JPH08146200A - X-ray phase difference microscope - Google Patents

X-ray phase difference microscope

Info

Publication number
JPH08146200A
JPH08146200A JP6289387A JP28938794A JPH08146200A JP H08146200 A JPH08146200 A JP H08146200A JP 6289387 A JP6289387 A JP 6289387A JP 28938794 A JP28938794 A JP 28938794A JP H08146200 A JPH08146200 A JP H08146200A
Authority
JP
Japan
Prior art keywords
ray
phase
optical system
diffracted
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6289387A
Other languages
Japanese (ja)
Inventor
Hisao Fujisaki
久雄 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6289387A priority Critical patent/JPH08146200A/en
Publication of JPH08146200A publication Critical patent/JPH08146200A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE: To form an observed image with high intensity and high contrast by installing an optical element for changing the phase of an incident X-ray and reducing the intensity between a sample and an image forming position. CONSTITUTION: When laser beam 101 is condensed on a target 104 through a window 103 of a vacuum casing 103 by a condensing lens 102, plasma 105 is generated to emit an X-ray 106. Only X-rays 9 of a specified wavelength are condensed by a filter 107 and a condensing mirror 108 to irradiat a sample 111 in a sample vessel 111'. When the X-rays 109 are applied to the sample, some is not diffracted, but transmitted, and some is diffracted. The X-rays which are not diffracted are reflected by a Wolter mirror 114, and changed in phase by a phase plate 116 and an absorbing plate 106' to become extinction X-ray 112'. On the other hand, the diffracted X-ray 113 is passed outside of the phase plate 116 and the absorbing plate 116' to become an X-ray 113' which is not changed in phase and amplitude. An image 117 is formed on an image pick-up device 118 by interference of the X-ray 112' with the X-ray 113'.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、観察試料と、その周囲
との位相差を利用してコントラストを得るX線位相差顕
微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray phase contrast microscope for obtaining contrast by utilizing the phase difference between an observation sample and its surroundings.

【0002】[0002]

【従来の技術】近年の生物工学技術の発展は、光学顕微
鏡や電子顕微鏡などの観察手段に負うところが大きい。
光学顕微鏡は、液体中の生きた生体試料を扱えるのが特
長であるが、可視光の波長に空間分解能が制限される。
また、電子顕微鏡は空間分解能は高いが、真空中に試料
を置かなければならず、電子線が透過する窓材が存在し
ないため、生きたままでは生体試料を観察できなかっ
た。
2. Description of the Related Art Recent developments in biotechnological technology largely depend on observation means such as optical microscopes and electron microscopes.
The optical microscope is characterized in that it can handle a living biological sample in a liquid, but its spatial resolution is limited to the wavelength of visible light.
Further, although the electron microscope has a high spatial resolution, the sample must be placed in a vacuum and there is no window material through which the electron beam passes, so that the biological sample cannot be observed as it is alive.

【0003】そこで、生体試料を生きたまま高分解能で
観察できる可能性を持つX線顕微鏡が注目され、その開
発がなされている。そして、現在では、微細精密工学の
発展によりX線顕微鏡用のX線光学素子の性能が向上
し、X線顕微鏡の試験機が作られるまでになっている。
X線源では、従来の電子衝撃式に代わって、レーザ励起
プラズマX線源やZピンチプラズマX線源などが開発さ
れ、実験室サイズの高輝度X線源が使えるようになって
いる。なお、プラズマ自体の大きさは100μmφ程度
である。
Therefore, an X-ray microscope, which has the possibility of observing a biological sample alive with high resolution, has been attracting attention and has been developed. Now, the performance of X-ray optical elements for X-ray microscopes has been improved by the development of fine precision engineering, and a tester for X-ray microscopes has been manufactured.
As the X-ray source, a laser-excited plasma X-ray source, a Z-pinch plasma X-ray source, and the like have been developed in place of the conventional electron impact type, and a laboratory-sized high-intensity X-ray source can be used. The size of the plasma itself is about 100 μmφ.

【0004】試料像観察におけるコントラストを得るた
めに、これまでは試料と周囲とのX線吸収の差を利用し
てきたが、生体試料はX線吸収によって損傷を受けやす
い。そのため、最近では試料と周囲との位相差を利用し
てコントラストを得るX線位相差顕微鏡の研究・開発が
始められている。
In order to obtain contrast in observing a sample image, the difference in X-ray absorption between the sample and the surroundings has been used so far, but a biological sample is easily damaged by X-ray absorption. Therefore, research and development of an X-ray phase contrast microscope, which obtains contrast by using the phase difference between the sample and the surroundings, has recently been started.

【0005】[0005]

【発明が解決しようとする課題】これまでに、図4
(A)に示すようなゾーンプレートを用いたX線位相差
顕微鏡が提案されている。図4(A)では、シンクロト
ロン放射光光源からのX線406をゾーンプレート40
8で集光し、再拡散するX線をゾーンプレート408’
で平行化し、試料411に照射する。 試料411で回
折されずに通過したX線412は、ゾーンプレート41
4で回折され、焦点419に設置した位相板416およ
び吸収板416’を通過した後位相が90゜ずれて、し
かも振幅が小さくなって(減光されて)撮像器418に
到達する(X線412’)。
[Problems to be Solved by the Invention]
An X-ray phase contrast microscope using a zone plate as shown in (A) has been proposed. In FIG. 4 (A), the X-ray 406 from the synchrotron radiation source is used as the zone plate 40.
Zone plate 408 'for X-rays that are focused and rediffused by
Parallelize with and irradiate the sample 411. The X-ray 412 that has passed through the sample 411 without being diffracted is reflected by the zone plate 41.
After passing through the phase plate 416 and the absorption plate 416 ′ installed at the focal point 419, the phase shifts by 90 ° and the amplitude becomes small (dimmed) to reach the image pickup device 418 (X-ray). 412 ').

【0006】試料411で回折されたX線413は、ゾ
ーンプレート414で回折された後焦点419に設置し
た位相板416および吸収板416’をほとんど通らず
に撮像器418に到達する(X線413’)。撮像器に
到達する前記X線412’とX線413’の干渉の結
果、像417が形成される。
The X-rays 413 diffracted by the sample 411 reach the image pickup device 418 with almost no passage through the phase plate 416 and the absorption plate 416 'installed at the focal point 419 after being diffracted by the zone plate 414 (X-rays 413 '). An image 417 is formed as a result of the interference of the X-rays 412 ′ and 413 ′ reaching the imager.

【0007】この方式では、ゾーンプレートを3枚使用
する必要がある。ゾーンプレートは集光率が低く、しか
も口径の小さなものしか作れないので、ゾーンプレート
では十分な強度の平行X線が得られない。そのため、こ
の方式は実用的でない(観察像の強度が低すぎる)とい
う問題点がある。そこで、現状では(実用上は)、X線
を試料に集光することで必要なX線強度を得ることが試
みられている。例えば、ゾーンプレートが2枚で済む図
4(B)の方式による実験がこれまでに試みられてい
る。図4(B)では、シンクロトロン放射光光源からの
X線426をゾーンプレート428で集光して試料43
1に照射する。
In this method, it is necessary to use three zone plates. Since the zone plate has a low light collection rate and only a small diameter can be produced, the zone plate cannot obtain parallel X-rays with sufficient intensity. Therefore, this method has a problem that it is not practical (the intensity of the observed image is too low). Therefore, under the present circumstances (in practice), it is attempted to obtain necessary X-ray intensity by focusing X-rays on a sample. For example, an experiment by the method of FIG. 4B, which requires only two zone plates, has been attempted so far. In FIG. 4B, the X-ray 426 from the synchrotron radiation light source is collected by the zone plate 428 and the sample 43
Irradiate 1.

【0008】試料431で回折されずに通過したX線4
32はゾーンプレート434で回折された後、X線43
2の通過域を網羅するように設置した位相板436を通
ることで位相が90゜ずれる。そして、撮像器438に
到達する(X線432’)。一方、試料431で回折さ
れたX線433は、ゾーンプレート434で回折され、
一部が位相板436を通り、残りは位相板436を通ら
ずに撮像器438に到達する(X線433’)。
X-ray 4 which passed through the sample 431 without being diffracted
32 is diffracted by the zone plate 434 and then X-ray 43
The phase shifts by 90 ° by passing through the phase plate 436 installed so as to cover the pass band of 2. Then, it reaches the imager 438 (X-ray 432 '). On the other hand, the X-ray 433 diffracted by the sample 431 is diffracted by the zone plate 434,
Part of the light passes through the phase plate 436, and the rest of the light reaches the imager 438 without passing through the phase plate 436 (X-ray 433 ′).

【0009】撮像器に到達するX線432’とX線43
3’の干渉の結果、像437が形成される。しかしなが
ら、この場合、試料で回折されたX線のうち、位相板を
通って位相がずれるX線が負の干渉をするので、図4
(A)の方式に比べて像437のコントラストが悪くな
るという問題点がある。本発明は、かかる問題点に鑑み
てなされたものであり、高強度、高コントラストの観察
像が得られ、しかも小型のX線源を用いることができる
実用的なX線位相差顕微鏡を提供することを目的とす
る。
X-ray 432 'and X-ray 43 reaching the imager
As a result of the 3'interference, an image 437 is formed. However, in this case, among the X-rays diffracted by the sample, the X-rays having a phase shift through the phase plate interfere with each other negatively.
There is a problem that the contrast of the image 437 deteriorates as compared with the method (A). The present invention has been made in view of the above problems, and provides a practical X-ray phase contrast microscope capable of obtaining a high-intensity and high-contrast observation image and using a small X-ray source. The purpose is to

【0010】[0010]

【課題を解決するための手段】そのため、本発明は第一
に「少なくとも、X線源と、該X線源からのX線を集光
して観察試料に照射する照明光学系であって、多層膜X
線反射鏡を用いた照明光学系と、該照明光学系によるX
線集光位置に前記観察試料を保持する試料容器と、前記
観察試料を透過した全て又は略全ての非回折X線が入射
するように設置してなる光学素子であって、入射したX
線の位相を変化させ、かつ強度を低減させる光学素子
と、該光学素子に入射しない回折X線と、該光学素子に
より位相を変化させ、かつ強度を低減させた非回折X線
とを集光して観察試料像を形成する結像光学系であっ
て、前記照明光学系よりも大きい開口数を有するウォル
タ鏡またはシュワルツシルト鏡を用いた結像光学系と、
前記観察試料像を検出する撮像系と、を備えたX線位相
差顕微鏡(請求項1)」を提供する。
Therefore, firstly, the present invention relates to "at least an X-ray source and an illumination optical system for collecting X-rays from the X-ray source and irradiating the observation sample with the X-rays. Multi-layer film X
Illumination optical system using a line reflector and X by the illumination optical system
A sample container that holds the observation sample at a line focusing position, and an optical element that is installed so that all or substantially all of the non-diffracted X-rays that have passed through the observation sample are incident.
An optical element that changes the phase of a line and reduces the intensity, a diffracted X-ray that does not enter the optical element, and a non-diffracted X-ray that changes the phase by the optical element and reduces the intensity are condensed. An imaging optical system for forming an observation sample image by using a Walter mirror or a Schwarzschild mirror having a numerical aperture larger than that of the illumination optical system,
An X-ray phase contrast microscope (claim 1) provided with an imaging system for detecting the observation sample image.

【0011】また、本発明は第二に「少なくとも、X線
源と、該X線源からのX線を集光して観察試料に照射す
る照明光学系であって、多層膜X線反射鏡を用いた照明
光学系と、該照明光学系によるX線集光位置に前記観察
試料を保持する試料容器と、前記観察試料により回折し
た回折X線と前記観察試料を透過した非回折X線とを集
光する結像光学系であって、前記照明光学系よりも大き
い開口数を有するウォルタ鏡またはシュワルツシルト鏡
を用いた結像光学系と、該結像光学系からの全て又は略
全ての非回折X線が入射するように設置してなる光学素
子であって、入射したX線の位相を変化させ、かつ強度
を低減させる光学素子と、該光学素子に入射しない前記
結像光学系からの回折X線と、該光学素子により位相を
変化させ、かつ強度を低減させた前記結像光学系からの
非回折X線とにより形成された観察試料像を検出する撮
像系と、を備えたX線位相差顕微鏡(請求項2)」を提
供する。
A second aspect of the present invention is "at least an X-ray source and an illumination optical system for condensing X-rays from the X-ray source and irradiating the observation sample. An illumination optical system using the above, a sample container for holding the observation sample at an X-ray focusing position by the illumination optical system, a diffracted X-ray diffracted by the observation sample, and a non-diffracted X-ray transmitted through the observation sample. An image forming optical system for condensing light, which uses a Walter mirror or a Schwarzschild mirror having a larger numerical aperture than the illumination optical system, and all or substantially all of the image forming optical system. An optical element installed so that non-diffracted X-rays are incident, comprising an optical element that changes the phase of the incident X-ray and reduces the intensity, and the imaging optical system that does not enter the optical element. X-ray diffracted by the optical element and the phase is changed by the optical element, and The providing non diffracted X-ray and the imaging system for detecting an observation sample image formed by, X-rays phase-contrast microscope equipped with (Claim 2) "from the imaging optical system with reduced.

【0012】また、本発明は第三に、「前記X線源をレ
ーザープラズマX線源またはZピンチプラズマX線源と
したことを特徴とする請求項1または2記載のX線位相
差顕微鏡(請求項3)」を提供する。
The third aspect of the present invention is that the X-ray phase contrast microscope according to claim 1 or 2, wherein the X-ray source is a laser plasma X-ray source or a Z-pinch plasma X-ray source. Claim 3) "is provided.

【0013】[0013]

【作用】本発明のX線位相差顕微鏡では、高強度、高コ
ントラストの観察像が得られ、しかも小型のX線源を用
いることができる。即ち、本発明のX線位相差顕微鏡で
は、入射したX線の位相を変化させ、かつ強度を低減さ
せる光学素子を、観察試料と観察試料像形成位置との間
に設置することにより、該光学素子に入射して位相が変
化する一部の回折X線(負の干渉の原因となる)の強度
を低減している。
With the X-ray phase contrast microscope of the present invention, an observation image of high intensity and high contrast can be obtained, and a small X-ray source can be used. That is, in the X-ray phase contrast microscope of the present invention, an optical element that changes the phase of the incident X-ray and reduces the intensity is installed between the observation sample and the observation sample image forming position, thereby The intensity of a part of the diffracted X-rays (which causes negative interference) which are incident on the element and whose phase is changed is reduced.

【0014】そのため、従来のX線位相差顕微鏡におい
て問題となっていた位相が変化した回折X線の負の干渉
によるコントラストの低下を抑制することができる(従
来よりも高コントラストの観察像が得られる)。また、
本発明では、クリティカル照明が可能な照明光学系(ゾ
ーンプレートよりも開口数と集光率が大きい多層膜X線
反射鏡の使用)とし、かつ該照明光学系よりも開口数が
大きい結像光学系(ウォルタ鏡またはシュワルツシルト
鏡の使用)としているので、従来よりも高強度で高コン
トラストの観察像が得られ、しかも小型のX線源を用い
ることができる。
Therefore, it is possible to suppress the deterioration of the contrast due to the negative interference of the diffracted X-rays having the changed phase, which is a problem in the conventional X-ray phase contrast microscope (an observation image having a higher contrast than the conventional one can be obtained. Be). Also,
In the present invention, an illumination optical system capable of performing critical illumination (use of a multilayer film X-ray reflecting mirror having a larger numerical aperture and light collection ratio than a zone plate) and an imaging optical system having a larger numerical aperture than the illumination optical system are used. Since it is a system (using a Walter mirror or a Schwarzschild mirror), an observation image with higher intensity and higher contrast than before can be obtained, and a small X-ray source can be used.

【0015】以下、本発明のX線位相差顕微鏡にかかる
位相差法を、簡便のため通常の可視光用レンズを用いる
光学顕微鏡における位相差法の原理を引用して説明す
る。厚さd、屈折率n’の透明な試料が屈折率nの透明
な媒質中にあるとき、照明光の角振動数をω、波長を
λ、時間をt、円周率をπとすると、媒質を通った光波
A0 、試料を通った光波A1 は、振幅はおなじであるか
ら1として、 A0 =sin(ωt) A1 =sin(ωt+ε) ε=2π(n’−n)d/λ と表される。εは屈折率の違いによる位相の遅れであ
る。A0 とA1 の差をAdとすると、 Ad =A1 −A0 =2sin(ε/2)cos(ωt+ε/2) =2sin(ε/2)sin(ωt+π/2+ε/2) となる。試料を通った光波A1 は、A0 とAd の和で表
され、εが小さいとすると、 A1 =A0 +Ad Ad =ε・sin(ωt+π/2) となる。図3を参照して、試料を通った光波A1 は非回
折光A0 と回折光Ad の和であることが分かる。
Hereinafter, the phase difference method according to the X-ray phase contrast microscope of the present invention will be described with reference to the principle of the phase difference method in an optical microscope using a normal visible light lens for the sake of simplicity. When a transparent sample with a thickness d and a refractive index n ′ is in a transparent medium with a refractive index n, ω is the angular frequency of the illumination light, λ is the wavelength, t is the time, and π is the circular constant, Since the amplitudes of the light wave A0 passing through the medium and the light wave A1 passing through the sample are the same, it is assumed that A0 = sin (ωt) A1 = sin (ωt + ε) ε = 2π (n'-n) d / λ To be done. ε is the phase delay due to the difference in refractive index. If the difference between A0 and A1 is Ad, then Ad = A1 -A0 = 2 sin (ε / 2) cos (ωt + ε / 2) = 2sin (ε / 2) sin (ωt + π / 2 + ε / 2). The light wave A1 that has passed through the sample is represented by the sum of A0 and Ad, and if ε is small, A1 = A0 + Ad Ad = ε.sin (ωt + π / 2). It can be seen from FIG. 3 that the light wave A1 passing through the sample is the sum of the non-diffracted light A0 and the diffracted light Ad.

【0016】図3(A)に示したように、照明が平行光
でなされたとき、対物レンズ(集光光学系の一例)31
4の焦点位置319に位相板(位相を変化させる光学素
子の一例)316と吸収板(強度を変化させる光学素子
の一例)316’を置いて、吸収板316’によりA0
の振幅をε倍し、位相板316により位相を90゜遅ら
せると、 A0 =ε・sin(ωt+π/2) A1 =2ε・sin(ωt+π/2) となり、振幅比が2:1、強度比が4:1で、試料が明
るく見えるブライトコントラストが得られる。
As shown in FIG. 3A, when the illumination is performed by parallel light, an objective lens (an example of a condensing optical system) 31
A phase plate (an example of an optical element that changes the phase) 316 and an absorption plate (an example of an optical element that changes the intensity) 316 'are placed at the focal position 319 of No. 4 and A0 is set by the absorption plate 316'.
When the amplitude of is multiplied by ε and the phase is delayed by 90 ° by the phase plate 316, A0 = ε · sin (ωt + π / 2) A1 = 2ε · sin (ωt + π / 2), and the amplitude ratio is 2: 1, and the intensity ratio is At 4: 1 a bright contrast is obtained where the sample looks bright.

【0017】また、A0 の振幅をε倍し、位相を270
゜遅らせる(90゜進める)と、 A0 =ε・sin(ωt−π/2) A1 =ε{sin(ωt−π/2)+sin(ωt+π/2)} =0 となり、試料が暗くみえるダークコントラストが得られ
る。
Further, the amplitude of A0 is multiplied by ε and the phase is set to 270
When delayed by 90 ° (advanced by 90 °), A0 = ε · sin (ωt-π / 2) A1 = ε {sin (ωt-π / 2) + sin (ωt + π / 2)} = 0, which makes the sample appear dark. Is obtained.

【0018】以上は、通常の可視光用レンズを用いる光
学顕微鏡における位相差法の原理説明であるが、図4
(A)に示したように、X線顕微鏡においても平行X線
で試料を照明する場合には適用できる。ところが、前述
したように、ゾーンプレートを用いて試料照明用の平行
X線を得るX線顕微鏡では、現状のゾーンプレートの集
光率が低く、しかも口径が小さいので、十分な強度の平
行X線が得られない。
The above is the explanation of the principle of the phase difference method in the optical microscope using the ordinary visible light lens.
As shown in (A), it can be applied to an X-ray microscope when illuminating a sample with parallel X-rays. However, as described above, in an X-ray microscope that obtains parallel X-rays for illuminating a sample using a zone plate, the current state of the zone plate has a low light collection rate and a small aperture. Can't get

【0019】また、X線源からの十分な強度の平行X線
で試料を直接照明しようとすると、光源が極めて大きく
なってしまう(例えば、シンクロトロン放射光源)。そ
のため、本発明では、高強度、高コントラストの観察像
が得られ、しかも小型のX線源を用いることができる実
用的なX線位相差顕微鏡を得るために、平行X線で試料
を照明するのではなく、試料に対してクリティカル照明
を行うこととした。
Further, if the sample is directly illuminated with parallel X-rays having a sufficient intensity from the X-ray source, the light source becomes extremely large (for example, a synchrotron radiation light source). Therefore, in the present invention, the sample is illuminated with parallel X-rays in order to obtain a practical X-ray phase-contrast microscope in which an observation image with high intensity and high contrast can be obtained and a small X-ray source can be used. Instead, it was decided to perform critical illumination on the sample.

【0020】そこで、このクリティカル照明における位
相差法について説明する。図3(B)に示したように、
照明光329のNAを対物レンズ(結像光学系の一例)
334のNAより小さくし、対物レンズ334の後方に
照明光をちょうどカバーするか、或いは僅かに大きい位
相板(入射X線の位相を変化させる光学素子の一例)3
36と吸収板(入射X線の強度を低減させる光学素子の
一例)336’を設置する。
Therefore, the phase difference method in this critical illumination will be described. As shown in FIG. 3 (B),
The NA of the illumination light 329 is used as an objective lens (an example of an imaging optical system)
A phase plate which is smaller than the NA of 334 and covers the illumination light just behind the objective lens 334, or a slightly larger phase plate (an example of an optical element for changing the phase of the incident X-ray) 3
36 and an absorption plate (an example of an optical element that reduces the intensity of incident X-rays) 336 ′ are installed.

【0021】吸収板336’により非回折光A0 の振幅
をε倍し、位相板336により非回折光A0 の位相を9
0゜遅らせると、レンズ面積とレンズ上で非回折光が当
たる部分の面積の比を1:rとして、 A0 =ε・sin(ωt+π/2) Ad =(1−r)ε・sin(ωt+π/2)+rε2 ・sin(ωt+π) ≒(1−r)ε・sin(ωt+π/2) A1 =(2ーr)ε・sin(ωt+π/2) となり、振幅比が(2−r):1、強度比が(2−r)
2 :1で、試料が明るく見えるブライトコントラストが
得られる。rが小さいほどコントラストが良くなる。
The absorption plate 336 'multiplies the amplitude of the non-diffracted light A0 by ε, and the phase plate 336 adjusts the phase of the non-diffracted light A0 to 9 times.
If delayed by 0 °, the ratio of the lens area and the area of the lens on which the non-diffracted light strikes is 1: r. A0 = ε · sin (ωt + π / 2) Ad = (1-r) ε · sin (ωt + π / 2) + rε 2 · sin (ωt + π) ≈ (1-r) ε · sin (ωt + π / 2) A 1 = (2-r) ε · sin (ωt + π / 2), and the amplitude ratio is (2-r): 1 , Intensity ratio is (2-r)
At 2 : 1 a bright contrast is obtained where the sample looks bright. The smaller r is, the better the contrast is.

【0022】非回折光A0 の振幅をε倍し、位相を27
0゜遅らせる(90゜進める)と、 A0 =ε・sin(ωt−π/2) Ad =(1−r)ε・sin(ωt+π/2)+rε2 ・sin(ωt) ≒(1−r)ε・sin(ωt+π/2) A1 =ε{sin(ωt−π/2)+sin(ωt+π/2)} −rε・sin(ωt+π/2) =rε・sin(ωt−π/2) となり、振幅比が1:r、強度比が1:r2 で、試料が
暗くみえるダークコントラストが得られる。rが小さい
ほどコントラストが良くなる。
The amplitude of the non-diffracted light A0 is multiplied by ε and the phase is set to 27.
When delayed by 0 ° (advanced by 90 °), A0 = ε · sin (ωt−π / 2) Ad = (1-r) ε · sin (ωt + π / 2) + rε 2 · sin (ωt) ≈ (1-r) ε · sin (ωt + π / 2) A1 = ε {sin (ωt−π / 2) + sin (ωt + π / 2)} −rε · sin (ωt + π / 2) = rε · sin (ωt−π / 2) and the amplitude is obtained. When the ratio is 1: r and the intensity ratio is 1: r 2 , a dark contrast in which the sample looks dark can be obtained. The smaller r is, the better the contrast is.

【0023】なお、前記位相板による入射X線の位相変
化量は、入射X線の波長に依存するので、位相変化量を
特定値(例えば、90°または270°)に固定する上
では入射X線(即ち、照明X線)の波長幅ができるだけ
小さい方が好ましい。そのため、本発明にかかる照明光
学系には、集光と分光が同時にでき、しかも開口数と集
光率がゾーンプレートよりも大きい多層膜X線反射鏡を
用いている。
Since the phase change amount of the incident X-ray by the phase plate depends on the wavelength of the incident X-ray, the incident X-ray is fixed when the phase change amount is fixed to a specific value (for example, 90 ° or 270 °). It is preferable that the wavelength width of the line (that is, the illumination X-ray) is as small as possible. Therefore, the illumination optical system according to the present invention uses a multilayer film X-ray reflecting mirror capable of condensing and splitting light at the same time and having a numerical aperture and a condensing ratio larger than that of the zone plate.

【0024】また、本発明にかかるX線源をレーザープ
ラズマX線源またはZピンチプラズマX線源とすれば、
X線位相差顕微鏡全体を小型化できるので好ましい(請
求項3)。以下、実施例により本発明をさらに詳細に説
明するが、本発明はこれらの例に限定されるものではな
い。
If the X-ray source according to the present invention is a laser plasma X-ray source or a Z pinch plasma X-ray source,
This is preferable because the entire X-ray phase contrast microscope can be downsized (claim 3). Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

【0025】[0025]

【実施例1】結像光学系にウォルタ鏡を用いた本実施例
のX線位相差顕微鏡を図1に示す。図1(A)は構成
図、図1(B)は結像光学系の詳細説明図である。高輝
度パルスレーザ光101を、集光レンズ102によって
真空容器103に設けられたレーザー光取り込み窓10
3’を通して、標的104の表面に集光すると、プラズ
マ105が発生する。
EXAMPLE 1 FIG. 1 shows an X-ray phase contrast microscope of this example using a Walter mirror in an image forming optical system. FIG. 1A is a configuration diagram, and FIG. 1B is a detailed explanatory diagram of an image forming optical system. A high-intensity pulsed laser light 101 is provided on a vacuum container 103 by a condenser lens 102, and a laser light intake window 10 is provided.
Upon focusing on the surface of the target 104 through 3 ′, a plasma 105 is generated.

【0026】プラズマ105は、X線106を放射する
(X線源の一例であるレーザープラズマX線源)。同時
に放射される可視光や紫外光など不要な光及び飛散物を
フィルタ107で除去し、多層膜X線集光鏡(照明光学
系の一例)108で特定波長のX線109だけを集光
し、試料槽(試料容器)111’内の試料111に照射
する。
The plasma 105 emits X-rays 106 (a laser plasma X-ray source which is an example of an X-ray source). Unnecessary light such as visible light and ultraviolet light simultaneously emitted and scattered matter are removed by the filter 107, and only the X-ray 109 having a specific wavelength is condensed by the multilayer film X-ray condenser mirror (an example of an illumination optical system) 108. The sample 111 in the sample tank (sample container) 111 ′ is irradiated.

【0027】円錐状に集光するX線109のうち、結像
に寄与しない部分は遮蔽板110で除去する。遮蔽板1
10がないと、ウォルタ鏡(結像光学系の一例)114
で反射されずに撮像器(撮像系の一例)118に直接入
射するX線がバックグラウンドとしてコントラストを低
下させる。この遮蔽板110は、幾何学的には試料11
1の後方のウォルタ鏡114の手前や後方においてもよ
いことになるが、余分に照射したX線が試料111に損
傷を与える懸念があるので、試料111の手前に置くこ
とが望ましい。
A portion of the X-ray 109 focused in a conical shape that does not contribute to image formation is removed by the shield plate 110. Shield plate 1
Without 10, Walter mirror (an example of an imaging optical system) 114
The X-rays that are not reflected by and directly enter the image pickup device (an example of an image pickup system) 118 reduce the contrast as the background. This shielding plate 110 is geometrically configured as the sample 11
Although it may be in front of or behind the Walter mirror 114 behind 1, the X-rays that are excessively irradiated may damage the sample 111, so it is desirable to place it in front of the sample 111.

【0028】X線109は試料111に当たると、一部
は回折されずに透過し、一部は回折される。ウォルタ鏡
114で反射されない回折X線は遮蔽板115で除去
し、コントラストの低下を防止する。試料111によっ
て回折されなかったX線112は、ウォルタ鏡114で
反射されて撮像器118に向かうが、ウォルタ鏡114
の後方で位相板116および吸収板116’を透過し、
位相が90゜、あるいは270゜ずれ、かつ減光された
X線112’が結像に寄与する。
When the X-ray 109 hits the sample 111, a part of the X-ray 109 is transmitted without being diffracted and a part is diffracted. Diffracted X-rays that are not reflected by the Walter mirror 114 are removed by the shielding plate 115 to prevent the deterioration of contrast. The X-ray 112 that has not been diffracted by the sample 111 is reflected by the Walter mirror 114 and travels toward the imager 118.
Is transmitted through the phase plate 116 and the absorption plate 116 'behind,
The X-ray 112 ′ whose phase is shifted by 90 ° or 270 ° and which is dimmed contributes to image formation.

【0029】一方、試料111によって回折されたX線
113は、ウォルタ鏡114で反射されて撮像器118
に向かうが、ウォルタ鏡114の後方で位相板116お
よび吸収板116’の外側を通り、位相および振幅が変
わらないままのX線113’が結像に寄与する。即ち、
X線112’とX線113’との干渉の結果、像117
が撮像器118上に形成される。
On the other hand, the X-ray 113 diffracted by the sample 111 is reflected by the Walter mirror 114, and is imaged by the image pickup device 118.
However, the X-ray 113 ′, which has passed through the phase plate 116 and the absorption plate 116 ′ behind the Walter mirror 114 and remains unchanged in phase and amplitude, contributes to image formation. That is,
As a result of the interference between the X-ray 112 'and the X-ray 113', the image 117
Are formed on the imager 118.

【0030】[0030]

【実施例2】結像光学系にシュワルツシルト鏡を用いた
本実施例のX線位相差顕微鏡を図2に示す。図2(A)
は構成図、図2(B)は結像光学系の詳細説明図であ
る。高輝度パルスレーザ光201を、集光レンズ202
によって真空容器203に設けられたレーザー光取り込
み窓203’を通して、標的204の表面に集光する
と、プラズマ205が発生する。
[Embodiment 2] FIG. 2 shows an X-ray phase contrast microscope of this embodiment using a Schwarzschild mirror in an image forming optical system. FIG. 2 (A)
Is a configuration diagram, and FIG. 2B is a detailed explanatory diagram of the imaging optical system. The high-intensity pulsed laser light 201 is collected by the condenser lens 202.
When the light is focused on the surface of the target 204 through the laser light intake window 203 ′ provided in the vacuum container 203, plasma 205 is generated.

【0031】プラズマ205はX線206を放射する
(X線源の一例であるレーザープラズマX線源)。同時
に放射される可視光や紫外光など不要な光及び飛散物を
フィルタ207で除去し、多層膜X線集光鏡(照明光学
系の一例)208で特定波長のX線209だけを集光
し、試料槽(試料容器)211’内の試料211に照射
する。
The plasma 205 emits X-rays 206 (a laser plasma X-ray source which is an example of an X-ray source). Unnecessary light such as visible light and ultraviolet light simultaneously emitted and scattered matter are removed by the filter 207, and only the X-ray 209 having a specific wavelength is condensed by the multilayer film X-ray condenser mirror (an example of an illumination optical system) 208. The sample 211 in the sample tank (sample container) 211 ′ is irradiated.

【0032】円錐状に集光するX線209のうち、結像
に寄与しない部分は、コントラストの低下防止と試料2
11の損傷防止(X線を余分に照射すると、試料に損傷
を与える懸念がある)のために、遮蔽板210で除去す
る。X線209は試料211に当たると、一部は回折さ
れずに透過し、一部は回折される。
Among the X-rays 209 which are focused in a conical shape, the portion which does not contribute to the image formation is prevented from lowering the contrast and the sample 2
In order to prevent damage 11 (excessive irradiation of X-rays may damage the sample), it is removed by the shield plate 210. When the X-ray 209 hits the sample 211, a part of the X-ray 209 is transmitted without being diffracted and a part is diffracted.

【0033】試料211によって回折されなかったX線
212は、シュワルツシルト鏡214の手前で位相板2
16および吸収板216’を透過し、位相が90゜、あ
るいは270゜ずれ、かつ減光されたX線212’がシ
ュワルツシルト鏡214で反射されて撮像器(撮像系の
一例)118に向かい、結像に寄与する。一方、試料2
11によって回折されたX線213は、位相板216お
よび吸収板216’の外側を通り、シュワルツシルト鏡
214で反射され、撮像器218に向かい、位相および
振幅が変わらないままのX線213’が結像に寄与す
る。
The X-rays 212 not diffracted by the sample 211 are in front of the Schwarzschild mirror 214 and the phase plate 2
X-rays 212 ′ that have been transmitted through 16 and the absorption plate 216 ′ and have a phase difference of 90 ° or 270 ° and have been dimmed are reflected by the Schwarzschild mirror 214 and travel toward the imager (an example of an image pickup system) 118. Contributes to image formation. On the other hand, sample 2
The X-ray 213 diffracted by 11 passes through the outside of the phase plate 216 and the absorption plate 216 ′, is reflected by the Schwarzschild mirror 214, and travels toward the imager 218, where the X-ray 213 ′ whose phase and amplitude remain unchanged is generated. Contributes to image formation.

【0034】即ち、X線212’とX線213’との干
渉の結果、像217が撮像器218上に形成される。以
上のように、前記二つの実施例では、入射したX線の位
相を変化させ、かつ強度を低減させる光学素子を、観察
試料と観察試料像形成位置との間に設置することによ
り、該光学素子に入射して位相が変化する一部の回折X
線(負の干渉の原因となる)の強度を低減している。
That is, as a result of the interference between the X-ray 212 'and the X-ray 213', an image 217 is formed on the image pickup device 218. As described above, in the above two embodiments, the optical element for changing the phase of the incident X-ray and reducing the intensity is installed between the observation sample and the observation sample image forming position, thereby Part of diffraction X whose phase changes when incident on the element
The intensity of the lines (which causes negative interference) is reduced.

【0035】そのため、従来のX線位相差顕微鏡におい
て問題となっていた位相が変化した回折X線の負の干渉
によるコントラストの低下を抑制することができる(従
来よりも高コントラストの観察像が得られる)。また、
前記二つの実施例では、照明光学系をクリティカル照明
が可能な照明光学系(ゾーンプレートよりも開口数と集
光率が大きい多層膜X線反射鏡の使用)とし、かつ該照
明光学系よりも開口数が大きい結像光学系(ウォルタ鏡
またはシュワルツシルト鏡の使用)としているので、従
来よりも高強度で高コントラストの観察像が得られ、し
かも小型のX線源を用いることができる。
Therefore, it is possible to suppress the deterioration of the contrast due to the negative interference of the diffracted X-rays having the changed phase, which is a problem in the conventional X-ray phase contrast microscope (an observation image having a higher contrast than the conventional one can be obtained. Be). Also,
In the two embodiments, the illumination optical system is an illumination optical system capable of performing critical illumination (use of a multilayer film X-ray reflecting mirror having a numerical aperture and a light collection rate larger than that of a zone plate), and more than that of the illumination optical system. Since the imaging optical system has a large numerical aperture (using a Walter mirror or a Schwarzschild mirror), an observation image with higher intensity and higher contrast than before can be obtained, and a small X-ray source can be used.

【0036】なお、前記二つの実施例において、結像光
学系にウォルタ鏡を使用する例ではウォルタ鏡の後方
に、また結像光学系にシュワルツシルト鏡を使用する例
では、シュワルツシルト鏡の手前に、位相板および吸収
板をそれぞれ設置したが、位相板および吸収板の位置は
これらに限らず、試料の後方であれば結像光学系の手前
でも後方でもよい。
In the above-mentioned two embodiments, in the case of using the Walter mirror in the image forming optical system, it is behind the Walter mirror, and in the case of using the Schwarzschild mirror in the image forming optical system, it is in front of the Schwarzschild mirror. Although the phase plate and the absorption plate are respectively installed in the above, the positions of the phase plate and the absorption plate are not limited to these, and may be before or after the imaging optical system as long as they are behind the sample.

【0037】また、位相板と吸収板とは一体であっても
よいし、分離していてもよい。位相板が吸収板を兼ねて
いてもよい。前記二つの実施例では、非回折X線が内側
に、回折X線が外側になるように光学配置をとったが、
これらの変形として、非回折X線が外側に、回折X線が
内側になるような光学配置をとることも可能である。
Further, the phase plate and the absorption plate may be integrated or may be separated. The phase plate may also serve as the absorption plate. In the two embodiments, the optical arrangement is such that the non-diffracted X-rays are inside and the diffracted X-rays are outside.
As a modification of these, it is possible to adopt an optical arrangement in which the non-diffracted X-rays are on the outside and the diffracted X-rays are on the inside.

【0038】この場合、照明光学系と結像光学系のNA
を一致させ、非回折光が手前側に(結像光学系がウォル
タ鏡の場合)、または外側に(結像光学系がシュワルツ
シルト鏡の場合)それぞれ当たるように、遮蔽板11
0、210の径を設定する。このとき、位相板及び吸収
板は輪帯状になる。
In this case, the NA of the illumination optical system and the imaging optical system
And the non-diffracted light strikes the front side (when the imaging optical system is a Walter mirror) or the outside (when the imaging optical system is a Schwarzschild mirror), respectively.
Set the diameter of 0 and 210. At this time, the phase plate and the absorption plate have an annular shape.

【0039】[0039]

【発明の効果】以上、説明したように、本発明のX線位
相差顕微鏡は、高強度、高コントラストの観察像が得ら
れ、しかも小型のX線源を用いることができる。また、
小型のX線源を用いることができるので、X線位相差顕
微鏡全体の小型化も可能である。
As described above, the X-ray phase contrast microscope of the present invention can obtain a high-intensity and high-contrast observation image and can use a small X-ray source. Also,
Since a small X-ray source can be used, the entire X-ray phase contrast microscope can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、実施例1のX線位相差顕微鏡であり、
(A)は構成図、(B)は結像光学系の詳細説明図であ
る。
1 is an X-ray phase contrast microscope of Example 1,
9A is a configuration diagram, and FIG. 9B is a detailed explanatory diagram of an image forming optical system.

【図2】は、実施例2のX線位相差顕微鏡であり、
(A)は構成図、(B)は結像光学系の詳細説明図であ
る。
FIG. 2 is an X-ray phase contrast microscope of Example 2,
9A is a configuration diagram, and FIG. 9B is a detailed explanatory diagram of an image forming optical system.

【図3】は、位相差顕微鏡の原理説明図であり、(A)
は平行光照明を用いた場合、(B)はクリティカル照明
を用いた場合の各説明図である。
FIG. 3 is an explanatory view of the principle of a phase contrast microscope, (A)
3B is an explanatory diagram when parallel light illumination is used, and FIG. 7B is an explanatory diagram when critical illumination is used.

【図4】は、従来のX線位相差顕微鏡の例であり、
(A)は平行X線照明を用いた場合、(B)はクリティ
カルX線照明を用いた場合の各説明図である。
FIG. 4 is an example of a conventional X-ray phase contrast microscope,
FIG. 7A is an explanatory diagram when parallel X-ray illumination is used, and FIG. 9B is a schematic diagram when critical X-ray illumination is used.

【符号の説明】[Explanation of symbols]

101、201 高輝度パルスレーザ光 102、201 レーザ光集光レンズ 103、203 真空容器 103’203’レーザ光取り込み窓 104、204 標的板 105、205 プラズマ 106、206 X線 107、207 フィルタ 108、208 多層膜X線反射鏡(照明光学系の一
例) 109、209 集光X線 110、210 遮蔽板 111、211 観察試料 111’211’試料槽(試料容器) 112、212 非回折X線 113、213 回折X線 114 ウォルタ鏡(結像光学系の一例) 214 シュワルツシルト鏡(結像光学系の一例) 115 遮蔽板 116、216 位相板 116’216’吸収板 117、217 像 118、218 撮像器(撮像系の一例) 305、325 点光源 306、322 発散光 308、328 コンデンサレンズ(照明光学系の一
例) 309 平行照明光 329 クリティカル照明光 311、331 観察試料 312、332 非回折光 312’332’非回折光 313、333 回折光 313’333’回折光 314、334 対物レンズ(結像光学系の一例) 316、336 位相板 316’336’吸収板 317、337 像 318、338 撮像器(撮像系の一例) 319 焦点 406、426 シンクロトロン放射光光源からのX線 408、428 コンデンサゾーンプレート(照明光学
系の一例) 408’ X線平行化ゾーンプレート(照明光学
系の一例) 411、431 観察試料 412、432、非回折X線 413、433 回折X線 414、434 対物ゾーンプレート(結像光学系の一
例) 416、436 位相板 416’ 吸収板 417、437 像 418、438 撮像器(撮像系の一例) 419 焦点 以 上
101, 201 High-intensity pulsed laser light 102, 201 Laser light condensing lens 103, 203 Vacuum container 103'203 'Laser light intake window 104, 204 Target plate 105, 205 Plasma 106, 206 X-ray 107, 207 Filter 108, 208 Multilayer film X-ray reflecting mirror (an example of an illumination optical system) 109, 209 Condensing X-ray 110, 210 Shielding plate 111, 211 Observation sample 111'211 'Sample tank (sample container) 112, 212 Non-diffractive X-ray 113, 213 Diffracted X-ray 114 Walter mirror (an example of an imaging optical system) 214 Schwarzschild mirror (an example of an imaging optical system) 115 Shielding plate 116, 216 Phase plate 116'216 'Absorption plate 117, 217 Image 118, 218 Imager ( Example of imaging system) 305, 325 Point light source 306, 322 Divergent light 308, 328 Condenser Sensor lens (an example of an illumination optical system) 309 Parallel illumination light 329 Critical illumination light 311, 331 Observation sample 312, 332 Non-diffraction light 312'332 'Non-diffraction light 313, 333 Diffraction light 313'333' Diffraction light 314, 334 Objective lens (Example of Imaging Optical System) 316, 336 Phase Plate 316 '336' Absorption Plate 317, 337 Image 318, 338 Imager (Example of Imaging System) 319 Focus 406, 426 X-ray from Synchrotron Radiation Light Source 408, 428 Condenser zone plate (an example of illumination optical system) 408 ′ X-ray collimating zone plate (an example of illumination optical system) 411, 431 Observation sample 412, 432, non-diffraction X-ray 413, 433 Diffraction X-ray 414, 434 Objective zone Plate (an example of an imaging optical system) 416, 436 Phase plate 416 'Absorption plate 417, 437 Image 418, 438 Imaging device (an example of imaging system) 419 Focus above

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、 X線源と、 該X線源からのX線を集光して観察試料に照射する照明
光学系であって、多層膜X線反射鏡を用いた照明光学系
と、 該照明光学系によるX線集光位置に前記観察試料を保持
する試料容器と、 前記観察試料を透過した全て又は略全ての非回折X線が
入射するように設置してなる光学素子であって、入射し
たX線の位相を変化させ、かつ強度を低減させる光学素
子と、 該光学素子に入射しない回折X線と、該光学素子により
位相を変化させ、かつ強度を低減させた非回折X線とを
集光して観察試料像を形成する結像光学系であって、前
記照明光学系よりも大きい開口数を有するウォルタ鏡ま
たはシュワルツシルト鏡を用いた結像光学系と、 前記観察試料像を検出する撮像系と、を備えたX線位相
差顕微鏡。
1. At least an X-ray source, and an illumination optical system for converging X-rays from the X-ray source and irradiating the observation sample, the illumination optical system using a multilayer film X-ray reflecting mirror. A sample container for holding the observation sample at an X-ray condensing position by the illumination optical system, and an optical element installed so that all or substantially all non-diffracted X-rays transmitted through the observation sample are incident. An optical element that changes the phase of the incident X-ray and reduces the intensity, a diffracted X-ray that does not enter the optical element, and a non-diffractive X-ray that changes the phase by the optical element and reduces the intensity. An imaging optical system that collects a line and forms an observation sample image, and uses a Walter mirror or a Schwarzschild mirror having a numerical aperture larger than that of the illumination optical system, and the observation sample. An X-ray phase contrast microscope including an image pickup system for detecting an image .
【請求項2】 少なくとも、 X線源と、 該X線源からのX線を集光して観察試料に照射する照明
光学系であって、多層膜X線反射鏡を用いた照明光学系
と、 該照明光学系によるX線集光位置に前記観察試料を保持
する試料容器と、 前記観察試料により回折した回折X線と前記観察試料を
透過した非回折X線とを集光する結像光学系であって、
前記照明光学系よりも大きい開口数を有するウォルタ鏡
またはシュワルツシルト鏡を用いた結像光学系と、 該結像光学系からの全て又は略全ての非回折X線が入射
するように設置してなる光学素子であって、入射したX
線の位相を変化させ、かつ強度を低減させる光学素子
と、 該光学素子に入射しない前記結像光学系からの回折X線
と、該光学素子により位相を変化させ、かつ強度を低減
させた前記結像光学系からの非回折X線とにより形成さ
れた観察試料像を検出する撮像系と、を備えたX線位相
差顕微鏡。
2. At least an X-ray source, and an illumination optical system for condensing X-rays from the X-ray source and irradiating the observation sample, the illumination optical system using a multilayer film X-ray reflecting mirror. A sample container for holding the observation sample at an X-ray condensing position by the illumination optical system, and imaging optics for condensing diffracted X-rays diffracted by the observation sample and non-diffracted X-rays transmitted through the observation sample System,
An imaging optical system using a Walter mirror or a Schwarzschild mirror having a numerical aperture larger than that of the illumination optical system, and installed so that all or substantially all non-diffracted X-rays from the imaging optical system are incident. Which is an optical element
An optical element that changes the phase of a line and reduces the intensity; a diffracted X-ray from the imaging optical system that does not enter the optical element; and a phase that is changed by the optical element and the intensity is reduced. An X-ray phase contrast microscope comprising: an imaging system that detects an observation sample image formed by non-diffracted X-rays from an imaging optical system.
【請求項3】 前記X線源をレーザープラズマX線源ま
たはZピンチプラズマX線源としたことを特徴とする請
求項1または2記載のX線位相差顕微鏡。
3. The X-ray phase contrast microscope according to claim 1, wherein the X-ray source is a laser plasma X-ray source or a Z pinch plasma X-ray source.
JP6289387A 1994-11-24 1994-11-24 X-ray phase difference microscope Pending JPH08146200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6289387A JPH08146200A (en) 1994-11-24 1994-11-24 X-ray phase difference microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6289387A JPH08146200A (en) 1994-11-24 1994-11-24 X-ray phase difference microscope

Publications (1)

Publication Number Publication Date
JPH08146200A true JPH08146200A (en) 1996-06-07

Family

ID=17742566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6289387A Pending JPH08146200A (en) 1994-11-24 1994-11-24 X-ray phase difference microscope

Country Status (1)

Country Link
JP (1) JPH08146200A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940488A (en) * 2019-11-11 2020-03-31 中国科学院西安光学精密机械研究所 Wolter I type aspheric mirror angular resolution detection system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940488A (en) * 2019-11-11 2020-03-31 中国科学院西安光学精密机械研究所 Wolter I type aspheric mirror angular resolution detection system and method
CN110940488B (en) * 2019-11-11 2020-11-17 中国科学院西安光学精密机械研究所 Wolter I type aspheric mirror angular resolution detection system and method

Similar Documents

Publication Publication Date Title
JP4374735B2 (en) Reflective soft X-ray microscope, mask inspection apparatus, and reflective mask manufacturing method
US7119953B2 (en) Phase contrast microscope for short wavelength radiation and imaging method
JP3133103B2 (en) X-ray microscope and method of forming x-ray image
JP3703483B2 (en) Phase contrast-X-ray microscope
JP7037277B2 (en) Observation device
US5434901A (en) Soft X-ray microscope
US5912939A (en) Soft x-ray microfluoroscope
US7915575B2 (en) Laser scanning microscope having an IR partial transmission filter for realizing oblique illumination
JP5065668B2 (en) Microscopy and microscopy
WO1998035214A9 (en) Soft x-ray microfluoroscope
US5689327A (en) Laser processing device
JPH08146200A (en) X-ray phase difference microscope
KR102315016B1 (en) Reflective Fourier ptychographic microscopy using segmented mirrors and a mask
JP4220170B2 (en) X-ray image magnifier
JP2000227556A (en) Microscope
US20080063345A1 (en) Wide-area fluorescence detection system for multi-photon microscopy
JPH05164970A (en) High-resolution microscope
JPH04265900A (en) Image-forming type soft x-rays microscope device
JPH085799A (en) X-ray microscope
JPH07167994A (en) X-ray optical system
JPH1020099A (en) Scanning confocal x-ray microscope
JPH09297198A (en) X-ray filter
JP2005513489A (en) Scanning X-ray microscope that simultaneously forms multiple X-ray probes on a sample
JPH0784096A (en) Zone plate for x-ray illumination
JP3537652B2 (en) X-ray microscope