is given to a drive device for an electric motor in a steady state for the first speed command, the second speed command being different from the first speed command. From the speeds ω 1 and ω 2 of the electric motor and the output torques T 1 and T 2 of the drive device, the viscous friction coefficient R and the Coulomb friction torque D, which are load constants, are obtained, and from the output torque T of the drive device at a certain moment, A value obtained by subtracting the product of the viscous friction coefficient R obtained above and the speed ω of the motor and the dynamic friction torque D, and the acceleration dω of the motor at that moment
A method for measuring a load constant of an electric motor drive system, characterized in that an inertial load J which is a load constant is obtained from a ratio of / dt.
JP15020394A 1994-06-30 1994-06-30 Load constant measurement method for motor drive system Expired - Fee Related JP3479922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15020394A JP3479922B2 (en) 1994-06-30 1994-06-30 Load constant measurement method for motor drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15020394A JP3479922B2 (en) 1994-06-30 1994-06-30 Load constant measurement method for motor drive system

Publications (2)

Publication Number Publication Date
JPH0815058A true JPH0815058A (en) 1996-01-19
JP3479922B2 JP3479922B2 (en) 2003-12-15

Family

ID=15491782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15020394A Expired - Fee Related JP3479922B2 (en) 1994-06-30 1994-06-30 Load constant measurement method for motor drive system

Country Status (1)

Country Link
JP (1) JP3479922B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037039A1 (en) * 1995-05-17 1996-11-21 Kabushiki Kaisha Yaskawa Denki Apparatus for determination of control constant
JP2005172788A (en) * 2003-11-21 2005-06-30 Yaskawa Electric Corp Estimation method for moment of inertia of motor load
US7147299B2 (en) 1999-09-28 2006-12-12 Seiko Epson Corporation Control unit and method for controlling motor for use in printer, and storage medium storing control program
DE102010036500A1 (en) 2009-08-28 2011-03-03 Fanuc Ltd A control device for an electric motor having a function for simultaneously determining inertia and friction
JP2014027742A (en) * 2012-07-25 2014-02-06 Toshiba Schneider Inverter Corp Motor control device
CN109612615A (en) * 2018-12-24 2019-04-12 人本集团有限公司 The test device of automobile hub bearing load friction torque
CN112464400A (en) * 2020-11-20 2021-03-09 南京工程学院 Method for calculating torque and rotating speed characteristics of radial standing wave type ultrasonic motor based on coulomb friction and viscous friction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020114626A1 (en) * 2018-12-06 2020-06-11 Sew-Eurodrive Gmbh & Co. Kg Method for operating a drive train and drive train

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037039A1 (en) * 1995-05-17 1996-11-21 Kabushiki Kaisha Yaskawa Denki Apparatus for determination of control constant
US6037736A (en) * 1995-05-17 2000-03-14 Kabushiki Kaisha Yaskawa Denki Apparatus for determination of control constant
US7147299B2 (en) 1999-09-28 2006-12-12 Seiko Epson Corporation Control unit and method for controlling motor for use in printer, and storage medium storing control program
JP2005172788A (en) * 2003-11-21 2005-06-30 Yaskawa Electric Corp Estimation method for moment of inertia of motor load
DE102010036500A1 (en) 2009-08-28 2011-03-03 Fanuc Ltd A control device for an electric motor having a function for simultaneously determining inertia and friction
US8232758B2 (en) 2009-08-28 2012-07-31 Fanuc Ltd Controller of electric motor having function of estimating inertia and friction simultaneously
DE102010036500B4 (en) * 2009-08-28 2017-10-05 Fanuc Ltd A control device for an electric motor having a function for simultaneously determining inertia and friction
JP2014027742A (en) * 2012-07-25 2014-02-06 Toshiba Schneider Inverter Corp Motor control device
CN109612615A (en) * 2018-12-24 2019-04-12 人本集团有限公司 The test device of automobile hub bearing load friction torque
CN112464400A (en) * 2020-11-20 2021-03-09 南京工程学院 Method for calculating torque and rotating speed characteristics of radial standing wave type ultrasonic motor based on coulomb friction and viscous friction
CN112464400B (en) * 2020-11-20 2024-02-13 南京工程学院 Calculation method of torque and rotation speed characteristics of radial standing wave type ultrasonic motor based on coulomb friction and viscous friction

Also Published As

Publication number Publication date
JP3479922B2 (en) 2003-12-15

Similar Documents

Publication Publication Date Title
Jeong et al. Estimating cutting force from rotating and stationary feed motor currents on a milling machine
EP0208788A1 (en) Speed control system for servo motors
JP3129622B2 (en) Quadrant projection correction method in full closed loop system
JP6009397B2 (en) Inertia estimation method and inertia estimation apparatus for position control device
JP2002304219A (en) Motor controller and mechanism characteristic measuring method
JP3296527B2 (en) Motor speed control device
JP3479922B2 (en) Load constant measurement method for motor drive system
JP3230616B2 (en) Inertial load measurement method for motor drive system
JP3545487B2 (en) Method of estimating inertia and friction torque of mechanical system driven by motor
KR970003827B1 (en) Zeroing method using a disturbance estimating observer
JP3246572B2 (en) Load constant measurement method for motor drive system
JP3049946B2 (en) Load inertia measuring device
JPH06114762A (en) Vibration damping control method
TWI752720B (en) Electronic device and control method thereof
JPH0392911A (en) Robot control method for sliding mode control
EP0451287A1 (en) Main shaft motor control method
JPH0933369A (en) Detecting method for external force and external torque of electric motor system, and device therefor
JPH0670567A (en) Automatic setting method of control gain for motor and detecting method of backlash
JPH06131050A (en) Method for detecting collision of movable part driven by servo motor
JPH11313495A (en) Controller for motor servo system
JPS59195714A (en) Positioning controller of moving object
WO2022091941A1 (en) Servo control device
JP2006074896A (en) Motor control device
JP3351979B2 (en) Position control system
JP2001162586A (en) Control device for rotary cutter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees