JPH0814837A - Size measurement method and measurement device - Google Patents

Size measurement method and measurement device

Info

Publication number
JPH0814837A
JPH0814837A JP14809294A JP14809294A JPH0814837A JP H0814837 A JPH0814837 A JP H0814837A JP 14809294 A JP14809294 A JP 14809294A JP 14809294 A JP14809294 A JP 14809294A JP H0814837 A JPH0814837 A JP H0814837A
Authority
JP
Japan
Prior art keywords
light
shielding film
observation
substrate
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14809294A
Other languages
Japanese (ja)
Inventor
Shinichi Ito
信一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14809294A priority Critical patent/JPH0814837A/en
Priority to KR1019950018044A priority patent/KR960001871A/en
Publication of JPH0814837A publication Critical patent/JPH0814837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To provide a size measurement device capable of measuring the line breadth of a masking film pattern formed on a substrate with high accuracy. CONSTITUTION:Regarding a size measurement device for measuring the line breadth of a masking film pattern formed on the surface of a translucent substrate, a light irradiation section 11 is provided for emitting observation light of wavelength lambda to the substrate from the side thereof where the pattern is formed. In addition, the device is provided with a light receiving section 12 for receiving the observation light reflected from the substrate and the film after irradiation from the section 11, as well as with an image data processing section 14 for finding the line breadth W of the masking film pattern on the basis of a detection signal from the section 12. Furthermore, the device features that the wavelength lambda of the observation light is set, so as to keep a substantially zero-degree phase difference between a beam of the observation light reflected from the surface of the masking film at the position of the section 12 and another beam of the light reflected from substrate surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板上に配設された遮
光性膜からなるパターンの線幅Wを光学的に測定する寸
法測定方法及び測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dimension measuring method and a measuring apparatus for optically measuring a line width W of a pattern made of a light-shielding film provided on a substrate.

【0002】[0002]

【従来の技術】透光性基板上に配設された遮光性膜から
なるパターンの線幅を測定する寸法測定装置では、パタ
ーンが形成された面側から波長λの観察光を照射し、透
光性基板及び遮光性膜で反射した観察光を受光し、その
受光信号に基づいて透光性基板が露出した部分又は遮光
性パターンの線幅Wを測定している。この測定装置に用
いられる光源には、一般に水銀の発振線やレーザ光源等
が用いられているが、これらの選定には微細線幅に対す
る解像性能が考慮されている。
2. Description of the Related Art In a dimension measuring apparatus for measuring the line width of a pattern made of a light-shielding film arranged on a transparent substrate, an observation light of wavelength λ is irradiated from the surface side on which the pattern is formed to transmit the light. The observation light reflected by the light-transmitting substrate and the light-shielding film is received, and the line width W of the exposed portion of the light-transmitting substrate or the light-shielding pattern is measured based on the received light signal. Generally, a mercury oscillation line, a laser light source, or the like is used as a light source used in this measuring device, and the resolution performance with respect to a fine line width is taken into consideration in selecting these.

【0003】観察光として解像性能により決定した波長
を用いた場合、遮光性膜と透光性基板の境界部で反射光
強度が微分形を示すという問題が生じている。この現象
は、遮光性膜表面で反射した観察光と透光性基板表面で
反射した観察光とに位相差が生じることによる。このよ
うに反射光強度が微分形となる場合、従来は反射光強度
のしきいレベルを設け、しきいレベル以上或いは以下を
示す範囲を寸法と定めていた。
When a wavelength determined by the resolution is used as the observation light, there is a problem that the intensity of the reflected light shows a differential form at the boundary between the light-shielding film and the transparent substrate. This phenomenon is due to the occurrence of a phase difference between the observation light reflected on the surface of the light-shielding film and the observation light reflected on the surface of the transparent substrate. In the case where the reflected light intensity is of the differential type in this way, conventionally, a threshold level of the reflected light intensity is provided, and a range showing a threshold level above or below is defined as a dimension.

【0004】しかしながら、この種の装置にあっては次
のような問題があった。即ち、反射光に生じる微分形
は、遮光性膜の膜厚d,屈折率n,消衰係数kにより容
易に変化する。このため、Cr,CrO,MoSi,M
oSiO,SiO,SiN,Si等で作成する、又は屈
折率n,消衰係数kを変化させることで作成する半透明
位相シフト膜を遮光性膜に持つパターンでは、パターン
寸法の測定精度が著しく低下するという問題があった。
However, this type of device has the following problems. That is, the differential form generated in the reflected light easily changes depending on the film thickness d of the light shielding film, the refractive index n, and the extinction coefficient k. Therefore, Cr, CrO, MoSi, M
In a pattern having a semi-transparent phase shift film as a light-shielding film, which is created by using oSiO, SiO, SiN, Si, or by changing the refractive index n and the extinction coefficient k, the measurement accuracy of the pattern dimension is significantly reduced. There was a problem of doing.

【0005】[0005]

【発明が解決しようとする課題】このように従来、基板
上に形成された遮光性パターンの線幅等を測定する寸法
測定装置においては、反射光強度が微分形を示し、この
微分形のために測定精度が低下する問題があった。ま
た、この微分形に対してあるしきいレベルを設け、しき
いレベル以上或いは以下を示す範囲を寸法と定めても、
遮光性膜の膜厚d,屈折率n,消衰係数k等により微分
形が容易に変化するため、本来の寸法を把握することが
できず、測定精度が悪いという問題があった。
As described above, conventionally, in the dimension measuring device for measuring the line width of the light-shielding pattern formed on the substrate, the reflected light intensity shows a differential type, and this differential type is used. However, there was a problem that the measurement accuracy decreased. In addition, even if a threshold level is provided for this differential form and the range above or below the threshold level is defined as the dimension,
Since the differential form easily changes depending on the film thickness d of the light-shielding film, the refractive index n, the extinction coefficient k, etc., the original dimensions cannot be grasped and the measurement accuracy is poor.

【0006】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、基板上に形成された遮
光性膜パターンの線幅又は透光性基板が露出した部分の
幅を高精度に測定可能とした寸法測定方法及び測定装置
を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to determine the line width of the light-shielding film pattern formed on the substrate or the width of the exposed portion of the transparent substrate. An object of the present invention is to provide a dimension measuring method and a measuring device capable of measuring with high accuracy.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明は、次のような構成を採用している。即ち、本
発明は(請求項1)は、一主面に遮光性膜からなるパタ
ーンが形成された基板に対し、該パターンが形成された
面側から波長λの観察光を照射し、基板及び遮光性膜で
反射した観察光を受光し、基板が露出した部分又は遮光
性膜パターンの線幅Wを測定する寸法測定方法におい
て、遮光性膜表面で反射した観察光と基板表面で反射し
た観察光との受光領域における位相差が実質的に0度と
なるように観察光の波長λを設定することを特徴とす
る。
In order to solve the above problems, the present invention employs the following configurations. That is, according to the present invention (claim 1), a substrate having a pattern formed of a light-shielding film on one main surface is irradiated with observation light having a wavelength λ from the surface side on which the pattern is formed. In the dimension measuring method of receiving the observation light reflected by the light-shielding film and measuring the line width W of the exposed portion of the substrate or the light-shielding film pattern, the observation light reflected by the light-shielding film surface and the observation reflected by the substrate surface The wavelength λ of the observation light is set so that the phase difference with the light in the light receiving region is substantially 0 degree.

【0008】また、本発明は(請求項2)は、一主面に
遮光性膜パターンが形成された基板の露出部分又は遮光
性膜パターンの線幅Wを測定する寸法測定装置におい
て、基板に対し遮光性膜パターンが形成された面側から
波長λの観察光を照射する光照射部と、この光照射部か
らの光照射により基板及び遮光性膜で反射した観察光を
受光する受光部と、この受光部において遮光性膜表面で
反射した観察光と基板表面で反射した観察光との位相差
が実質的に0度となるように観察光の波長λを設定する
手段と、受光部の検出信号に基づいて基板が露出した部
分又は遮光性膜パターンの線幅Wを測定する手段とを具
備してなることを特徴とする。
The present invention (claim 2) provides a dimensional measuring device for measuring a line width W of an exposed portion of a substrate having a light-shielding film pattern formed on one main surface or a light-shielding film pattern. On the other hand, a light irradiation unit that irradiates the observation light of the wavelength λ from the surface side on which the light shielding film pattern is formed, and a light receiving unit that receives the observation light reflected by the substrate and the light shielding film by the light irradiation from the light irradiation unit. , A means for setting the wavelength λ of the observation light so that the phase difference between the observation light reflected on the surface of the light-shielding film and the observation light reflected on the surface of the substrate in the light receiving portion is substantially 0 °, And a means for measuring the line width W of the exposed portion of the substrate or the light-shielding film pattern based on the detection signal.

【0009】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) 2つの観察光の位相差が実質的に0度というのは、
位相差がほぼ2mπであること(mは整数)。 (2) 観察光の波長λが、該波長λにおける遮光性膜の屈
折率n,消衰係数k及び遮光性膜の膜厚dによりほぼ λ=4dπ/[tan -1{2k/((n2 −1)+k2 )}+
2mπ] で与えられること(mは整数)。 (3) 遮光性膜は、露光波長において遮光性膜が配設され
ていない部分に対して180度の位相差を与え、所望の
透過率を有する膜で、且つ遮光性膜の屈折率nが0より
大きい任意の整数uに対して n=(1+u)/u の関係をほぼ満たす膜であり、また観察波長を露光波長
と同じ波長に設定すること。 (4) 屈折率n,消衰係数k,膜厚dの少なくとも一つを
求めるための測定部と解析部を持つこと。 (5) 基板上に不本意的に形成された遮光性膜からなるパ
ターン或いは遮光性膜中に不本意的に形成された開口部
(ピンホール)の大きさを測定可能すること。 (6) 基板が透光性基板であること。 (7) 基板がSiO2 ,Si34 ,Al23 ,MgF
2 ,CaF2 の少なくとも一つにより構成されているこ
と。 (8) 本手法により測定した露光用マスクを提供するこ
と。 (9) 露光用マスクが露光波長において透過率がほぼ0の
遮光性膜で形成されたパターンを少なくとも含むもので
あること。 (10)露光波長において透過率がほぼ0の遮光性膜が、C
r,MoSi,アモルファスSiの少なくとも一つを組
成に持つこと。 (11)露光波長において透過率がほぼ0の遮光性膜が、C
rO,CrN,CrON,MoSiO,MoSiN,M
oSiON,SiO,SiN,SiONの少なくとも一
つを組成に持つように形成されていること。 (12)露光用マスクは、露光波長において遮光性膜が透光
性基板を透過する光に対して強度透過率1及至20%以
下で、且つ位相差が実質的にほぼ180度を有する半遮
光性膜として構成されたものであること。 (13)半遮光性膜が、Si,SiN,SiO,SiNO,
MoSiO,MoSiN,MoSiON,CrO,Cr
N,CrON,AlO,AlN,AlON,TiO,T
iN,TiON,WSiO,WSiN,WSiONのう
ち少なくとも一種類の組成を持つようにしていること。 (14)露光用マスクが、露光波長において透過率がほぼ1
00%の遮光性膜で形成されたパターンを少なくとも含
むものであること。 (15)露光波長において透過率がほぼ100%の遮光性膜
が、SiO2 ,Si34 ,Al23 ,MgF2 ,C
aF2 の少なくとも一つにより構成されていること。 (16)露光用マスクを用い、露光を行うことで露光用マス
ク像をレジスト等の感光性材料に転写し、現像液を用い
たウェット加工又はエッチングを用いたドライ加工を行
った後、エッチング又は成膜を行うことで半導体装置を
作成すること。 (17)ドライ加工の前工程に少なくともSi元素を含む物
質の液体又は蒸気中に露光を行った感光性材料を晒す工
程を含むこと。
The following are preferred embodiments of the present invention. (1) The phase difference between the two observation lights is substantially 0 degrees,
The phase difference is approximately 2 mπ (m is an integer). (2) The wavelength λ of the observation light is approximately λ = 4dπ / [tan −1 {2k / ((n 2 -1) + k 2 )} +
2mπ] (m is an integer). (3) The light-shielding film gives a phase difference of 180 degrees to the portion where the light-shielding film is not provided at the exposure wavelength, has a desired transmittance, and has a refractive index n of the light-shielding film. It is a film that substantially satisfies the relationship of n = (1 + u) / u with respect to an arbitrary integer u larger than 0, and the observation wavelength should be set to the same wavelength as the exposure wavelength. (4) A measurement unit and an analysis unit for determining at least one of the refractive index n, the extinction coefficient k, and the film thickness d must be provided. (5) It is possible to measure the size of the pattern (a pinhole) formed in the light-shielding film or the pattern formed of the light-shielding film inadvertently formed on the substrate. (6) The substrate is a translucent substrate. (7) Substrate is SiO 2 , Si 3 N 4 , Al 2 O 3 , MgF
It should be composed of at least one of Ca 2 and CaF 2 . (8) To provide an exposure mask measured by this method. (9) The exposure mask includes at least a pattern formed of a light-shielding film having a transmittance of almost 0 at the exposure wavelength. (10) The light-shielding film having a transmittance of almost 0 at the exposure wavelength is C
The composition must have at least one of r, MoSi, and amorphous Si. (11) The light-shielding film having a transmittance of almost 0 at the exposure wavelength is C
rO, CrN, CrON, MoSiO, MoSiN, M
It is formed to have at least one of oSiON, SiO, SiN, and SiON in the composition. (12) The exposure mask is a semi-light-shielding film in which the light-shielding film has an intensity transmittance of 1 to 20% or less for light transmitted through a light-transmitting substrate at an exposure wavelength and a phase difference of substantially 180 degrees. Being configured as a flexible film. (13) The semi-light-shielding film is made of Si, SiN, SiO, SiNO,
MoSiO, MoSiN, MoSiON, CrO, Cr
N, CrON, AlO, AlN, AlON, TiO, T
At least one of iN, TiON, WSiO, WSiN, and WSiON has a composition. (14) The exposure mask has a transmittance of about 1 at the exposure wavelength.
It must include at least a pattern formed of a 00% light-shielding film. (15) The light-shielding film having a transmittance of almost 100% at the exposure wavelength is made of SiO 2 , Si 3 N 4 , Al 2 O 3 , MgF 2 , C.
Consists of at least one of aF 2 . (16) using an exposure mask, by transferring the exposure mask image to a photosensitive material such as a resist by performing exposure, after performing wet processing using a developing solution or dry processing using etching, etching or Creating a semiconductor device by forming a film. (17) A step of exposing the exposed photosensitive material to a liquid or vapor of a substance containing at least a Si element is included in the step before the dry processing.

【0010】また、本発明(請求項3)は、一主面に遮
光性膜からなるパターンが形成された基板に対し、該パ
ターンが形成された面側から波長λの観察光を照射し、
基板及び遮光性膜で反射した観察光又は基板及び遮光性
膜を透過した観察光を受光し、基板が露出した部分又は
遮光性膜パターンの線幅Wを測定する寸法測定方法にお
いて、光性膜パターンの設計線幅W′、観察光の波長
λ、該波長λにおける遮光性膜の屈折率n,消衰係数k
及び膜厚dを基に演算処理して観察像を作成し、受光し
て得られる観察像と演算で得られる観察像とを比較し、
これらの比較結果が一致するように遮光性膜パターンの
設計線幅W′を可変し、受光して得られた観察像と演算
で得られた観察像とがほぼ一致する時の設計線幅W′を
遮光性膜パターンの測長線幅Wとして決定することを特
徴とする。
According to the present invention (claim 3), a substrate having a pattern of a light-shielding film formed on one main surface is irradiated with observation light of wavelength λ from the surface side having the pattern.
In the dimension measuring method, the observation light reflected by the substrate and the light-shielding film or the observation light transmitted through the substrate and the light-shielding film is received, and the line width W of the exposed portion of the substrate or the light-shielding film pattern is measured. Design line width W ′ of pattern, wavelength λ of observation light, refractive index n of light-shielding film at the wavelength λ, extinction coefficient k
And an observation image is created by performing arithmetic processing based on the film thickness d, and the observation image obtained by receiving light is compared with the observation image obtained by the arithmetic operation.
The design line width W ′ of the light-shielding film pattern is varied so that these comparison results match, and the design line width W when the observed image obtained by receiving light and the observed image obtained by calculation substantially match ′ Is determined as the length measurement line width W of the light-shielding film pattern.

【0011】また、本発明(請求項4)は、基板の一主
面に形成された遮光性膜パターンの線幅Wを測定する寸
法測定装置において、基板に対し遮光性パターンが形成
された面側から波長λの観察光を照射する光照射部と、
この光照射部からの光照射により基板及び遮光性膜で反
射した観察光又は基板及び遮光性膜を透過した観察光を
受光する受光部と、この受光部の検出信号に基づいて遮
光性膜に対する観察像を得る手段と、遮光性膜パターン
の設計線幅W′と観察光の波長λと該波長λにおける遮
光性膜の屈折率n,消衰係数k及び膜厚dを基に演算処
理して遮光性膜に対する観察像を得る手段と、受光して
得られた観察像と演算で得られた観察像とを比較する手
段とを具備してなり、遮光性膜パターンの設計線幅W′
を可変し、測定して得られた観察像と演算で得られた観
察像とがほぼ一致する時の設計線幅W′を遮光性膜パタ
ーンの測長線幅Wとして決定することを特徴とする。
Further, according to the present invention (claim 4), in a dimension measuring device for measuring a line width W of a light-shielding film pattern formed on one main surface of a substrate, a surface on which the light-shielding pattern is formed on the substrate. A light irradiation unit that irradiates observation light of wavelength λ from the side,
A light receiving unit for receiving the observation light reflected by the substrate and the light shielding film or the observation light transmitted through the substrate and the light shielding film by the light irradiation from the light irradiation unit, and the light shielding film based on the detection signal of the light receiving unit. Means for obtaining an observation image, calculation processing based on the design line width W ′ of the light-shielding film pattern, the wavelength λ of the observation light, the refractive index n, the extinction coefficient k, and the film thickness d of the light-shielding film at the wavelength λ. And a means for comparing an observation image obtained by receiving light with an observation image obtained by calculation, and a design line width W ′ of the light shielding film pattern.
The design line width W'when the observed image obtained by measurement and the observed image obtained by calculation substantially match is determined as the length measurement line width W of the light-shielding film pattern. .

【0012】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) 演算処理部と測定装置本体とを構造的に分離し、且
つネットワークにより結合されるようにすること。 (2) 演算処理部がネットワークにより複数の測定装置本
体と結合されるようにすること。 (3) 屈折率n,消衰係数k,膜厚dの少なくとも一つを
求めるための測定部と解析部を持つこと。 (4) 演算処理部により求めた観察像が測長するパターン
エッジ部に直交する断面で得られるパターン断面形状を
膜厚dの垂直形状とし、露光波長λにおける屈折率nと
消衰係数k及びパターン線幅Wにより計算されたもので
あるようにしていること。 (5) 演算処理部により求めた観察像が測長するパターン
エッジ部に直交する断面で得られるパターン断面形状を
膜厚方向にパターン線幅変化を持たせた膜厚dの形状と
し、露光波長λにおける屈折率nと消衰係数k及びパタ
ーン線幅Wにより計算されたものであるようにしている
こと。 (6) 演算処理部により求めた観察像が透光性基板と平行
な平面で与えられる2次元形状を考慮し、且つ露光波長
λにおける屈折率nと消衰係数k及びパターン線幅Wに
より計算されたものであるようにしていること。 (7) 演算処理部により求めた観察像がパターンの3次元
形状を考慮し、且つ露光波長λにおける基板とその上に
形成された遮光性膜と空気の屈折率n、消衰係数k、膜
厚と遮光性膜で形成されたパターン線幅Wにより計算さ
れたものであるようにしていること。 (8) 基板が透光性基板であること。 (9) 基板がSiO2 ,Si34 ,Al23 ,MgF
2 ,CaF2 の少なくとも一つにより構成されているこ
と。 (10)本手法により測定した露光用マスクを提供するこ
と。 (11)露光用マスクが露光波長において透過率がほぼ0の
遮光性膜で形成されたパターンを少なくとも含むもので
あること。 (12)露光波長において透過率がほぼ0の遮光性膜が、C
r,MoSi,アモルファスSiの少なくとも一つを組
成に持つこと。 (13)露光波長において透過率がほぼ0の遮光性膜が、C
rO,CrN,CrON,MoSiO,MoSiN,M
oSiON,SiO,SiN,SiONの少なくとも一
つを組成に持つように形成されていること。 (14)露光用マスクは、露光波長において遮光性膜が透光
性基板を透過する光に対して強度透過率1及至20%以
下で、且つ位相差が実質的にほぼ180度を有する半遮
光性膜として構成されたものであること。 (15)半遮光性膜が、Si,SiN,SiO,SiNO,
MoSiO,MoSiN,MoSiON,CrO,Cr
N,CrON,AlO,AlN,AlON,TiO,T
iN,TiON,WSiO,WSiN,WSiONのう
ち少なくとも一種類の組成を持つようにしていること。 (16)露光用マスクが、露光波長において透過率がほぼ1
00%の遮光性膜で形成されたパターンを少なくとも含
むものであること。 (17)露光波長において透過率がほぼ100%の遮光性膜
が、SiO2 ,Si34 ,Al23 ,MgF2 ,C
aF2 の少なくとも一つにより構成されていること。 (18)露光用マスクを用い、露光を行うことで露光用マス
ク像をレジスト等の感光性材料に転写し、現像液を用い
たウェット加工又はエッチングを用いたドライ加工を行
った後、エッチング又は成膜を行うことで半導体装置を
作成すること。 (19)ドライ加工の前工程に少なくともSi元素を含む物
質の液体又は蒸気中に露光を行った感光性材料を晒す工
程を含むこと。
Here, preferred embodiments of the present invention include the following. (1) The arithmetic processing unit and the measuring device body should be structurally separated and connected by a network. (2) The arithmetic processing unit should be connected to multiple measuring device main units via a network. (3) A measurement unit and an analysis unit for determining at least one of the refractive index n, the extinction coefficient k, and the film thickness d must be provided. (4) The pattern cross-sectional shape obtained in the cross section orthogonal to the pattern edge portion where the observation image obtained by the arithmetic processing unit is measured is the vertical shape of the film thickness d, and the refractive index n and the extinction coefficient k at the exposure wavelength λ and It should be calculated according to the pattern line width W. (5) The pattern cross-sectional shape obtained in the cross section orthogonal to the pattern edge portion where the observation image obtained by the arithmetic processing unit is measured is set to the shape of the film thickness d in which the pattern line width is changed in the film thickness direction, and the exposure wavelength is set. It is calculated by the refractive index n at λ, the extinction coefficient k, and the pattern line width W. (6) Calculated by the refractive index n, the extinction coefficient k, and the pattern line width W at the exposure wavelength λ, considering the two-dimensional shape in which the observation image obtained by the arithmetic processing unit is given by the plane parallel to the transparent substrate. I try to be what was done. (7) The observation image obtained by the arithmetic processing unit takes into consideration the three-dimensional shape of the pattern, and the substrate at the exposure wavelength λ, the light-shielding film formed thereon, the refractive index n of air, the extinction coefficient k, and the film It should be calculated by the thickness and the pattern line width W formed by the light shielding film. (8) The substrate is a translucent substrate. (9) The substrate is SiO 2 , Si 3 N 4 , Al 2 O 3 , MgF
It should be composed of at least one of Ca 2 and CaF 2 . (10) To provide an exposure mask measured by this method. (11) The exposure mask includes at least a pattern formed of a light-shielding film having a transmittance of almost 0 at the exposure wavelength. (12) The light-shielding film having a transmittance of almost 0 at the exposure wavelength is C
The composition must have at least one of r, MoSi, and amorphous Si. (13) The light-shielding film having a transmittance of almost 0 at the exposure wavelength is C
rO, CrN, CrON, MoSiO, MoSiN, M
It is formed to have at least one of oSiON, SiO, SiN, and SiON in the composition. (14) The exposure mask is a semi-light-shielding film in which the light-shielding film has an intensity transmittance of 1 to 20% or less for light transmitted through a light-transmissive substrate at an exposure wavelength and a phase difference of substantially 180 degrees. Being configured as a flexible film. (15) The semi-light-shielding film is made of Si, SiN, SiO, SiNO,
MoSiO, MoSiN, MoSiON, CrO, Cr
N, CrON, AlO, AlN, AlON, TiO, T
At least one of iN, TiON, WSiO, WSiN, and WSiON has a composition. (16) The exposure mask has a transmittance of about 1 at the exposure wavelength.
It must include at least a pattern formed of a 00% light-shielding film. (17) The light-shielding film having a transmittance of almost 100% at the exposure wavelength is formed of SiO 2 , Si 3 N 4 , Al 2 O 3 , MgF 2 , C.
Consists of at least one of aF 2 . (18) Using the exposure mask, the exposure mask image is transferred to a photosensitive material such as a resist by performing exposure, and after performing wet processing using a developing solution or dry processing using etching, etching or Creating a semiconductor device by forming a film. (19) A step of exposing the exposed photosensitive material to a liquid or vapor of a substance containing at least a Si element is included in the step before the dry processing.

【0013】[0013]

【作用】透光性基板上に遮光性膜からなるパターンが形
成された試料に対し、遮光性膜パターンが形成された面
側から波長λの観察光を照射し、透光性基板及び遮光性
膜で反射した観察光を受光し、透光性基板が露出した部
分又は遮光性パターンの線幅Wを測定する際の反射光の
状況を図9に示す。図中501は透光性基板、502は
遮光性膜パターン、503は透光性基板界面で反射した
光、504は遮光性膜で反射した光を示す。
[Function] The sample having the pattern of the light-shielding film formed on the light-transmitting substrate is irradiated with the observation light of the wavelength λ from the surface side on which the light-shielding film pattern is formed. FIG. 9 shows the situation of reflected light when receiving the observation light reflected by the film and measuring the line width W of the exposed portion of the transparent substrate or the light-shielding pattern. In the figure, 501 is a light-transmitting substrate, 502 is a light-shielding film pattern, 503 is light reflected by the interface of the light-transmitting substrate, and 504 is light reflected by the light-shielding film.

【0014】表面反射のみ考慮した場合には、遮光性膜
の観察波長λにおける屈折率をn、消衰係数をkとした
場合、遮光性膜に入射し反射するとき位相φ1は φ1=tan-1[2k/{(n2 −1)+k2 }] (1) と表せる。一方、透光性基板表面で反射した観察光が遮
光性膜表面と同じ高さdまで達した際に生じる位相φ2
は φ2=4dπ/λ (2) と表せる。このとき、遮光性膜表面で反射した観察光と
透光性基板表面で反射した観察光の間で生じる位相差θ
は θ=φ2−φ1 =4dπ/λ−tan-1[2k/{(n2 −1)+k2 }] (3) と表すことができる。ここで、θがほぼ180度となる
場合、2つの反射光が互いに打ち消し合うため、遮光膜
が配設された部分とされない部分の境界で暗部が形成さ
れてしまう。
When only the surface reflection is taken into consideration, when the refractive index at the observation wavelength λ of the light shielding film is n and the extinction coefficient is k, the phase φ1 when incident on the light shielding film and reflected is φ1 = tan − 1 [2k / {(n 2 −1) + k 2 }] (1) On the other hand, the phase φ2 generated when the observation light reflected by the transparent substrate surface reaches the same height d as the light shielding film surface
Can be expressed as φ2 = 4dπ / λ (2). At this time, the phase difference θ generated between the observation light reflected on the surface of the light-shielding film and the observation light reflected on the surface of the light-transmitting substrate.
Can be expressed as θ = φ2-φ1 = 4dπ / λ-tan −1 [2k / {(n 2 −1) + k 2 }] (3). Here, when θ is approximately 180 degrees, the two reflected lights cancel each other, so that a dark portion is formed at the boundary between the portion where the light shielding film is provided and the portion where the light shielding film is not provided.

【0015】この暗部の形は2つの反射光の強度及び位
相差により変化し、更にパターン寸法に対しても変化す
るため一様にその形状を定めることができない。その状
況を図10に示す。図10(a)は観察波長において位
相差が実質的に0の場合、図10(b)は位相差が実質
的に180度の場合を示している。図10(a)に示す
如く、位相差が0度以外の場合にはパターンエッジ部分
での反射光強度が低下する傾向が生じる。この図のよう
に反射光強度は、位相差が異なる場合(特に180度の
場合)に形状が著しく異なる。
The shape of the dark portion changes depending on the intensity and phase difference of the two reflected lights, and also changes with respect to the pattern size, so that the shape cannot be uniformly determined. The situation is shown in FIG. FIG. 10A shows the case where the phase difference is substantially 0 at the observation wavelength, and FIG. 10B shows the case where the phase difference is substantially 180 degrees. As shown in FIG. 10A, when the phase difference is other than 0 degree, the reflected light intensity at the pattern edge portion tends to decrease. As shown in this figure, the shapes of the reflected light intensities are remarkably different when the phase difference is different (especially in the case of 180 degrees).

【0016】そこで本発明(請求項1,2)では、遮光
性膜の屈折率n、消衰係数k及び膜厚dから式(3)に
従い基板における反射光と、遮光性膜表面の反射光の位
相差が実質的に0度となるように波長を選択し測定する
ことで、測定精度を大幅に改善するようにした。特に多
重干渉による影響がなく、且つ基板の消衰係数がほぼ0
である場合には観察光の波長を次の(4)式のように定
めることができる。但し、mは整数である。
Therefore, according to the present invention (claims 1 and 2), the reflected light on the substrate and the reflected light on the surface of the light-shielding film are calculated from the refractive index n, the extinction coefficient k and the film thickness d of the light-shielding film according to the equation (3). By selecting and measuring the wavelength so that the phase difference of 1 is substantially 0 degree, the measurement accuracy is significantly improved. Especially, there is no influence due to multiple interference, and the extinction coefficient of the substrate is almost zero.
If, then the wavelength of the observation light can be determined by the following equation (4). However, m is an integer.

【0017】 λ=4dπ/[tan -1{2k/((n2 −1)+k2 ))+2mπ] (4) 具体的に半透明位相シフトマスクに本手法を適用したと
きの観察波長の選択例を示す。図5にi線(365n
m)用、図6にKrF(248nm)用、図7にArF
(193nm)用、図8にg線(436nm)用の半透
明位相シフトマスクにおいて、露光波長における半透明
位相シフト膜の屈折率n、消衰係数kが観察波長におい
ても一致であるという仮定の元に観察波長を選択した結
果を示す。前述の仮定は(露光波長)=(観察波長)で
ある場合には当然のことながら成立する。このとき、半
透明位相シフト膜に必要とされる屈折率を次のように求
めることができる。
Λ = 4dπ / [tan −1 {2k / ((n 2 −1) + k 2 )) + 2mπ] (4) Selection of observation wavelength when this method is specifically applied to a semitransparent phase shift mask Here is an example: In Fig. 5, i line (365n
m), FIG. 6 for KrF (248 nm), FIG. 7 for ArF
In the semitransparent phase shift mask for (193 nm) and for the g line (436 nm) in FIG. 8, it is assumed that the refractive index n and the extinction coefficient k of the semitransparent phase shift film at the exposure wavelength are the same at the observation wavelength. The result of selecting the observation wavelength is shown below. The above assumption naturally holds when (exposure wavelength) = (observation wavelength). At this time, the refractive index required for the semitransparent phase shift film can be obtained as follows.

【0018】180度の位相差を与える位相シフト膜に
要求される膜厚dは d=λ/2(n−1) m:整数 (5) である。一方、表面反射による位相のずれが非常に小さ
い場合に、基板表面と遮光性膜表面で反射した光の位相
が実質的に0となるには (2d/λ)=u u:0より大きい整数 (6) の関係が成立する。(5)、(6)式よりnについて求
めると n=(1+u)/u (7) を得る。この式にu=1、2、…を代入するとそれぞれ
n=2,1.5,1.33,…を得る。このようなnを
持つ物質を用いた場合には露光波長において寸法を求め
ることが容易に可能である。
The film thickness d required for the phase shift film which gives a phase difference of 180 degrees is d = λ / 2 (n-1) m: integer (5). On the other hand, when the phase shift due to surface reflection is very small, the phase of the light reflected by the substrate surface and the light-shielding film surface becomes substantially 0 (2d / λ) = u u: an integer larger than 0 (6 ) Is established. When n is calculated from the equations (5) and (6), n = (1 + u) / u (7) is obtained. By substituting u = 1, 2, ... In this equation, n = 2, 1.5, 1.33 ,. When a substance having such n is used, it is possible to easily obtain the dimension at the exposure wavelength.

【0019】なお、図5〜図8は各露光波長において位
相差180度で遮光性膜の強度透過率が1〜20%の範
囲においてはほぼ同一の曲線を示す。また、図5〜図8
の各図面の縦軸はその値を露光波長で除することで規格
化することができ、本作用で述べられていない露光波長
を用いた場合においても、図5〜図8のいずれかを用
い、その縦軸をそれに対応する露光波長で除した後、所
望の露光波長を乗ずることで観察波長を定めることが可
能である。
5 to 8 show almost the same curves in the range where the phase difference is 180 degrees at each exposure wavelength and the intensity transmittance of the light shielding film is 1 to 20%. Moreover, FIGS.
The vertical axis of each drawing can be standardized by dividing the value by the exposure wavelength. Even when an exposure wavelength not described in this operation is used, one of FIGS. 5 to 8 is used. It is possible to determine the observation wavelength by dividing the vertical axis by the corresponding exposure wavelength and then multiplying by the desired exposure wavelength.

【0020】また、本発明(請求項3,4)では、予め
遮光性膜の屈折率n,消衰係数k及び膜厚dを求め、こ
の値を用いてマスク構造を基板表面からなる2次元若し
くは基板の立体構造を含んだ3次元構造を考慮し反射光
を演算処理部により求め、演算処理部で得られた反射光
像と実際に得られた観察像を比較し、演算処理部で得ら
れた反射光像と観察像が一致するまで寸法に変化を与え
演算処理部により計算を再度繰り返す。具体的には、遮
光性膜パターンの設計線幅W′を可変して反射光像を作
成し、各々のW′における反射光像と観察像とを比較
し、これらが一致したときの設計線幅W′を測長線幅W
として決定する。これにより、遮光性膜パターンの線幅
Wを高精度に測定することが可能となる。
Further, in the present invention (claims 3 and 4), the refractive index n, the extinction coefficient k and the film thickness d of the light-shielding film are obtained in advance, and using these values, the mask structure is formed into a two-dimensional structure consisting of the substrate surface. Alternatively, the reflected light is obtained by the arithmetic processing unit in consideration of the three-dimensional structure including the three-dimensional structure of the substrate, and the reflected light image obtained by the arithmetic processing unit is compared with the actually obtained observation image to obtain the arithmetic processing unit. The dimensions are changed until the reflected light image and the observed image match, and the calculation processing unit repeats the calculation again. Specifically, the design line width W ′ of the light-shielding film pattern is varied to create a reflected light image, the reflected light image at each W ′ is compared with the observed image, and the design line when these match. Width W'is measured line width W
To decide. Thereby, the line width W of the light-shielding film pattern can be measured with high accuracy.

【0021】[0021]

【実施例】以下、本発明の詳細を実施例を用いて説明す
る。 (実施例1)図1は、本発明の第1の実施例に係わる寸
法測定装置の基本構成を示す図である。透光性基板上に
遮光性膜のパターンが形成された試料10に対し、波長
λの光源を有する光照射部11及び2次元像を撮像する
CCD撮像装置等の受光部12が設けられている。光照
射部11からの光Aはハーフミラー13で反射されて試
料面に照射され、試料面からの反射光Bはハーフミラー
13を透過して受光部12で検出される。受光部12で
検出された撮像データは、像データ処理部14で処理さ
れ、その処理結果がモニタ15に表示されるものとなっ
ている。
EXAMPLES The details of the present invention will be described below with reference to examples. (Embodiment 1) FIG. 1 is a diagram showing a basic configuration of a dimension measuring apparatus according to a first embodiment of the present invention. A sample 10 having a light-shielding film pattern formed on a transparent substrate is provided with a light irradiation section 11 having a light source of wavelength λ and a light receiving section 12 such as a CCD image pickup device for picking up a two-dimensional image. . The light A from the light irradiating section 11 is reflected by the half mirror 13 and irradiated on the sample surface, and the reflected light B from the sample surface passes through the half mirror 13 and is detected by the light receiving section 12. The image data detected by the light receiving unit 12 is processed by the image data processing unit 14, and the processing result is displayed on the monitor 15.

【0022】本実施例は、露光波長(本実施例ではi
線:365nm)において消衰係数が限りなく0である
透光性基板上にMoSiO系半透明膜からなるパターン
が形成された投影露光用マスクに対して測長したもので
ある。
In this embodiment, the exposure wavelength (in this embodiment, i
(Line: 365 nm) is measured with respect to a projection exposure mask in which a pattern made of a MoSiO-based semitransparent film is formed on a translucent substrate having an extinction coefficient of 0.

【0023】透光性基板上に配設された半透明膜は、i
線(365nm)において、屈折率約1.5、消衰係数
約0.24を有しており、且つこの半透明膜が配設され
ない部分に対して強度透過率比5%で、且つ位相差が1
80度となるように膜厚が調整されたものである。
The semitransparent film provided on the transparent substrate is i
In the line (365 nm), it has a refractive index of about 1.5 and an extinction coefficient of about 0.24, and has an intensity transmittance ratio of 5% and a phase difference with respect to a portion where this semitransparent film is not provided. Is 1
The film thickness is adjusted so as to be 80 degrees.

【0024】このマスクに対して測定波長にi線(36
5nm)を用いてパターン寸法の測定を行った。このと
き、半透明膜表面で反射した測定光と、半透明膜が配設
されない部分で反射した測定光の位相差が実質的に36
0度であったため、位相差による反射光の相殺効果が殆
どなく高精度で測定を行うことができた。
For this mask, the i-line (36
5 nm) was used to measure the pattern dimension. At this time, the phase difference between the measurement light reflected on the surface of the semitransparent film and the measurement light reflected on the portion where the semitransparent film is not disposed is substantially 36.
Since it was 0 degree, there was almost no effect of canceling the reflected light due to the phase difference, and the measurement could be performed with high accuracy.

【0025】本手法によりパターン寸法を測定したマス
クを用いて露光することで、デバイスの加工精度が大幅
に向上することができ、動作の信頼性がより優れたもの
となった。
By performing exposure by using the mask whose pattern dimension is measured by this method, the processing accuracy of the device can be greatly improved, and the reliability of the operation is further improved.

【0026】なお、本実施例はMoSiO系半透明膜を
遮光性膜に持つ透光性基板に対する測定例であるが、他
の遮光性膜を持つ透光性基板に対しても適用可能であ
る。取り分け屈折率がほぼ1.5である材料、例えばS
iO系等の遮光性膜に対しては特に効果的であった。ま
た、他の露光波長に用いられる遮光性膜に対しても適用
可能であることは言うまでもない。 (実施例2)本実施例は、露光波長(本実施例ではi
線:365nm)において消衰係数が限りなく0である
透光性基板上にMoSiON系半透明膜からなるパター
ンが形成された投影露光用マスクに対して測長したもの
である。装置構成は、第1の実施例と同様にした。
Although this embodiment is a measurement example for a light-transmitting substrate having a MoSiO-based semitransparent film as a light-shielding film, it can be applied to other light-transmitting substrates having a light-shielding film. . In particular, a material having a refractive index of about 1.5, such as S
It was particularly effective for a light-shielding film such as iO. Further, it goes without saying that the present invention can also be applied to a light-shielding film used for other exposure wavelengths. (Example 2) In this example, the exposure wavelength (i
(Line: 365 nm), the length is measured with respect to a projection exposure mask in which a pattern made of a MoSiON-based semitransparent film is formed on a transparent substrate having an extinction coefficient of 0. The device configuration was the same as that of the first embodiment.

【0027】透光性基板上に配設された半透明膜は、i
線(365nm)において、屈折率約2.0、消衰係数
約0.43を有しており、且つこの半透明膜が配設され
ない部分に対して強度透過率比6%で、且つ位相差がほ
ぼ180度となるように膜厚が調整されたものである。
The semitransparent film provided on the transparent substrate is i
In the line (365 nm), it has a refractive index of about 2.0 and an extinction coefficient of about 0.43, and has an intensity transmittance ratio of 6% and a phase difference with respect to a portion where this semitransparent film is not provided. The film thickness is adjusted so that is about 180 degrees.

【0028】このマスクに対して測定波長にi線(36
5nm)を用いてパターン寸法の測定を行った。このと
き、半透明膜表面で反射した測定光と、半透明膜が配設
されない部分で反射した測定光の位相差が実質的に0度
であったため、位相差による反射光の相殺効果が殆どな
く高精度で測定を行うことができた。
For this mask, the i-line (36
5 nm) was used to measure the pattern dimension. At this time, since the phase difference between the measurement light reflected on the surface of the semitransparent film and the measurement light reflected on the portion where the semitransparent film is not disposed was substantially 0 degree, the offset effect of the reflected light due to the phase difference was almost zero. The measurement could be performed with high accuracy.

【0029】本手法によりパターン寸法を測定したマス
クを用いて露光することで、デバイスの加工精度が大幅
に向上することができ、動作の信頼性がより優れたもの
となった。
By performing exposure by using the mask whose pattern dimension is measured by this method, the processing accuracy of the device can be greatly improved, and the reliability of the operation becomes more excellent.

【0030】なお、本実施例はMoSiON系半透明膜
を遮光性膜に持つ透光性基板に対する測定例であるが、
他の遮光性膜を持つ透光性基板に対しても適用可能であ
る。取り分け屈折率がほぼ2である材料、例えばSiO
系,MoSiO系等の遮光性膜に対しては特に効果的で
あった。また、他の露光波長に用いられる遮光性膜に対
しても適用可能であることは言うまでもない。 (実施例3)本実施例は露光波長(本実施例ではKr
F:248nm)において、消衰係数が限りなく0であ
る透光性基板上にWSiO系半透明膜からなるパターン
が形成された投影露光用マスクに対して測長したもので
ある。装置構成は、第1の実施例と同様にした。
This example is a measurement example for a light-transmitting substrate having a MoSiON-based semitransparent film as a light-shielding film.
It is also applicable to a transparent substrate having another light-shielding film. In particular, a material having a refractive index of about 2, for example SiO
It was particularly effective for light-shielding films such as those based on Mo type and MoSiO type. Further, it goes without saying that the present invention can also be applied to a light-shielding film used for other exposure wavelengths. (Embodiment 3) This embodiment uses an exposure wavelength (Kr in this embodiment).
(F: 248 nm), the length is measured with respect to a projection exposure mask in which a pattern made of a WSiO-based semitransparent film is formed on a transparent substrate having an extinction coefficient of 0. The device configuration was the same as that of the first embodiment.

【0031】透光性基板上に配設された半透明膜は、K
rF(248nm)において、屈折率1.55、消衰係
数0.23を有しており、且つこの半透明膜が配設され
ない部分に対して強度透過率比ほぼ7%で且つ、位相差
がほぼ180度となるように膜厚が調整されたものであ
る。
The semi-transparent film provided on the transparent substrate is K
At rF (248 nm), it has a refractive index of 1.55 and an extinction coefficient of 0.23, and the intensity transmittance ratio is approximately 7% with respect to the portion where this semitransparent film is not arranged, and the phase difference is The film thickness is adjusted so as to be approximately 180 degrees.

【0032】このマスクに対して測定波長にKrF線
(248nm)を用いてパターン寸法の測定を行った。
このとき、半透明膜表面で反射した測定光と、半透明膜
が配設されない部分で反射した測定光の位相差が実質的
にほぼ0度であったため、位相差による反射光の相殺効
果が殆どなく高精度で測定を行うことができた。
The pattern dimension of this mask was measured by using a KrF line (248 nm) at the measurement wavelength.
At this time, since the phase difference between the measurement light reflected on the surface of the semitransparent film and the measurement light reflected on the portion where the semitransparent film is not disposed was substantially 0 degree, the effect of canceling the reflected light by the phase difference was obtained. It was possible to perform the measurement with high accuracy with almost none.

【0033】本手法によりパターン寸法を測定したマス
クを用いて露光することで、デバイスの加工精度が大幅
に向上することができ、動作の信頼性がより優れたもの
となった。
By performing exposure by using the mask whose pattern dimension is measured by this method, the processing accuracy of the device can be greatly improved, and the reliability of the operation becomes more excellent.

【0034】なお、本実施例はSiN系半透明膜を遮光
性膜に持つ透光性基板に対する測定例であるが、他の遮
光性膜を持つ透光性基板に対しても適用可能である。取
り分け屈折率がほぼ2である材料、例えばSiO系等の
遮光性膜に対しては特に効果的であった。また、他の露
光波長に用いられる遮光性膜に対しても適用可能である
ことは言うまでもない。 (実施例4)本実施例は、露光波長(本実施例ではKr
F:248nm)において、消衰係数が限りなく0であ
る透光性基板上にSiN系半透明膜からなるパターンが
形成された投影露光用マスクに対して測長したものであ
る。装置構成は、第1の実施例と同様にした。
Although this embodiment is a measurement example for a light-transmitting substrate having a SiN-based semi-transparent film as a light-shielding film, it can also be applied to a light-transmitting substrate having another light-shielding film. . In particular, it was particularly effective for a material having a refractive index of about 2, for example, a light-shielding film such as a SiO-based material. Further, it goes without saying that the present invention can also be applied to a light-shielding film used for other exposure wavelengths. (Embodiment 4) This embodiment uses the exposure wavelength (Kr in this embodiment).
(F: 248 nm), the length was measured with respect to a projection exposure mask in which a pattern made of a SiN-based semitransparent film was formed on a transparent substrate having an extinction coefficient of 0. The device configuration was the same as that of the first embodiment.

【0035】透光性基板上に配設された半透明膜は、K
rF(248nm)において、屈折率2.05、消衰係
数0.48を有しており、且つこの半透明膜が配設され
ない部分に対して強度透過率比5%で、且つ位相差が1
80度となるように膜厚が調整されたものである。
The semitransparent film provided on the transparent substrate is K
At rF (248 nm), it has a refractive index of 2.05 and an extinction coefficient of 0.48, and has an intensity transmittance ratio of 5% and a phase difference of 1% with respect to a portion where this semitransparent film is not provided.
The film thickness is adjusted so as to be 80 degrees.

【0036】このマスクに対して測定波長にKrF線
(248nm)を用いてパターン寸法の測定を行った。
このとき、半透明膜表面で反射した測定光と、半透明膜
が配設されない部分で反射した測定光の位相差が実質的
にほぼ0度であったため、位相差による反射光の相殺効
果が殆どなく高精度で測定を行うことができた。
The pattern dimension of this mask was measured by using a KrF line (248 nm) as a measurement wavelength.
At this time, since the phase difference between the measurement light reflected on the surface of the semitransparent film and the measurement light reflected on the portion where the semitransparent film is not disposed was substantially 0 degree, the effect of canceling the reflected light by the phase difference was obtained. It was possible to perform the measurement with high accuracy with almost none.

【0037】本手法によりパターン寸法を測定したマス
クを用いて露光することで、デバイスの加工精度が大幅
に向上することができ、動作の信頼性がより優れたもの
となった。
By performing exposure by using the mask whose pattern dimension is measured by this method, the processing accuracy of the device can be greatly improved, and the reliability of the operation becomes more excellent.

【0038】なお、本実施例はSiN系半透明膜を遮光
性膜に持つ透光性基板に対する測定例であるが、他の遮
光性膜を持つ透光性基板に対しても適用可能である。取
り分け屈折率がほぼ2である材料、例えばSiO系,M
oSiO系,MoSiON系等の遮光性膜に対しては特
に効果的であった。また、他の露光波長に用いられる遮
光性膜に対しても適用可能であることは言うまでもな
い。 (実施例5)本実施例は、露光波長(本実施例ではAr
F:193nm)において、消衰係数が限りなく0であ
る透光性基板上にSiO系半透明膜からなるパターンが
形成された投影露光用マスクに対して測長したものであ
る。測定装置は、第1の実施例と同様にした。
Although this embodiment is a measurement example for a light-transmitting substrate having a SiN-based semi-transparent film as a light-shielding film, it can also be applied to other light-transmitting substrates having a light-shielding film. . In particular, materials with a refractive index of approximately 2, eg, SiO-based, M
It was particularly effective for light-shielding films such as oSiO-based and MoSiON-based. Further, it goes without saying that the present invention can also be applied to a light-shielding film used for other exposure wavelengths. (Embodiment 5) This embodiment uses an exposure wavelength (Ar in this embodiment)
(F: 193 nm), the length is measured with respect to a projection exposure mask in which a pattern made of a SiO-based semitransparent film is formed on a transparent substrate having an extinction coefficient of 0. The measuring device was the same as in the first embodiment.

【0039】透光性基板上に配設された半透明膜は、A
rF(193nm)において、屈折率1.51、消衰係
数0.23を有しており、且つこの半透明膜が配設され
ない部分に対して強度透過率比ほぼ6%で、且つ位相差
がほぼ180度となるように膜厚が調整されたものであ
る。
The semi-transparent film provided on the transparent substrate is A
At rF (193 nm), it has a refractive index of 1.51 and an extinction coefficient of 0.23, and has an intensity transmittance ratio of about 6% with respect to a portion where this semitransparent film is not arranged, and a phase difference. The film thickness is adjusted so as to be approximately 180 degrees.

【0040】このマスクに対して測定波長にArF線
(193nm)を用いてパターン寸法の測定を行った。
このとき、半透明膜表面で反射した測定光と、半透明膜
が配設されない部分で反射した測定光の位相差が実質的
にほぼ0度であったため、位相差による反射光の相殺効
果が殆どなく高精度で測定を行うことができた。
The pattern dimension of this mask was measured by using an ArF line (193 nm) at the measurement wavelength.
At this time, since the phase difference between the measurement light reflected on the surface of the semitransparent film and the measurement light reflected on the portion where the semitransparent film is not disposed was substantially 0 degree, the effect of canceling the reflected light by the phase difference was obtained. It was possible to perform the measurement with high accuracy with almost none.

【0041】本手法によりパターン寸法を測定したマス
クを用いて露光することで、デバイスの加工精度が大幅
に向上することができ、動作の信頼性がより優れたもの
となった。
By performing exposure by using the mask whose pattern dimension is measured by this method, the processing accuracy of the device can be greatly improved, and the reliability of the operation becomes more excellent.

【0042】なお、本実施例はSiN系半透明膜を遮光
性膜に持つ透光性基板に対する測定例であるが、他の遮
光性膜を持つ透光性基板に対しても適用可能である。取
り分け屈折率がほぼ2である材料、例えばSiO系等の
遮光性膜に対しては特に効果的であった。また、他の露
光波長に用いられる遮光性膜に対しても適用可能である
ことは言うまでもない。 (実施例6)本実施例は、露光波長(本実施例ではKr
F:248nm)において、消衰係数が限りなく0であ
る透光性基板上にSiN系半透明膜からなるパターンが
形成された投影露光用マスクに対して測長したものであ
る。測定装置は、第1の実施例と同様にした。
Although this embodiment is a measurement example for a light-transmitting substrate having a SiN-based semi-transparent film as a light-shielding film, it can be applied to other light-transmitting substrates having a light-shielding film. . In particular, it was particularly effective for a material having a refractive index of about 2, for example, a light-shielding film such as a SiO-based material. Further, it goes without saying that the present invention can also be applied to a light-shielding film used for other exposure wavelengths. (Embodiment 6) In this embodiment, the exposure wavelength (in this embodiment, Kr
(F: 248 nm), the length was measured with respect to a projection exposure mask in which a pattern made of a SiN-based semitransparent film was formed on a transparent substrate having an extinction coefficient of 0. The measuring device was the same as in the first embodiment.

【0043】透光性基板上に配設された半透明膜はKr
F(248nm)において、屈折率2.05、消衰係数
0.48を有しており、且つこの半透明膜が配設されな
い部分に対して強度透過率比5%で且つ位相差が180
度となるように膜厚が調整されたものである。
The semitransparent film provided on the transparent substrate is made of Kr.
At F (248 nm), it has a refractive index of 2.05 and an extinction coefficient of 0.48, and has an intensity transmittance ratio of 5% and a phase difference of 180 with respect to a portion where the semitransparent film is not provided.
The film thickness is adjusted so as to obtain the desired degree.

【0044】このマスクに対して測定波長にKrF線
(248nm)を用いて不本意的なパターン(欠陥)の
検査を行った。このとき、半透明膜表面で反射した測定
光と、半透明膜が配設されない部分で反射した測定光の
位相差が実質的にほぼ0度であったため、位相差による
反射光の相殺効果が殆どなく高精度で欠陥の認識を行う
ことができた。
An unintended pattern (defect) was inspected for this mask by using a KrF line (248 nm) as a measurement wavelength. At this time, since the phase difference between the measurement light reflected on the surface of the semitransparent film and the measurement light reflected on the portion where the semitransparent film is not disposed was substantially 0 degree, the effect of canceling the reflected light by the phase difference was obtained. Almost no defect could be recognized with high accuracy.

【0045】本手法により欠陥を認識しこれを修正する
ことで、デバイスの欠陥を大幅に削減することができ、
動作の信頼性がより優れたものとなった。なお、本実施
例はSiN系半透明膜を遮光性膜に持つ透光性基板に対
する欠陥検出測定例であるが、他の遮光性膜を持つ透光
性基板に対しても適用可能である。取り分け屈折率がほ
ぼ2である材料、例えばSiO系、MoSiO系、Mo
SiON系等の遮光性膜に対しては特に効果的であっ
た。また、他の露光波長に用いられる遮光性膜に対して
も適用可能であることは言うまでもない。 (実施例7)図2は、本発明の第7の実施例に係わる寸
法測定装置の基本構成を示す図である。なお、図1と同
一部分には同一符号を付して、その詳しい説明は省略す
る。この実施例は、光照射部からの光の波長λを選択す
るのではなく、光照射により得られる観察像と、設計デ
ータから得られる像とを比較するものである。
By recognizing a defect by this method and correcting it, the defect of the device can be greatly reduced,
The reliability of the operation is improved. Although this embodiment is an example of defect detection measurement for a light-transmissive substrate having a SiN-based semi-transparent film as a light-shielding film, it can also be applied to a light-transmissive substrate having another light-shielding film. In particular, materials having a refractive index of about 2, for example, SiO-based, MoSiO-based, Mo
It was particularly effective for a light-shielding film of SiON type or the like. Further, it goes without saying that the present invention can also be applied to a light-shielding film used for other exposure wavelengths. (Embodiment 7) FIG. 2 is a view showing the basic arrangement of a dimension measuring apparatus according to the seventh embodiment of the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted. This example does not select the wavelength λ of the light from the light irradiation unit, but compares the observation image obtained by the light irradiation with the image obtained from the design data.

【0046】光照射部11より出射された観察光Aは、
ハーフミラー13で折り曲げられ、遮光性膜パターンを
形成した透光性基板からなる試料10の測長領域に照射
される。試料10からの反射光Bはハーフミラー13を
透過して受光部12で検出される。受光部12で得られ
た撮像データは像データ処理部14を経てモニタ15で
観察できるようにした。
The observation light A emitted from the light irradiation section 11 is
The sample 10 is bent by the half mirror 13 and is irradiated to the length measurement region of the sample 10 made of a light-transmissive substrate on which a light-shielding film pattern is formed. The reflected light B from the sample 10 passes through the half mirror 13 and is detected by the light receiving unit 12. The image pickup data obtained by the light receiving unit 12 can be observed by the monitor 15 via the image data processing unit 14.

【0047】また、受光部12でえられた撮像データは
像データ処理部14から演算処理部16に送られる。一
方、予め求めた透光性基板及び遮光性膜の屈折率n,消
衰係数k,膜厚d及び設計パターン寸法W′の初期値を
演算処理部16に代入し、演算処理部16により反射光
強度を演算し、その演算結果をモニタ17に表すことが
できるようにした。
The image data obtained by the light receiving section 12 is sent from the image data processing section 14 to the arithmetic processing section 16. On the other hand, the initial values of the refractive index n, the extinction coefficient k, the film thickness d, and the design pattern dimension W ′ of the translucent substrate and the light-shielding film, which are obtained in advance, are substituted into the arithmetic processing unit 16 and reflected by the arithmetic processing unit 16. The light intensity is calculated, and the calculation result can be displayed on the monitor 17.

【0048】演算処理部16で演算した反射像イメージ
と実測で得た反射像イメージとを演算処理部16で比較
し、違いが生じた場合には寸法を変化させ再度像イメー
ジを演算処理部16で演算する。この作業を繰り返し計
算で求めた反射像イメージが実測で得たイメージと一致
したところで、その寸法値をモニタ17で表示するよう
にした。
The reflection image image calculated by the calculation processing unit 16 and the reflection image image obtained by actual measurement are compared by the calculation processing unit 16, and if there is a difference, the dimension is changed and the image image is calculated again. Calculate with. When the reflection image image obtained by repeating this operation and the image obtained by actual measurement coincide with each other, the dimension value is displayed on the monitor 17.

【0049】なお、寸法値の表示はモニタ17上である
必要が必ずしもなく、また印字出力も可能である。ま
た、本実施例ではモニタを2台設置したがモニタを一台
とし、実測した反射光強度と計算により求めた反射光強
度を重ね合わせて表示し、2つのデータの比較を容易に
することも可能である。
It is not always necessary to display the dimension value on the monitor 17, and printout is also possible. Further, although two monitors are installed in the present embodiment, one monitor may be used and the actually measured reflected light intensity and the calculated reflected light intensity may be displayed in a superimposed manner to facilitate the comparison of the two data. It is possible.

【0050】また、本装置では寸法の初期値を代入する
ようにしたが、実際に得た観察像に対し予め閾値を設け
ておき、しきい値に一致する反射率を持つ互いに隣接す
る座標間の距離を求め、これを初期寸法とするように装
置に認識させることも可能である。
Further, in this apparatus, the initial value of the dimension is substituted, but a threshold value is set in advance for an actually obtained observation image, and the coordinates between adjacent coordinates having the reflectance matching the threshold value are set. It is also possible to obtain the distance of and let the device recognize it as the initial size.

【0051】本実施例では基板に透光性基板を用いて測
定しているが、これに限るものではなく遮光性基板、例
えばSiウエハ上に形成されたパターンの測長を行うこ
とも可能である。
In this embodiment, the light-transmitting substrate is used as the substrate for measurement, but the present invention is not limited to this, and it is also possible to measure the length of a pattern formed on a light-shielding substrate, for example, a Si wafer. is there.

【0052】また、本実施例は反射した観察光を受光し
て寸法を測定する装置に関するものであるが、受光部1
2を透光性基板の裏に配置し透過した観察光を受光して
寸法を測定することも可能である。 (実施例8)図3は、本発明の第8の実施例に係わる寸
法測定装置の基本構成を示す図である。なお、図2と同
一部分には同一符号を付して、その詳しい説明は省略す
る。本実施例では、第7の実施例に用いた装置におい
て、モニタ15を実測反射光像及び計算により算出した
反射光像を同時に表示できるようにした。
Further, the present embodiment relates to an apparatus for receiving reflected observation light and measuring dimensions, but the light receiving section 1
It is also possible to arrange 2 on the back side of the translucent substrate and receive the observation light transmitted therethrough to measure the dimensions. (Embodiment 8) FIG. 3 is a diagram showing the basic structure of a dimension measuring apparatus according to an eighth embodiment of the present invention. The same parts as those in FIG. 2 are designated by the same reference numerals, and detailed description thereof will be omitted. In the present embodiment, in the device used in the seventh embodiment, the monitor 15 can simultaneously display the actually measured reflected light image and the reflected light image calculated.

【0053】また、透光性基板及び透光性基板上に配設
された屈折率n,消衰係数k,膜厚dをエリプソメータ
により測定し、その結果が自動的に演算処理部16に与
えられるようにした。
The transparent substrate and the refractive index n, the extinction coefficient k, and the film thickness d arranged on the transparent substrate are measured by an ellipsometer, and the results are automatically given to the arithmetic processing unit 16. I was allowed to.

【0054】この装置を用いた解析の状況を図4に示
す。ここでは、KrF(248nm)で露光される透過
率6%の半透明位相シフトマスクを波長500nmの観
察光で測定した。
FIG. 4 shows a situation of analysis using this device. Here, a semi-transparent phase shift mask having a transmittance of 6% exposed to KrF (248 nm) was measured with observation light having a wavelength of 500 nm.

【0055】図4(a)は実測により求めた反射光強度
を示す。これに対し演算処理部16に寸法の初期値を与
えて反射光強度を求め、これらの結果を同時に表示した
ものを図4(b)に示す。図4(b)で実測反射光を点
線で、計算により求めた反射光を実線で示す。ここで、
実測反射光像と計算により求めた反射光を演算処理部1
6で比較した。その結果、寸法の初期値が大きいことが
判り、寸法値を小さくし再度計算を行った。ここで、寸
法を小さくする程度は少なくとも一つの同一反射光強度
を示す実測反射光及び算出反射光を持つ座標の差を求
め、この差、或いは反射光強度が複数である場合には差
の平均値を初期値から引き、その値を寸法値に設定する
ことが好ましい。
FIG. 4A shows the reflected light intensity obtained by actual measurement. On the other hand, an initial value of the dimension is given to the arithmetic processing unit 16 to obtain the reflected light intensity, and these results are displayed at the same time as shown in FIG. 4 (b). In FIG. 4B, actually measured reflected light is shown by a dotted line, and reflected light obtained by calculation is shown by a solid line. here,
The calculation processing unit 1 calculates the actually reflected light image and the reflected light obtained by calculation.
6 were compared. As a result, it was found that the initial value of the dimension was large, and the dimension value was reduced, and the calculation was performed again. Here, the extent to which the dimension is reduced is to obtain the difference between the coordinates having the measured reflected light and the calculated reflected light that show at least one same reflected light intensity, and this difference, or the average of the differences when there are multiple reflected light intensities. It is preferable to subtract the value from the initial value and set the value as the dimension value.

【0056】この寸法を用い算出した反射光と実測反射
率の表示結果を図4(c)に示す。ここでは寸法差が初
期値とは逆に小さくなったため、寸法値を初期値と設定
値の中間値に再度設定した。
FIG. 4C shows the display results of the reflected light calculated using this dimension and the measured reflectance. Here, the dimensional difference is smaller than the initial value, so the dimensional value is set again to an intermediate value between the initial value and the set value.

【0057】上述の処理を数回繰り返すことで、図4
(d)に示す如く算出反射光を実測反射光と一致させる
ことができた。また、このときの設計パターン寸法W′
を実際のパターン寸法Wとした。
By repeating the above-mentioned processing several times, as shown in FIG.
As shown in (d), the calculated reflected light could be matched with the measured reflected light. Also, the design pattern size W ′ at this time
Is the actual pattern size W.

【0058】なお、寸法を合わせ込む場合、その過程で
得た実測値より大きい寸法の中の最小値Lと、実測値よ
り小さい寸法の中の最大値Sを記憶し、次の設定寸法を
(L+S)/2とすることで収束、即ち算出値と実測値
の一致を早めることが可能である。
When matching the dimensions, the minimum value L of the dimensions larger than the actual measurement value obtained in the process and the maximum value S of the dimensions smaller than the actual measurement value are stored, and the next set dimension ( By setting L + S) / 2, it is possible to accelerate convergence, that is, coincidence between the calculated value and the actually measured value.

【0059】本実施例は半透明位相シフト膜のパターン
寸法を測定したものであるが、これに限るものではな
く、透過率がほぼ0%の遮光膜で形成されたパターン、
又は透過率がほぼ100%の透明位相シフト膜のパター
ン寸法も同様に測定することができた。 (実施例9)本実施例は、第8の実施例の手法により測
定した露光用マスクを用いたパターン形成法に関する。
In this embodiment, the pattern size of the semitransparent phase shift film is measured, but the present invention is not limited to this, and a pattern formed of a light-shielding film having a transmittance of almost 0%,
Alternatively, the pattern size of the transparent phase shift film having a transmittance of almost 100% could be measured in the same manner. (Embodiment 9) This embodiment relates to a pattern forming method using an exposure mask measured by the method of the eighth embodiment.

【0060】Krレーザ(248nm)において透光性
基板を透過する光に対して透過率6%、位相差180度
を有する半透明位相シフトマスクの測長を第8の実施例
の手法に従い測長し、パターンピッチ0.25μmライ
ン&スペースパターンにおいて、半透明膜パターンが透
過率・位相差を考慮したマスク条件及び露光装置の照明
結像条件及びレジスト特性を考慮し求めた最適マスク寸
法ウエハ上0.18μmになるようなマスクを選出し
た。
In the Kr laser (248 nm), the length of a semitransparent phase shift mask having a transmittance of 6% and a phase difference of 180 degrees with respect to the light transmitted through the transparent substrate is measured according to the method of the eighth embodiment. However, in the line & space pattern with a pattern pitch of 0.25 μm, the semi-transparent film pattern has the optimum mask size on the wafer obtained by considering the mask condition in consideration of the transmittance and the phase difference, the illumination image forming condition of the exposure apparatus, and the resist property. A mask having a size of 0.18 μm was selected.

【0061】選出したマスクを用い、NA=0.5,σ
=0.6で且つσ=0.6のうちσ=0.4より小さい
領域を遮蔽した照明絞りを用いてKrFエキシマレーザ
による露光を行った。その結果、0.25μmライン&
スペースパターンが焦点深度1.8μmで得ることがで
きた。
Using the selected mask, NA = 0.5, σ
= 0.6 and exposure of the KrF excimer laser was performed using an illumination diaphragm that shields an area smaller than σ = 0.4 of σ = 0.6. As a result, 0.25μm line &
A space pattern could be obtained with a depth of focus of 1.8 μm.

【0062】一方、従来法による寸法測長法で半透明膜
パターンの寸法がウエハ上0.18μmになるように設
定しこのマスクを用いて同様の露光を行った。その結
果、1.2μmの焦点深度しか得ることができなかっ
た。なお、本マスクを第7の実施例に記載の手法により
正確な寸法を求めたところ、ウエハ上0.22μmで最
適マスク寸法0.18μmと比較して0.04μmの差
が生じていることが判明した。
On the other hand, the dimension of the semitransparent film pattern was set to 0.18 μm on the wafer by the dimension measurement method according to the conventional method, and the same exposure was performed using this mask. As a result, only a focal depth of 1.2 μm could be obtained. When the accurate dimension of this mask was obtained by the method described in the seventh embodiment, it was found that a difference of 0.04 μm was found at 0.22 μm on the wafer compared with the optimum mask dimension of 0.18 μm. found.

【0063】このように本手法により測長し、選別した
マスクを用いることで、正確なパターン寸法を用いるこ
とが可能で、焦点深度を十分に確保できるマスクを選別
することも可能である。また、この手法により選別した
マスクを用い半導体装置を作成した場合に加工線幅の精
度を大幅に改善することができた。なお、本発明は上述
した各実施例に限定されるものではなく、その要旨を逸
脱しない範囲で、種々変形して実施することが可能であ
る。
As described above, by using the mask whose length is measured and selected by this method, it is possible to use an accurate pattern dimension and it is also possible to select a mask which can secure a sufficient depth of focus. In addition, the accuracy of the processed line width could be greatly improved when a semiconductor device was produced using a mask selected by this method. It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be carried out without departing from the scope of the invention.

【0064】[0064]

【発明の効果】以上詳述したように本発明(請求項1,
2)によれば、遮光性膜表面で反射した観察光と透光性
基板表面で反射した観察光の位相差が実質的に0度とな
るように観察光の波長λを設定することにより、反射光
強度が微分形となる現象を防止することができ、基板が
露出した部分又は遮光性膜パターンの線幅Wを高精度に
測定することが可能となる。
As described in detail above, the present invention (claim 1,
According to 2), by setting the wavelength λ of the observation light so that the phase difference between the observation light reflected on the surface of the light-shielding film and the observation light reflected on the surface of the transparent substrate is substantially 0 degree, It is possible to prevent the phenomenon in which the intensity of reflected light has a differential form, and it is possible to measure the line width W of the exposed portion of the substrate or the light-shielding film pattern with high accuracy.

【0065】また、本発明(請求項3,4)によれば、
実測反射光と計算により求めた反射光とを演算処理部で
比較し、設定値が大きい場合には寸法値を小さくして再
度計算し、設定値が小さい場合には寸法値を大きくして
再度計算する。この処理を数開繰り返すことで算出反射
光を実測反射光と一致させることができ、このときの寸
法をパターン寸法とすることにより、遮光性膜パターン
の線幅Wを高精度に測定することが可能となる。
According to the present invention (claims 3 and 4),
The calculated reflected light is compared with the reflected light obtained by calculation in the calculation processing unit.If the set value is large, the dimension value is decreased and the calculation is performed again.If the set value is small, the dimension value is increased and the value is calculated again. calculate. By repeating this process several times, the calculated reflected light can be matched with the actually measured reflected light, and the line width W of the light-shielding film pattern can be measured with high accuracy by setting the dimension at this time as the pattern dimension. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例に係わる寸法測定装置の基本構成
を示す図。
FIG. 1 is a diagram showing a basic configuration of a dimension measuring apparatus according to a first embodiment.

【図2】第7の実施例に係わる寸法測定装置の基本構成
を示す図。
FIG. 2 is a diagram showing a basic configuration of a dimension measuring apparatus according to a seventh embodiment.

【図3】第8の実施例に係わる寸法測定装置の基本構成
を示す図。
FIG. 3 is a diagram showing a basic configuration of a dimension measuring device according to an eighth embodiment.

【図4】第8の実施例における解析の状況を示す図。FIG. 4 is a diagram showing a situation of analysis in an eighth embodiment.

【図5】i線半透明位相シフトマスクに対する最適観察
波長を示す図。
FIG. 5 is a diagram showing optimum observation wavelengths for an i-line semitransparent phase shift mask.

【図6】KrF半透明位相シフトマスクに対する最適観
察波長を示す図。
FIG. 6 is a diagram showing optimum observation wavelengths for a KrF semitransparent phase shift mask.

【図7】ArF半透明位相シフトマスクに対する最適観
察波長を示す図。
FIG. 7 is a diagram showing optimum observation wavelengths for an ArF semitransparent phase shift mask.

【図8】g線半透明位相シフトマスクに対する最適観察
波長を示す図。
FIG. 8 is a diagram showing optimum observation wavelengths for a g-line semitransparent phase shift mask.

【図9】反射による測長方法で生じる位相差の説明図。FIG. 9 is an explanatory diagram of a phase difference caused by a length measuring method by reflection.

【図10】従来の測長法で生じる問題点を説明するため
の図。
FIG. 10 is a diagram for explaining a problem that occurs in a conventional length measurement method.

【符号の説明】[Explanation of symbols]

10…試料 11…光照射部 12…受光部 13…ハーフミラー 14…像データ処理部 15,17…モニタ 16…演算処理部 10 ... Sample 11 ... Light irradiation part 12 ... Light receiving part 13 ... Half mirror 14 ... Image data processing part 15, 17 ... Monitor 16 ... Arithmetic processing part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一主面に遮光性膜からなるパターンが形成
された基板に対し、該パターンが形成された面側から波
長λの観察光を照射し、前記基板及び遮光性膜で反射し
た観察光を受光し、前記基板が露出した部分又は遮光性
膜パターンの線幅Wを測定する寸法測定方法において、 前記遮光性膜表面で反射した観察光と前記基板表面で反
射した観察光との受光領域における位相差が実質的に0
度となるように観察光の波長λを設定することを特徴と
する寸法測定方法。
1. A substrate having a pattern of a light-shielding film formed on one principal surface thereof is irradiated with observation light having a wavelength λ from the surface side having the pattern formed, and reflected by the substrate and the light-shielding film. In the dimension measuring method of receiving the observation light and measuring the line width W of the exposed portion of the substrate or the light shielding film pattern, the observation light reflected by the light shielding film surface and the observation light reflected by the substrate surface The phase difference in the light receiving region is substantially 0
A dimension measuring method, characterized in that the wavelength λ of the observation light is set so as to obtain a degree.
【請求項2】一主面に遮光性膜からなるパターンが形成
された基板に対し、該パターンが形成された面側から波
長λの観察光を照射する光照射部と、この光照射部から
の光照射により前記基板及び遮光性膜で反射した観察光
を受光する受光部と、この受光部において前記遮光性膜
表面で反射した観察光と前記基板表面で反射した観察光
との位相差が実質的に0度となるように観察光の波長λ
を設定する手段と、前記受光部の検出信号に基づいて前
記基板が露出した部分又は遮光性膜パターンの線幅Wを
測定する手段とを具備してなることを特徴とする寸法測
定装置。
2. A light irradiation section for irradiating a substrate having a pattern of a light-shielding film formed on one main surface thereof with observation light of wavelength λ from the surface side on which the pattern is formed, and the light irradiation section. The light receiving section for receiving the observation light reflected by the substrate and the light-shielding film by the light irradiation, and the phase difference between the observation light reflected by the light-shielding film surface and the observation light reflected by the substrate surface in this light-receiving section The wavelength λ of the observation light so that it becomes substantially 0 degrees.
And a means for measuring the line width W of the exposed portion of the substrate or the light-shielding film pattern on the basis of the detection signal of the light-receiving section.
【請求項3】一主面に遮光性膜からなるパターンが形成
された基板に対し、該パターンが形成された面側から波
長λの観察光を照射し、前記基板及び遮光性膜で反射し
た観察光又は前記基板及び遮光性膜を透過した観察光を
受光し、前記基板が露出した部分又は遮光性膜パターン
の線幅Wを測定する寸法測定方法において、 前記遮光性膜パターンの設計線幅W′、観察光の波長
λ、該波長λにおける遮光性膜の屈折率n,消衰係数k
及び膜厚dを基に演算処理して観察像を作成し、前記受
光して得られる観察像と前記演算で得られる観察像とを
比較し、これらの比較結果が一致するように前記遮光性
膜パターンの設計線幅W′を可変し、前記受光して得ら
れた観察像と前記演算で得られた観察像とがほぼ一致す
る時の設計線幅W′を前記遮光性膜パターンの測長線幅
Wとして決定することを特徴とする寸法測定方法。
3. A substrate having a pattern of a light-shielding film formed on one principal surface thereof is irradiated with observation light of wavelength λ from the surface side having the pattern, and reflected by the substrate and the light-shielding film. In the dimension measuring method of receiving the observation light or the observation light transmitted through the substrate and the light-shielding film and measuring the line width W of the exposed portion of the substrate or the light-shielding film pattern, the design line width of the light-shielding film pattern W ′, the wavelength λ of the observation light, the refractive index n and the extinction coefficient k of the light-shielding film at the wavelength λ.
And the film thickness d to perform an arithmetic processing to create an observation image, compare the observation image obtained by receiving the light with the observation image obtained by the arithmetic operation, and make the light-shielding property match these comparison results. The design line width W'of the film pattern is varied, and the design line width W'when the observed image obtained by receiving the light and the observed image obtained by the calculation substantially match is measured by the light shielding film pattern. A dimension measuring method characterized by determining as a long line width W.
【請求項4】一主面に遮光性膜からなるパターンが形成
された基板に対し、該パターンが形成された面側から波
長λの観察光を照射する光照射部と、この光照射部から
の光照射により前記基板及び遮光性膜で反射した観察光
又は前記基板及び遮光性膜を透過した観察光を受光する
受光部と、この受光部の検出信号に基づいて前記遮光性
膜に対する観察像を得る手段と、前記遮光性膜パターン
の設計線幅W′と観察光の波長λと該波長λにおける遮
光性膜の屈折率n,消衰係数k及び膜厚dを基に演算処
理して前記遮光性膜に対する観察像を得る手段と、前記
受光して得られた観察像と前記演算で得られた観察像と
を比較する手段とを具備してなり、 前記遮光性膜パターンの設計線幅W′を可変し、前記測
定して得られた観察像と前記演算で得られた観察像とが
ほぼ一致する時の設計線幅W′を前記遮光性膜パターン
の測長線幅Wとして決定することを特徴とする寸法測定
装置。
4. A light irradiation unit for irradiating a substrate having a pattern of a light-shielding film formed on one main surface with observation light of wavelength λ from the surface side on which the pattern is formed, and the light irradiation unit. Of the observation light reflected by the substrate and the light-shielding film by the light irradiation of or the observation light transmitted through the substrate and the light-shielding film, and an observation image of the light-shielding film based on the detection signal of the light-receiving unit And a design line width W ′ of the light-shielding film pattern, a wavelength λ of the observation light, and a refractive index n, an extinction coefficient k, and a film thickness d of the light-shielding film at the wavelength λ. A design line of the light-shielding film pattern, comprising means for obtaining an observation image of the light-shielding film and means for comparing the observation image obtained by receiving the light and the observation image obtained by the calculation. The width W'is varied, and the observation image obtained by the above measurement and the above obtained image are obtained. A dimension measuring device characterized in that a design line width W'when the observed image substantially coincides with the measured line width W of the light-shielding film pattern.
JP14809294A 1994-06-29 1994-06-29 Size measurement method and measurement device Pending JPH0814837A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14809294A JPH0814837A (en) 1994-06-29 1994-06-29 Size measurement method and measurement device
KR1019950018044A KR960001871A (en) 1994-06-29 1995-06-29 Exposure substrate, exposure mask, manufacturing method thereof, dimensional measurement method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14809294A JPH0814837A (en) 1994-06-29 1994-06-29 Size measurement method and measurement device

Publications (1)

Publication Number Publication Date
JPH0814837A true JPH0814837A (en) 1996-01-19

Family

ID=15445065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14809294A Pending JPH0814837A (en) 1994-06-29 1994-06-29 Size measurement method and measurement device

Country Status (1)

Country Link
JP (1) JPH0814837A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7375831B2 (en) 2003-12-24 2008-05-20 Tokyo Electron Limited Line width measuring method, substrate processing method, substrate processing apparatus and substrate cooling processing unit
CN111189395A (en) * 2018-11-14 2020-05-22 苏州能讯高能半导体有限公司 Undercut structure measurement system and undercut structure measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7375831B2 (en) 2003-12-24 2008-05-20 Tokyo Electron Limited Line width measuring method, substrate processing method, substrate processing apparatus and substrate cooling processing unit
CN111189395A (en) * 2018-11-14 2020-05-22 苏州能讯高能半导体有限公司 Undercut structure measurement system and undercut structure measurement method

Similar Documents

Publication Publication Date Title
TWI803496B (en) Apparatus and methods for measuring phase and amplitude of light through a layer
US10634623B2 (en) Phase contrast monitoring for extreme ultra-violet (EUV) masks defect inspection
JPH09329889A (en) Overlay mark
US5916717A (en) Process utilizing relationship between reflectivity and resist thickness for inhibition of side effect caused by halftone phase shift masks
KR20100076991A (en) Surface inspection method and surface inspection device
JP3139020B2 (en) Photomask inspection apparatus and photomask inspection method
JPH05142754A (en) Inspecting method for phase shift mask
WO2005040719A1 (en) Shape profile measuring unit and production method for semiconductor device using it
US9250512B2 (en) Exposure amount evaluation method and photomask
JPH0814837A (en) Size measurement method and measurement device
JP2779221B2 (en) Exposure and inspection method using phase difference reticle
Ghosh et al. Direct phase measurements in phase-shift masks
US4666292A (en) Projection optical apparatus and a photographic mask therefor
JP2001228598A (en) Mask blank for phase shift mask of substrate mortise type, phase shift mask of substrate mortise type and method for manufacturing phase shift mask of substrate mortise type
JP3247306B2 (en) Photomask pattern defect inspection method and apparatus
JPH08194303A (en) Phase shift mask and its production
JP3004076B2 (en) Sample surface position measurement device
JP2005266622A (en) Mask defect inspection apparatus
JP2003066195A (en) Multilayer film removal processor, multilayer film reflection mirror, its production method, soft x-ray optical system and exposure equipment
JPH0791926A (en) Method and device for measuring characteristic value
JP2003043665A (en) Method of manufacturing photomask
JPS61290414A (en) Focusing device
JPH0726648Y2 (en) Displacement measuring device
JP2008242113A (en) Inspecting method for phase shift mask, inspecting device for phase shift mask, and manufacturing method of semiconductor device
JPH03144452A (en) Phase difference mask