JPH08148363A - Manufacturing for laminated inductor - Google Patents

Manufacturing for laminated inductor

Info

Publication number
JPH08148363A
JPH08148363A JP3108595A JP3108595A JPH08148363A JP H08148363 A JPH08148363 A JP H08148363A JP 3108595 A JP3108595 A JP 3108595A JP 3108595 A JP3108595 A JP 3108595A JP H08148363 A JPH08148363 A JP H08148363A
Authority
JP
Japan
Prior art keywords
laminated inductor
value
thermal shock
laminated
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3108595A
Other languages
Japanese (ja)
Other versions
JP3601096B2 (en
Inventor
Masaharu Ikeda
正治 池田
Hiroyuki Takeuchi
宏幸 竹内
Motoi Nishii
基 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP03108595A priority Critical patent/JP3601096B2/en
Publication of JPH08148363A publication Critical patent/JPH08148363A/en
Application granted granted Critical
Publication of JP3601096B2 publication Critical patent/JP3601096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PURPOSE: To provide a method for manufacturing a laminated inductor with good magnetic characteristics. CONSTITUTION: A manufacturing method includes the step of stacking magnetic layers 1 to 13 with each conductive pattern 1a to 5a as an inner electrode on the surfaces thereof, and obtaining a laminated body by baking these layers after given force is applied, the step of forming an outer electrode in the laminated body, and the step of carrying out one or more thermal shock treatments in which the temperature difference is 120 deg.C or above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、積層インダクタの製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a laminated inductor.

【0002】[0002]

【従来の技術】従来の積層インダクタは、表面に内部電
極となる導体パターンを形成した、磁性体層となる磁性
体シートを複数枚積層し、磁性体シートに設けたスルー
ホールを介して各導体パターン相互間を接続した積層体
からなり、これを焼成することにより製造されていた。
2. Description of the Related Art In a conventional laminated inductor, a plurality of magnetic sheets serving as magnetic layers, each having a conductor pattern serving as an internal electrode formed on the surface thereof, are laminated and each conductor is provided through a through hole provided in the magnetic sheet. It was composed of a laminated body in which patterns were connected to each other and was manufactured by firing.

【0003】この積層インダクタでは、焼成過程におい
て最高温度付近で磁性体層と内部電極が焼結一体化する
が、最高温度から室温まで冷却する際に、磁性体層と内
部電極との熱膨張率の違いから応力磁歪が発生し、磁気
特性を低下させるという問題があり、その解決策とし
て、図3に示すように、磁性体層21と内部電極22間
の全部、或いは一部に空隙23を設けることにより、磁
性体層21と内部電極22との熱膨張率の違いから発生
する応力磁歪を緩和させる方法が採られていた。
In this laminated inductor, the magnetic layer and the internal electrode are sintered and integrated near the maximum temperature during the firing process, but when cooled from the maximum temperature to room temperature, the coefficient of thermal expansion between the magnetic layer and the internal electrode. There is a problem that stress magnetostriction occurs due to the difference between the magnetic properties and the magnetic properties, and as a solution to this problem, as shown in FIG. By providing it, the method of relaxing the stress magnetostriction generated due to the difference in thermal expansion coefficient between the magnetic layer 21 and the internal electrode 22 has been adopted.

【0004】[0004]

【発明が解決しようとする課題】ところが、このような
従来の積層インダクタでは、磁性体層21と内部電極2
2間に設けられた空隙23に、積層体24の両端面に形
成された外部電極25に対しメッキを施す際に使用する
メッキ液、若しくは外部電極25を回路基板などに半田
付けする際に使用するワックス、或いは水分が外部電極
25を通じて浸入することがあった。これら液体の浸入
により、内部電極22は腐食して積層インダクタのL値
及びQ値が変化し、最悪の場合には内部電極22が断線
に至る恐れがあった。
However, in such a conventional laminated inductor, the magnetic layer 21 and the internal electrode 2 are used.
A plating solution used for plating the external electrodes 25 formed on both end surfaces of the laminated body 24 in the space 23 provided between the two, or used for soldering the external electrodes 25 to a circuit board or the like. There is a case where the wax or the moisture that has been introduced permeates through the external electrode 25. Due to the infiltration of these liquids, the internal electrodes 22 are corroded, the L value and the Q value of the laminated inductor are changed, and in the worst case, the internal electrodes 22 may be broken.

【0005】それゆえ、本発明の主たる目的は、磁性体
層と内部電極間に空隙を設けずとも磁気特性の良好な積
層インダクタの製造方法を提供することである。
Therefore, a main object of the present invention is to provide a method for manufacturing a laminated inductor having good magnetic characteristics without providing a gap between the magnetic layer and the internal electrode.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、表面に内部電極となる導体パターンを
形成した磁性体層を積層し、一定の圧力を加えたのち、
焼成することにより積層体を得る工程と、前記積層体に
外部電極を形成する工程と、前記積層体に対し、温度差
120℃以上となる熱衝撃処理を一回以上行う工程とを
含むことを特徴とする。
In order to achieve the above-mentioned object, the present invention laminates a magnetic layer having a conductor pattern to be an internal electrode on the surface thereof, and after applying a constant pressure,
Including a step of obtaining a laminated body by firing, a step of forming an external electrode on the laminated body, and a step of subjecting the laminated body to a thermal shock treatment at a temperature difference of 120 ° C. or more once or more. Characterize.

【0007】[0007]

【作用】上記の構成によれば、積層体に対し熱衝撃処理
を行うことにより、内部電極と磁性体層間とに大きな応
力をかけ、内部電極を構成するAgを伸ばし、Ag結晶
を再配列させ、焼成後の冷却過程における内部電極と磁
性体層間に発生する磁性体の応力磁歪を緩和することが
できる。
According to the above structure, the laminated body is subjected to the thermal shock treatment, so that a large stress is applied between the internal electrode and the magnetic material layer, the Ag constituting the internal electrode is extended, and the Ag crystals are rearranged. The stress magnetostriction of the magnetic substance generated between the internal electrode and the magnetic substance layer in the cooling process after firing can be relaxed.

【0008】[0008]

【実施例】以下、本発明による積層インダクタの製造方
法の実施例を図面を用いて説明する。まず、図1に示す
ように、Ni−Zn−Cuフェライトのスラリーからグ
リーンシート法により形成した積層体の磁性体層となる
磁性体シートを複数枚用意し、そのうち磁性体シート1
〜5の表面に例えばAg等の導電材料からなるペースト
を厚膜印刷することにより、内部電極となる導体パター
ン1a〜5aを形成し、導体パターン1a〜4aの一方
端部付近に導体パターン1a〜5aを相互に電気的に接
続するスルーホール7を形成する。そして、磁性体シー
ト1〜5を他の磁性体シート8〜10,11〜13で挟
むようにして重ね合せ、一定の圧力を加えたのち、例え
ば空気中で加熱してバインダーを燃焼除去させ、850
〜1000℃程度の温度で焼成して積層体14を得る。
さらに、図2に示すように、積層体14の対向する両端
面に例えばAg等の導電材料からなる導電ペーストを塗
布して焼き付けることにより外部電極15,15を形成
し、外部電極15,15にNi及びSnのメッキを行
い、積層インダクタ16を構成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a laminated inductor according to the present invention will be described below with reference to the drawings. First, as shown in FIG. 1, a plurality of magnetic material sheets to be a magnetic material layer of a laminated body formed from a slurry of Ni—Zn—Cu ferrite by a green sheet method are prepared.
The conductor patterns 1a to 5a serving as internal electrodes are formed by thick-film printing a paste made of a conductive material such as Ag on the surfaces of the conductor patterns 1a to 4a, and the conductor patterns 1a to 4a are formed near one end of the conductor patterns 1a to 4a. A through hole 7 for electrically connecting the 5a to each other is formed. Then, the magnetic sheets 1 to 5 are superposed so as to be sandwiched by the other magnetic sheets 8 to 10 and 11 to 13 and a certain pressure is applied, and then the binder is burned and removed by heating in air, for example, and 850
The laminate 14 is obtained by firing at a temperature of about 1000 ° C.
Further, as shown in FIG. 2, external electrodes 15 and 15 are formed by applying a conductive paste made of a conductive material such as Ag to the opposite end surfaces of the laminated body 14 and baking the same to form external electrodes 15 and 15. The laminated inductor 16 is formed by plating Ni and Sn.

【0009】なお、上述の実施例では、Ni−Zn−C
uフェライトの磁性体シートを用いたが、Niフェライ
ト、Ni−Znフェライト、Ni−Cuフェライト、M
n−Znフェライト等のスピネル型フェライトであって
もよく、磁性体層の形成方法はグリーンシート法の他の
印刷方法であってもよい。
In the above embodiment, Ni--Zn--C was used.
Although a magnetic sheet of u-ferrite was used, Ni-ferrite, Ni-Zn ferrite, Ni-Cu ferrite, M
Spinel type ferrite such as n-Zn ferrite may be used, and the magnetic layer may be formed by another printing method such as the green sheet method.

【0010】また、導体パターン1a〜5aの材料にA
gを用いたが、Ag−Pdであってもよく、導体パター
ン1a〜5aの形成方法は、塗布、転写、スパッタリン
グ等であってもよい。
Further, the material of the conductor patterns 1a to 5a is A
Although g is used, Ag-Pd may be used, and the method for forming the conductor patterns 1a to 5a may be coating, transfer, sputtering, or the like.

【0011】また、外部電極15,15の材料にAgを
用いたが、Ag−Pd,Ni,Cu或いはAgを含めた
これらの合金であってもよく、外部電極15,15の形
成方法は、印刷、蒸着、スパッタリング等であってもよ
く、磁性体シート1〜13を重ね合せ、一定の圧力を加
えた焼成する前の状態で外部電極15,15を形成し、
同時に一体焼成してもよい。
Although Ag is used as the material of the external electrodes 15 and 15, Ag-Pd, Ni, Cu or alloys thereof containing Ag may be used. The method of forming the external electrodes 15 and 15 is as follows. It may be printing, vapor deposition, sputtering, etc., the magnetic sheets 1 to 13 are superposed, and the external electrodes 15 and 15 are formed in a state before firing under a constant pressure,
It may be fired at the same time.

【0012】次に、この積層インダクタ16に冷熱衝撃
装置を用いて、急加熱した後、急冷却する、または急冷
却したのち、急加熱することにより、低温時と高温時と
の温度差が120℃以上となる熱衝撃処理を一回以上行
う。なお、この熱衝撃処理は積層体14の両端面に外部
電極15,15を形成した後、つまり外部電極15,1
5にメッキを行う前であってもよい。
Next, the laminated inductor 16 is rapidly heated by using a thermal shock device and then rapidly cooled, or rapidly cooled and then rapidly heated, so that the temperature difference between the low temperature and the high temperature is 120. Perform thermal shock treatment at a temperature of ℃ or more once or more. The thermal shock treatment is performed after forming the external electrodes 15, 15 on both end surfaces of the laminated body 14, that is, the external electrodes 15, 1.
It may be before plating on No. 5.

【0013】この熱衝撃処理を行うことにより、内部電
極1a〜5aと磁性体層1〜5間とに大きな応力をか
け、内部電極1a〜5aを構成するAgを伸ばして、A
g結晶を再配列させ、焼成後の冷却過程における内部電
極1a〜5aと磁性体層1〜5間に発生する磁性体の応
力磁歪を緩和する。これにより、積層インダクタ16は
L値、Q値、直流重畳特性(L値が−5%変化するとき
の直流印加電流値)、並びに温度特性を向上させること
ができる。
By carrying out this thermal shock treatment, a large stress is applied between the internal electrodes 1a to 5a and the magnetic layers 1 to 5 so that Ag which constitutes the internal electrodes 1a to 5a is extended, and A
The g crystals are rearranged to relax the stress magnetostriction of the magnetic substance generated between the internal electrodes 1a to 5a and the magnetic layers 1 to 5 in the cooling process after firing. As a result, the laminated inductor 16 can improve the L value, the Q value, the DC superposition characteristic (DC applied current value when the L value changes by -5%), and the temperature characteristic.

【0014】また、この積層インダクタ16では内部電
極1a〜5aと磁性体層1〜5が密着しているため空隙
が生じず、従来のように、磁性体層と内部電極間に設け
られた空隙に、外部電極にメッキするときに使用するメ
ッキ液、若しくは半田付けするときにに使用するワック
ス、或いは水分が浸入することもなく、内部電極1a〜
5aが劣化して特性が低下することもない。
Further, in this laminated inductor 16, since the internal electrodes 1a to 5a and the magnetic layers 1 to 5 are in close contact with each other, no void is generated, and a void provided between the magnetic layer and the internal electrode as in the conventional case. In addition, the plating liquid used when plating the external electrodes, the wax used when soldering, or the moisture does not enter, and the internal electrodes 1a to
5a does not deteriorate and the characteristics do not deteriorate.

【0015】以下に、熱衝撃処理の温度差、処理回数を
変えて、積層インダクタのL値、Q値、直流重畳特性、
並びに温度特性の変化を調べた実験結果を示す。
Below, the L value, Q value, DC superposition characteristics of the laminated inductor are changed by changing the temperature difference and the number of times of thermal shock processing.
Also, the experimental results for examining the change in temperature characteristics are shown.

【0016】今回の実験では、寸法が縦1.25mm×
横2.0mm×高さ0.9mmであり、コイルのターン
数が6.5ターンの積層インダクタを使用する。なお、
積層インダクタの寸法、コイルのターン数については実
験者が任意に選択でき、特に指定されるものではない。
In this experiment, the size is 1.25 mm long.
A laminated inductor having a width of 2.0 mm and a height of 0.9 mm and having a coil turn number of 6.5 turns is used. In addition,
The dimensions of the laminated inductor and the number of turns of the coil can be arbitrarily selected by the experimenter and are not particularly specified.

【0017】条件1では、積層インダクタに冷熱衝撃装
置を用いて温度差50℃となる熱衝撃処理を1回の処理
回数で行った。条件2では、積層インダクタに冷熱衝撃
装置を用いて温度差100℃となる熱衝撃処理を1回、
5回、50回の処理回数で行った。条件3では、積層イ
ンダクタに冷熱衝撃装置を用いて温度差120℃となる
熱衝撃処理を1回、5回、50回の処理回数で行った。
条件4では、積層インダクタに冷熱衝撃装置と、冷却時
には液体窒素を併用して温度差200℃となる熱衝撃処
理を1回の処理回数で行った。また、これらの各条件と
比較するために、比較例1として熱衝撃処理を行う前の
積層インダクタを用意した。
Under the condition 1, the thermal shock treatment with a temperature difference of 50 ° C. was performed on the laminated inductor by using a cooling and thermal shock device in a single treatment. Under condition 2, a thermal shock treatment was used for the laminated inductor to obtain a temperature difference of 100 ° C. once,
The treatment was performed 5 times and 50 times. Under the condition 3, the thermal shock treatment with the temperature difference of 120 ° C. was performed once, 5 times, and 50 times by using the cooling and thermal shock device for the laminated inductor.
Under the condition 4, a thermal shock device was used together with the laminated inductor and liquid nitrogen at the time of cooling, and a thermal shock process with a temperature difference of 200 ° C. was performed once. Moreover, in order to compare with each of these conditions, a laminated inductor before thermal shock treatment was prepared as Comparative Example 1.

【0018】そして、条件1〜4及び比較例1の積層イ
ンダクタの特性の測定方法として、まず基板に取り付け
た直後の積層インダクタのL値、Q値、及び直流抵抗R
dcを測定し、その後40℃、90〜95%RHの耐湿
槽に1000時間投入し、層から取り出した後、再度積
層インダクタのL値、Q値、及び直流抵抗Rdcを測定
した。なお、このときの基板付け条件は、まず基板に接
着剤で積層インダクタを付け、ハロゲン系のフラックス
を塗布し、250℃の6×4はんだに浸せきし、水で洗
浄を行った。
Then, as a method for measuring the characteristics of the laminated inductor of Conditions 1 to 4 and Comparative Example 1, first, the L value, the Q value, and the DC resistance R of the laminated inductor immediately after being mounted on the substrate.
dc was measured, and after that, it was put in a humidity resistant tank at 40 ° C. and 90 to 95% RH for 1000 hours, taken out from the layer, and then the L value, Q value, and DC resistance Rdc of the laminated inductor were measured again. In addition, regarding the substrate attachment conditions at this time, first, a laminated inductor was attached to the substrate with an adhesive, a halogen-based flux was applied, the substrate was dipped in 6 × 4 solder at 250 ° C., and washed with water.

【0019】条件1〜4及び比較例1の積層インダクタ
の特性を測定した結果を表1に示す。
Table 1 shows the results of measuring the characteristics of the laminated inductors of Conditions 1 to 4 and Comparative Example 1.

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示すように、温度差50℃となる熱
衝撃処理を行った条件1と温度差100℃となる熱衝撃
処理を行った条件2の積層インダクタでは、比較例1の
積層インダクタに比較して、L値、Q値、直流重畳特
性、及び温度特性がともにそれ程効果はない。しかし、
温度差120℃となる熱衝撃処理を行った条件3の積層
インダクタでは、L値、Q値、及び直流重畳特性が向上
し、温度特性においても、温度による変化率が小さくな
っていることが確認できる。そして、温度差200℃と
なる熱衝撃処理を行った条件4の積層インダクタでは、
L値、Q値、及び直流重畳特性がさらに向上し、温度に
よる変化率もさらに小さくなっていることが確認でき
る。
As shown in Table 1, in the laminated inductor under the condition 1 in which the thermal shock treatment with the temperature difference of 50 ° C. and the condition 2 under the thermal shock treatment with the temperature difference of 100 ° C., the laminated inductor of Comparative Example 1 is used. In comparison with, the L value, the Q value, the DC superposition characteristic, and the temperature characteristic are not so effective. But,
It was confirmed that in the laminated inductor under the condition 3 in which the thermal shock treatment with the temperature difference of 120 ° C. was performed, the L value, the Q value, and the DC superposition characteristic were improved, and the temperature characteristic had a small rate of change with temperature. it can. Then, in the laminated inductor under the condition 4 which is subjected to the thermal shock treatment with the temperature difference of 200 ° C.,
It can be confirmed that the L value, the Q value, and the DC superposition characteristic are further improved, and the rate of change with temperature is further reduced.

【0022】また、温度差100℃となる熱衝撃処理を
行った条件2の積層インダクタでは、熱衝撃処理の処理
回数を増やしてもそれ程特性の変化はないが、温度差1
20℃となる熱衝撃処理を行った条件3の積層インダク
タでは、回数が増すごとにL値、Q値、及び直流重畳特
性が向上し、温度による変化率が小さくなっていること
が確認できる。
Further, in the laminated inductor under the condition 2 in which the thermal shock treatment with the temperature difference of 100 ° C. is performed, the characteristic does not change so much even if the number of times of the thermal shock treatment is increased, but the temperature difference is 1
It can be confirmed that, in the laminated inductor under the condition 3 which was subjected to the thermal shock treatment at 20 ° C., the L value, the Q value, and the DC superimposition characteristic were improved as the number of times was increased, and the rate of change with temperature was decreased.

【0023】これにより、温度差120℃以上の熱衝撃
処理を加えることで積層インダクタのL値、Q値、及び
直流重畳特性が向上し、温度による変化率が小さくなる
ことがわかる。そして、これら特性の向上は、熱衝撃処
理の温度差を大きい程、または熱衝撃処理の回数を増や
す程、顕著であることがわかる。
From this, it can be seen that the thermal shock treatment with a temperature difference of 120 ° C. or more improves the L value, the Q value, and the DC superposition characteristic of the laminated inductor, and reduces the rate of change with temperature. It can be seen that the improvement of these characteristics is more remarkable as the temperature difference of the thermal shock treatment is larger or the number of times of the thermal shock treatment is increased.

【0024】また、磁性体層と内部電極間に空隙を設け
ることにより、磁性体層と内部電極との熱膨張率の違い
から発生する応力を緩和させた従来の積層インダクタと
比較しても、耐湿試験により従来の積層インダクタがL
値、Q値が低下し、直流抵抗Rdc値が大幅に大きくな
るのに対して、本実施例の積層インダクタはL値、Q
値、及びRdc値は耐湿試験によりほとんど変化しな
い。
In addition, by providing a space between the magnetic layer and the internal electrode, the stress generated due to the difference in the coefficient of thermal expansion between the magnetic layer and the internal electrode is relaxed. A conventional multilayer inductor has L
Value and Q value are lowered and the DC resistance Rdc value is significantly increased, whereas the laminated inductor of the present embodiment has L value and Q value.
The value and Rdc value hardly change by the humidity resistance test.

【0025】[0025]

【発明の効果】以上説明したように、本発明にかかる積
層インダクタの製造方法によれば、熱衝撃処理を行うこ
とにより、焼成後の冷却過程における内部電極と磁性体
層間に発生する磁性体の応力磁歪を緩和し、積層インダ
クタのL値、Q値、直流重畳特性、並びに温度特性を向
上させた積層インダクタを容易に且つ短時間で得ること
ができる。また、磁性体層と内部電極が密着して、空隙
ができないもので、従来の磁性体層と内部電極間に空隙
を設けた積層インダクタに比べ、耐湿性の高い積層イン
ダクタを得ることができる。
As described above, according to the method of manufacturing a laminated inductor according to the present invention, the thermal shock treatment is performed, so that the magnetic substance generated between the internal electrode and the magnetic substance layer in the cooling process after firing is removed. It is possible to easily and quickly obtain a laminated inductor in which stress magnetostriction is relaxed and the L value, the Q value, the DC superposition characteristic, and the temperature characteristic of the laminated inductor are improved. Further, since the magnetic layer and the internal electrode are in close contact with each other and no void is formed, a laminated inductor having higher moisture resistance can be obtained as compared with the conventional laminated inductor having the void between the magnetic layer and the internal electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における積層インダクタを構成
する積層体を示す分解斜視図である。
FIG. 1 is an exploded perspective view showing a laminated body that constitutes a laminated inductor according to an embodiment of the present invention.

【図2】本発明の実施例における積層インダクタを示す
斜視図である。
FIG. 2 is a perspective view showing a laminated inductor according to an embodiment of the present invention.

【図3】従来の積層インダクタを示す断面図である。FIG. 3 is a cross-sectional view showing a conventional laminated inductor.

【符号の説明】[Explanation of symbols]

1〜13 磁性体シート(磁性体層) 1a〜5a 導体パターン(内部電極) 7 スルーホール 14 積層体 15 外部電極 16 積層インダクタ 1 to 13 Magnetic Sheet (Magnetic Layer) 1a to 5a Conductor Pattern (Internal Electrode) 7 Through Hole 14 Laminated Body 15 External Electrode 16 Laminated Inductor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】表面に内部電極となる導体パターンを形成
した磁性体層を積層し、一定の圧力を加えたのち、焼成
することにより積層体を得る工程と、 前記積層体に外部電極を形成する工程と、 前記積層体に対し、温度差120℃以上となる熱衝撃処
理を一回以上行う工程と、 を含むことを特徴とする積層インダクタの製造方法。
1. A step of laminating a magnetic layer having a conductor pattern formed as an internal electrode on a surface thereof, applying a constant pressure, and then firing to obtain a laminated body, and forming an external electrode on the laminated body. And a step of subjecting the laminated body to a thermal shock treatment at a temperature difference of 120 ° C. or more once or more, a method of manufacturing a laminated inductor.
JP03108595A 1994-09-22 1995-02-20 Manufacturing method of multilayer inductor Expired - Lifetime JP3601096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03108595A JP3601096B2 (en) 1994-09-22 1995-02-20 Manufacturing method of multilayer inductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-228218 1994-09-22
JP22821894 1994-09-22
JP03108595A JP3601096B2 (en) 1994-09-22 1995-02-20 Manufacturing method of multilayer inductor

Publications (2)

Publication Number Publication Date
JPH08148363A true JPH08148363A (en) 1996-06-07
JP3601096B2 JP3601096B2 (en) 2004-12-15

Family

ID=26369539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03108595A Expired - Lifetime JP3601096B2 (en) 1994-09-22 1995-02-20 Manufacturing method of multilayer inductor

Country Status (1)

Country Link
JP (1) JP3601096B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1011115A1 (en) * 1998-12-17 2000-06-21 Korea Electronics Technology Institute Multilayer type chip inductor
KR100475620B1 (en) * 2001-12-14 2005-03-15 미쓰비시덴키 가부시키가이샤 Multi-layered inductance element
JP2010040860A (en) * 2008-08-06 2010-02-18 Murata Mfg Co Ltd Laminated coil component and method of manufacturing the same
CN114267513A (en) * 2020-10-01 2022-04-01 株式会社村田制作所 Coil component and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1011115A1 (en) * 1998-12-17 2000-06-21 Korea Electronics Technology Institute Multilayer type chip inductor
KR100475620B1 (en) * 2001-12-14 2005-03-15 미쓰비시덴키 가부시키가이샤 Multi-layered inductance element
JP2010040860A (en) * 2008-08-06 2010-02-18 Murata Mfg Co Ltd Laminated coil component and method of manufacturing the same
CN114267513A (en) * 2020-10-01 2022-04-01 株式会社村田制作所 Coil component and method for manufacturing same

Also Published As

Publication number Publication date
JP3601096B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
US6630881B1 (en) Method for producing multi-layered chip inductor
TW422998B (en) Inductor element and the manufacturing method of the same
JP3509058B2 (en) Multilayer ferrite chip inductor array
WO1999046784A1 (en) Module and method of manufacture
JPH0864421A (en) Multilayer ceramic electronic part and its manufacture
JPH0135483B2 (en)
JP2002093623A (en) Laminated inductor
JPH05275247A (en) Thin inductor/transformer
JPH08148363A (en) Manufacturing for laminated inductor
US6627021B2 (en) Method of manufacturing laminated ceramic electronic component and method of manufacturing laminated inductor
JPH06333743A (en) Laminated chip coil and its manufacture
JP3428882B2 (en) Manufacturing method of multilayer inductor
JPH11317311A (en) Composite component and manufacture of the same
JP2000091152A (en) Stacked electronic part, and its manufacture
JPS6339958Y2 (en)
JP2000068775A (en) Lr composite parts
JPH05152134A (en) Green sheet for inductance component and inductance component using thereof
JP4109348B2 (en) Electronic parts and manufacturing method thereof
JP2003100516A (en) Laminated inductor and its manufacturing method
JPH09199331A (en) Coil component and its manufacture
JP3168691B2 (en) LC composite electronic components
JPH07176430A (en) Laminated inductor and its manufacture
JPS6344972Y2 (en)
JPH0963845A (en) Layered component and production thereof
JP3948269B2 (en) Coil parts manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

EXPY Cancellation because of completion of term