JPH0815017B2 - Νb ▼ Lower 3 ▼ Method for manufacturing Sn superconducting wire - Google Patents

Νb ▼ Lower 3 ▼ Method for manufacturing Sn superconducting wire

Info

Publication number
JPH0815017B2
JPH0815017B2 JP58187974A JP18797483A JPH0815017B2 JP H0815017 B2 JPH0815017 B2 JP H0815017B2 JP 58187974 A JP58187974 A JP 58187974A JP 18797483 A JP18797483 A JP 18797483A JP H0815017 B2 JPH0815017 B2 JP H0815017B2
Authority
JP
Japan
Prior art keywords
wire
heat treatment
wire rod
rod
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58187974A
Other languages
Japanese (ja)
Other versions
JPS6079612A (en
Inventor
英元 鈴木
智幸 熊野
Original Assignee
昭和電線電纜株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電線電纜株式会社 filed Critical 昭和電線電纜株式会社
Priority to JP58187974A priority Critical patent/JPH0815017B2/en
Publication of JPS6079612A publication Critical patent/JPS6079612A/en
Publication of JPH0815017B2 publication Critical patent/JPH0815017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はIn−Situ法によるNb3Sn超電導線の製造方法
に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing an Nb 3 Sn superconducting wire by an In-Situ method.

[発明の技術的背景とその問題点] Nb3Sn超電導線の製造方法の一つとして近年In−Situ
法によるものが注目されている。この方法のうち消耗電
極アーク溶解法の一つとして、溶解する金属相互を電極
としてこの間にアークを発生させて溶解する方法が知ら
れているが、2種類以上の金属を合金化される場合にア
ークの安定性や凝固後の合金の均質性に問題があり、ま
た不純物の混入を生じ易いため合金化させる2種以上の
金属からなる複合体を電極として導電性ルツボとの間に
アークを発生させて溶解する方法が検討されている。
[Technical background of the invention and its problems] Recently, as one of the manufacturing methods of Nb 3 Sn superconducting wire, in-situ
The thing by the law attracts attention. As one of the consumable electrode arc melting methods among this method, there is known a method in which melting metals are used as electrodes and an arc is generated between them to melt, but when two or more kinds of metals are alloyed, There is a problem with the stability of the arc and the homogeneity of the alloy after solidification, and since impurities are easily mixed in, an arc is generated between the conductive crucible using a composite of two or more metals to be alloyed as an electrode. A method of allowing the solution to dissolve is being studied.

このような方法では、Cuマトリックス中にNb粒子を分
散させてインゴットを線材に加工してNb粒子を1μmφ
以下のファイバー状にした後、Snと接触せしめ、次いで
Nb3Sn生成の熱処理を施すことによりNb3Sn超電導線が製
造される。
In such a method, Nb particles are dispersed in a Cu matrix, the ingot is processed into a wire rod, and the Nb particles are reduced to 1 μmφ.
After making it into the following fiber shape, contact it with Sn, then
Nb 3 Sn superconducting wire is manufactured by heat treatment of the Nb 3 Sn generation.

[背景技術の問題点] しかしながら、このような方法においては、インゴッ
トを線材に加工する工程の中間において複数回の焼鈍を
施さなければならず、従ってSnは最終形状まで加工した
後に接触させる必要があるためメッキ等により供給する
Sn量等に制限を生じ、かつその後の熱処理方法も困難を
生ずるという欠点を有していた。Snの供給方法としては
Cu−Nb合金とSnとを、例えばCu管内に組込むことが考え
られるが、この場合にはSn組込み後の焼鈍ができないた
め細線化が困難であるという難点を生じる。
[Problems of background art] However, in such a method, it is necessary to perform annealing a plurality of times in the middle of the step of processing the ingot into a wire rod, and therefore Sn needs to be contacted after processing to a final shape. Supply by plating, etc.
It has a drawback that the Sn content is limited and the subsequent heat treatment method is difficult. As a method of supplying Sn
It is conceivable to incorporate the Cu-Nb alloy and Sn into, for example, a Cu pipe, but in this case, there is a problem that it is difficult to thin the wire because annealing cannot be performed after incorporating Sn.

[発明の目的] 本発明はかかる従来の欠点を解消するためになされた
もので、Cuマトリックス中にNb粒子を分散させたインゴ
ットを加工後焼鈍した線材とCu被覆Sn線とをCu管中に収
容し、次いで中間焼鈍せずに冷間加工を施すことによ
り、Nb粒子と反応するSn供給量を容易に制御し得ると共
に細線化の可能なIn−Situ法によるNb3Sn超電導線の製
造方法を提供することを目的とする。
[Object of the Invention] The present invention has been made in order to solve the above-mentioned conventional drawbacks, and a wire rod and a Cu-coated Sn wire, which are annealed after processing an ingot in which Nb particles are dispersed in a Cu matrix, are placed in a Cu pipe. A method of manufacturing a Nb 3 Sn superconducting wire by the In-Situ method in which the Sn supply amount that reacts with the Nb particles can be easily controlled and the wire can be thinned by containing and then performing cold working without intermediate annealing. The purpose is to provide.

[発明の概要] すなわち本発明のNb3Sn超電導線の製造方法は、Nbお
よびCuを含む電極棒と導電性鋳型間の放電により、前記
電極棒を溶解してCu−Nb合金を製造する工程と、前記Cu
−Nb合金をCu管中に収容しこれに冷間加工を施して断面
正六角形の線材を製造する工程と、この線材に800〜100
0℃の温度で1〜10時間熱処理を施す工程と、前記線材
と同一断面形状のCu被覆Sn線の複数本を中心として、そ
の外周に前記熱処理後の線材を配置して、これをCu管中
に収容する工程と、この複合体に冷間加工を施して前記
熱処理後の線材に断面減少率99.95%以下の加工歪を与
えて伸線する工程と、次いでこの線材にNb3Sn生成の熱
処理を施す工程とからなることを特徴としている。
Method of manufacturing SUMMARY OF THE INVENTION That is Nb 3 Sn superconducting wire of the present invention, the discharge between the electrode rod and the conductive mold containing Nb and Cu, the process of manufacturing the Cu-Nb alloy by dissolving the electrode rod And the Cu
-Nb alloy is housed in a Cu pipe and cold-worked to produce a wire with a regular hexagonal cross section.
A step of performing heat treatment at a temperature of 0 ° C. for 1 to 10 hours, and centering a plurality of Cu-coated Sn wires having the same cross-sectional shape as the wire material, and arranging the heat-treated wire material on the outer periphery of the wire, and applying this to a Cu pipe. A step of accommodating in the inside, a step of subjecting the composite to cold working and subjecting the wire rod after the heat treatment to a wire drawing with a processing strain of 99.95% or less in cross-section reduction rate, and then forming Nb 3 Sn in the wire rod. It is characterized by comprising a step of performing heat treatment.

本発明においては、消耗電極アーク溶解法によって製
造されたCu−Nb合金は、冷間加工された後熱処理を施さ
れるが、800℃未満あるいは1000℃を越えると細線化が
困難となるため800〜1000℃の温度範囲で熱処理を施す
必要がある。熱処理後の線材はCu被覆Sn線の外周に配置
された状態でCu管中に収容された後、冷間加工により最
終形状まで加工されるが、この冷間加工は断線を生じな
い範囲としてCu−Nb合金部分の断面減少率99.95%以下
で施される。例えばCu−Nb合金線材の熱処理温度が800
〜900℃の場合、組込み後の冷間加工は99.6%以下で、
また900〜1000℃の場合は99.95%以下とすることが望ま
しい。
In the present invention, the Cu-Nb alloy produced by the consumable electrode arc melting method is subjected to heat treatment after cold working, but if it is less than 800 ° C or more than 1000 ° C, it becomes difficult to thin the wire 800 It is necessary to perform heat treatment in the temperature range of up to 1000 ° C. After the heat treatment, the wire rod is placed in the Cu pipe while being placed on the outer circumference of the Cu-coated Sn wire, and then cold-worked to the final shape. -It is applied with a cross-sectional reduction rate of 99.95% or less in the Nb alloy part. For example, the heat treatment temperature of Cu-Nb alloy wire is 800
At ~ 900 ° C, the cold work after assembly is 99.6% or less,
Further, in the case of 900 to 1000 ° C, it is desirable to set it to 99.95% or less.

さらにNb3Sn生成のための最終熱処理は650〜800℃の
範囲で1〜7日間施される。
Further, the final heat treatment for producing Nb 3 Sn is performed in the range of 650 to 800 ° C. for 1 to 7 days.

[発明の実施例] 以下、本発明の一実施例について説明する。[Embodiment of the Invention] An embodiment of the present invention will be described below.

Cu被覆Nb線の複数本を一体化した複合線を電極とし
て、消耗電極アーク溶解法により製造した外径53mmφの
Cu−21.8%Nb合金インゴットを外径64mmφのCu管中に収
容した後、静水圧押出しおよび冷間伸線加工を施して3.
87mmφの線材を製造した。この線材に各種の温度で熱処
理を施した後の冷間加工限界を下表に示す。なお、熱処
理時間はいずれも1〜10時間の範囲で冷間伸線加工限界
に相違は認められなかった。
With a composite wire that integrates multiple Cu-coated Nb wires as an electrode, an outer diameter of 53 mmφ produced by the consumable electrode arc melting method
A Cu-21.8% Nb alloy ingot was placed in a Cu pipe with an outer diameter of 64 mmφ, and then hydrostatic extrusion and cold wire drawing were performed.
87mmφ wire rod was manufactured. The following table shows the cold working limit after heat treatment of this wire at various temperatures. The heat treatment time was in the range of 1 to 10 hours, and no difference was observed in the cold drawing limit.

次に上記と同様のCu被覆Cu−21%−Nb合金インゴット
に静水圧押出しおよび冷間伸線加工を施して平行面間距
離3.69mmの断面正六角形の線材を製造した後、この線材
に550℃×15時間、900℃×1.5時間の熱処理を施した。
この線材の54本を、同断面積および形状を有するCu被覆
Sn線の37本を集合した外側に配置し、内径43.5mmφ、外
径49mmφのCu管中に収容した後、冷間加工を施した。そ
の結果、900℃で熱処理を施したものは1mmφまで伸線加
工可能であったが、550℃熱処理のものは17mmφで断線
した。
Next, the same Cu-coated Cu-21% -Nb alloy ingot as described above was subjected to hydrostatic extrusion and cold wire drawing to produce a wire having a regular hexagonal cross section with a distance between parallel planes of 3.69 mm, and then 550 Heat treatment was performed at ℃ × 15 hours and 900 ℃ × 1.5 hours.
54 wires of this wire were coated with Cu having the same cross-sectional area and shape.
Thirty-seven Sn wires were arranged on the outer side of the assembly, housed in a Cu tube having an inner diameter of 43.5 mmφ and an outer diameter of 49 mmφ, and then subjected to cold working. As a result, it was possible to perform wire drawing up to 1 mmφ for those that were heat treated at 900 ° C, but wire breaks at 17 mmφ for those that were heat treated at 550 ° C.

[発明の効果] 以上説明したように、本発明によればIn−Situ法によ
るNb3Sn生成線材の細線化が可能になると共に、Nb3Sn生
成に必要なSn量の制御も容易であり、また、Cu管内にNb
とSnを配置した複合体に熱処理を施す必要もない等の利
点を有する。
As has been described [Effect of the Invention, it becomes possible to thinning of the Nb 3 Sn generation wire according In-Situ method according to the present invention, it is easy to control the Sn amount necessary to Nb 3 Sn generation , And Nb in the Cu pipe
It has the advantage that there is no need to perform heat treatment on the composite in which and Sn are arranged.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】NbおよびCuを含む電極棒と導電性鋳型間の
放電により、前記電極棒を溶解してCu−Nb合金を製造す
る工程と、前記Cu−Nb合金をCu管中に収容しこれに冷間
加工を施して断面正六角形の線材を製造する工程と、こ
の線材に800〜1000℃の温度で1〜10時間熱処理を施す
工程と、前記線材と同一断面形状のCu被覆Sn線の複数本
を中心として、その外周に前記熱処理後の線材を配置し
て、これをCu管中に収容する工程と、この複合体に冷間
加工を施して前記熱処理後の線材に断面減少率99.95%
以下の加工歪を与えて伸線する工程と、次いでこの線材
にNb3Sn生成の熱処理を施す工程とからなることを特徴
とするNb3Sn超電導線の製造方法。
1. A step of producing a Cu—Nb alloy by melting the electrode rod by discharging between the electrode rod containing Nb and Cu and a conductive mold, and housing the Cu—Nb alloy in a Cu tube. A step of manufacturing a wire rod having a regular hexagonal cross-section by subjecting it to cold working, a step of subjecting this wire rod to a heat treatment at a temperature of 800 to 1000 ° C. for 1 to 10 hours, and a Cu-coated Sn wire having the same cross-sectional shape as the wire rod. Centering on a plurality of the above, the wire rod after the heat treatment is arranged on the outer periphery of the wire rod, and a step of accommodating the wire rod in a Cu pipe, and a cross-section reduction rate of the wire rod after the heat treatment by cold working the composite. 99.95%
A step of drawing gives the following working strain, and then the production method of the Nb 3 Sn superconducting wire, characterized by comprising a step of performing heat treatment of the Nb 3 Sn generation to the wire.
JP58187974A 1983-10-07 1983-10-07 Νb ▼ Lower 3 ▼ Method for manufacturing Sn superconducting wire Expired - Lifetime JPH0815017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58187974A JPH0815017B2 (en) 1983-10-07 1983-10-07 Νb ▼ Lower 3 ▼ Method for manufacturing Sn superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58187974A JPH0815017B2 (en) 1983-10-07 1983-10-07 Νb ▼ Lower 3 ▼ Method for manufacturing Sn superconducting wire

Publications (2)

Publication Number Publication Date
JPS6079612A JPS6079612A (en) 1985-05-07
JPH0815017B2 true JPH0815017B2 (en) 1996-02-14

Family

ID=16215395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58187974A Expired - Lifetime JPH0815017B2 (en) 1983-10-07 1983-10-07 Νb ▼ Lower 3 ▼ Method for manufacturing Sn superconducting wire

Country Status (1)

Country Link
JP (1) JPH0815017B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960015406B1 (en) * 1993-11-16 1996-11-13 주식회사 태평양 Kojic acid derivatives

Also Published As

Publication number Publication date
JPS6079612A (en) 1985-05-07

Similar Documents

Publication Publication Date Title
US9855617B2 (en) High-precision zinc-based alloy electrode wire and manufacture method thereof
DE2227523A1 (en) ALUMINUM-NICKEL ALLOY ELECTRIC CONDUCTOR MATERIAL AND METHOD FOR MANUFACTURING IT
JPS5620136A (en) Copper alloy member
US4435228A (en) Process for producing NB3 SN superconducting wires
CN110976801A (en) Method for preparing silver tin oxide indium oxide contact material by up-drawing continuous casting process
Rhys The fabrication and properties of ruthenium
JPH0815017B2 (en) Νb ▼ Lower 3 ▼ Method for manufacturing Sn superconducting wire
US4059437A (en) Oxygen-free copper product and process
CN111036829A (en) Method for controlling hydrogen content of β titanium alloy wire
US3907550A (en) Method of making same composite billets
CN1014329B (en) Internal oxidized ag-sn system alloy electrical contact materials and manufacturing method thereof
JPS62240750A (en) Manufacture of nb3sn superconducting wire
JPH0364583B2 (en)
RU2666752C1 (en) High-strength wire and method of its production
RU2088992C1 (en) METHOD OF PRODUCTION OF MULTIWIRE SUPERCONDUCTOR BASED ON COMPOUND nb*003SN
CN110610782B (en) Nb-shaped alloy3Refining method of SnCu bar alloy grains for Sn superconducting wire
JPH04137411A (en) Manufacture of nb3 sn multicore superconducting wire
US3294525A (en) Fusion processes for the manufacture of metals and alloys employed in contact with molten materials
JPS6357750A (en) Manufacture of nb3sn superconducting wire
CN116479283A (en) High-performance chromium bronze bar and preparation method thereof
JPH0815021B2 (en) In-situ method Νb 3 Lower method for manufacturing Sn superconducting wire
CN114086021A (en) Rapid directional casting method for bonding wire
JPH01304616A (en) Manufacture of nb3 sn multi-superconductor wire
JPS63213212A (en) Manufacture of internal diffusion type nb3 sn superconductive wire
JPS61276959A (en) Production of nb3sn superconductive wire