JPH08145366A - Temperature sensor - Google Patents

Temperature sensor

Info

Publication number
JPH08145366A
JPH08145366A JP6312531A JP31253194A JPH08145366A JP H08145366 A JPH08145366 A JP H08145366A JP 6312531 A JP6312531 A JP 6312531A JP 31253194 A JP31253194 A JP 31253194A JP H08145366 A JPH08145366 A JP H08145366A
Authority
JP
Japan
Prior art keywords
temperature
sensitive ferrite
magnet
sensitive
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6312531A
Other languages
Japanese (ja)
Other versions
JP3459848B2 (en
Inventor
Yutaka Aoki
豊 青木
Tetsuya Ohara
哲哉 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paloma Kogyo KK
Original Assignee
Paloma Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paloma Kogyo KK filed Critical Paloma Kogyo KK
Priority to JP31253194A priority Critical patent/JP3459848B2/en
Publication of JPH08145366A publication Critical patent/JPH08145366A/en
Application granted granted Critical
Publication of JP3459848B2 publication Critical patent/JP3459848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Cookers (AREA)

Abstract

PURPOSE: To enhance thermal responsiveness by forming the contact part of a yoke with temperature-sensitive ferrite in the shape of an angle or a projection, in a temperature sensor which has a magnet being attracted to or detached from the temperature-sensitive ferrite in accordance with a change in the magnetism of the temperature-sensitive ferrite caused by temperature and detects the temperature from displacement of the magnet. CONSTITUTION: Temperature-sensitive ferrite 2 is surrounded by a cover 7 and brought into contact with the bottom part of a cooking vessel 1, and according to a change in the magnetism of this temperature-sensitive ferrite 2 caused by temperature, a magnet being actuated onto the temperature-sensitive ferrite 2 side by a return spring 6 and integral with a yoke 4 is attracted to or detached from the ferrite. The movement of this magnet 3 is transmitted to a microswitch 21 through the intermediary of a connecting rod 22 and thereby the switch 21 is turned ON or OFF. In this case, the contact parts of a sensor main body 8 holding each element and of the yoke 4 with the temperature- sensitive ferrite 2 are shaped like angles. Thereby the heat conducted to the temperature-sensitive ferrite 2 is prevented from being dispersed and thermal responsiveness is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えばテーブルコンロ等
の加熱調理器における感温センサーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature sensor in a heating cooker such as a table cooker.

【0002】[0002]

【従来の技術】従来より、感温フェライトと磁石とを備
えた感温センサーで、その感熱部を調理容器の鍋底に密
着させ、所定温度に達すると感温フェライトの磁性が変
化することを利用し、磁石離脱方向に付勢する戻しばね
力により、感温フェライトから磁石を離脱させてスイッ
チを作動させ、燃料ガスの供給を止めて消火する技術が
ある。こうした感温センサーは、例えば図8に示すよう
に、上端部に円盤状の感温フェライト2と、感温フェラ
イト2に下から向かい合う磁石3と、磁石3の吸着面以
外の外周部を覆い感温フェライト2と接触するヨーク4
と、ヨーク4を受け磁石3の動きと一体となってマイク
ロスイッチ21へと動きを伝達する連結棒22と、連結
棒22の中間位置に垂直に固定された皿状のバネ受け5
と、感温フェライト2に接しこれらの部品を上から覆う
カバー7と、カバー7に嵌合されバネ受け5の動きを内
部でガイドしマイクロスイッチ21まで伸びるセンサー
本体28と、センサー本体28上面とバネ受け5の間に
付勢された戻しバネ6と、ホルダー8下部に固定される
マイクロスイッチ21等から構成される。なお、この感
温センサー20で使用される磁石3は円柱形であって、
その上面3aと底面3bとに磁極(NとS)が設けら
れ、ヨーク24により、上面3aを残して全周及び底面
を覆われている。こうして、カバー7を介して調理容器
1と接触した感温フェライト2は、その鍋底からの熱伝
導により所定温度に達すると、磁性が変化して磁石3と
の吸着力が弱くなる。そのため、磁石3は戻しバネ6の
力に抗しきれず、感温フェライト2から離脱し、その動
きを受けて、連結棒22がマイクロスイッチ21をオン
させる。
2. Description of the Related Art Conventionally, in a temperature-sensitive sensor having a temperature-sensitive ferrite and a magnet, the heat-sensitive part is brought into close contact with the bottom of a cooking container, and the magnetism of the temperature-sensitive ferrite changes when a predetermined temperature is reached. However, there is a technique of extinguishing the fire by stopping the supply of fuel gas by causing the magnet to disengage from the temperature-sensitive ferrite and actuating the switch by the return spring force that urges in the magnet disengagement direction. For example, as shown in FIG. 8, such a temperature-sensitive sensor has a disc-shaped temperature-sensitive ferrite 2 at the upper end, a magnet 3 facing the temperature-sensitive ferrite 2 from below, and a peripheral portion other than the attracting surface of the magnet 3 covering the outer periphery. Yoke 4 in contact with hot ferrite 2
And a connecting rod 22 that transmits the movement to the micro switch 21 integrally with the movement of the magnet 3 that receives the yoke 4, and a dish-shaped spring receiver 5 that is vertically fixed at an intermediate position of the connecting rod 22.
A cover 7 that contacts the temperature-sensitive ferrite 2 and covers these parts from above; a sensor body 28 that is fitted into the cover 7 and that guides the movement of the spring receiver 5 to extend to the micro switch 21; A return spring 6 biased between the spring receivers 5 and a micro switch 21 fixed to a lower portion of the holder 8 are configured. The magnet 3 used in the temperature sensor 20 has a cylindrical shape,
Magnetic poles (N and S) are provided on the upper surface 3a and the bottom surface 3b, and the yoke 24 covers the entire circumference and the bottom surface except the upper surface 3a. In this way, when the temperature-sensitive ferrite 2 that comes into contact with the cooking container 1 through the cover 7 reaches a predetermined temperature due to heat conduction from the pot bottom, the magnetism changes and the adsorbing force with the magnet 3 becomes weak. Therefore, the magnet 3 cannot withstand the force of the return spring 6 and separates from the temperature-sensitive ferrite 2, and in response to this movement, the connecting rod 22 turns on the micro switch 21.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、感温フ
ェライト2とヨーク24とが面接触して密着する構造の
ため、調理容器1からの熱がヨーク24へ逃げてしま
い、感温フェライト2の温度上昇が遅れるという問題が
ある。つまり、調理容器1の温度上昇が急激な場合に
は、感温フェライト2の温度上昇が即座に対応できず、
所定温度に達しても作動せずに、燃焼停止が遅れてしま
うのである。このような場合、例えば調理容器1内に油
等を使用していると、燃焼停止前に油が発火温度にまで
上昇してしまうことがあり危険であった。この問題を解
決するため、例えば図9に示すように、感温フェライト
2とヨーク34及び磁石3との間に断熱材31を挟む感
温センサー30が考えられるが、次の問題がある。まず
第1に、断熱材31により所定の断熱効果を得るために
は、ある程度の厚みが必要である。しかし、この厚みに
より感温フェライト2と磁石3とのギャップが大きくな
ると、磁石3の感温フェライト2を吸着する力が、急激
に低下してしまう。また、薄くて断熱性に優れ、しかも
耐熱性と強度とを兼ね備えた材料は、高価なものとなっ
てしまう。本発明の感温センサーは上記課題を解決し、
簡易な構成で熱応答性を高めることを目的とする。
However, since the temperature-sensitive ferrite 2 and the yoke 24 are in surface contact and in close contact with each other, the heat from the cooking container 1 escapes to the yoke 24 and the temperature of the temperature-sensitive ferrite 2 is reduced. There is a problem that the rise is delayed. In other words, when the temperature rise of the cooking container 1 is rapid, the temperature rise of the temperature-sensitive ferrite 2 cannot immediately respond,
Even if it reaches a predetermined temperature, it does not operate and the combustion stop is delayed. In such a case, for example, if oil or the like is used in the cooking container 1, the oil may rise to the ignition temperature before the combustion is stopped, which is dangerous. In order to solve this problem, for example, as shown in FIG. 9, a temperature sensor 30 in which a heat insulating material 31 is sandwiched between the temperature sensitive ferrite 2 and the yoke 34 and the magnet 3 is conceivable, but there are the following problems. First of all, in order to obtain a predetermined heat insulating effect by the heat insulating material 31, a certain thickness is required. However, if the gap between the temperature-sensitive ferrite 2 and the magnet 3 becomes large due to this thickness, the force of the magnet 3 for adsorbing the temperature-sensitive ferrite 2 will suddenly decrease. In addition, a material that is thin and has excellent heat insulating properties, and that has both heat resistance and strength becomes expensive. The temperature sensor of the present invention solves the above problems,
The purpose is to improve the thermal response with a simple structure.

【0004】[0004]

【課題を解決するための手段】上記課題を解決する本発
明の第1の感温センサーは、非磁性体のカバーを介して
測温物に接触し測温物から熱伝導される感温フェライト
と、上記感温フェライトの温度による磁性の変化に応じ
て上記感温フェライトに吸着,離脱する磁石と、上記磁
石の吸着面以外の外周部を覆い上記感温フェライトと接
触するヨークとを備え、上記感温フェライトと上記磁石
との相対位置関係で温度検出する感温センサーにおい
て、上記ヨークは上記感温フェライトとの接触部を山形
状または突起形状としたことを要旨とする。
A first temperature-sensitive sensor of the present invention for solving the above-mentioned problems is a temperature-sensitive ferrite which is brought into contact with a temperature-measuring object through a cover made of a non-magnetic material and conducts heat from the temperature-measuring object. A magnet that is attracted to and desorbed from the temperature-sensitive ferrite according to a change in magnetism due to the temperature of the temperature-sensitive ferrite, and a yoke that covers an outer peripheral portion other than the attraction surface of the magnet and is in contact with the temperature-sensitive ferrite, In the temperature-sensitive sensor that detects the temperature based on the relative positional relationship between the temperature-sensitive ferrite and the magnet, the gist of the yoke is that the contact portion with the temperature-sensitive ferrite has a mountain shape or a protrusion shape.

【0005】さらに、第2の感温センサーは、第1の感
温センサーにおいて、上記感温フェライトの周縁は上記
磁石を収納するセンサー本体に支持され、該センサー本
体は上記感温フェライトを支持する接触部を山形状また
は突起形状としたことを要旨とする。
Further, the second temperature-sensitive sensor in the first temperature-sensitive sensor is such that a peripheral edge of the temperature-sensitive ferrite is supported by a sensor body that houses the magnet, and the sensor body supports the temperature-sensitive ferrite. The gist is that the contact portion has a mountain shape or a protrusion shape.

【0006】本発明の第3の感温センサーは、非磁性体
のカバーを介して測温物に接触し測温物から熱伝導され
る感温フェライトと、上記感温フェライトの温度による
磁性の変化に応じて上記感温フェライトに吸着,離脱す
る磁石と、上記磁石の吸着面以外の外周部を覆い上記感
温フェライトと接触するヨークとを備え、上記感温フェ
ライトと上記磁石との相対位置関係で温度検出する感温
センサーにおいて、上記ヨーク及び上記磁石の上記感温
フェライトとの接触面、あるいは、上記感温フェライト
の上記ヨーク及び上記磁石との接触面は、無数の凹凸に
形成したことを要旨とする。
The third temperature-sensitive sensor of the present invention comprises a temperature-sensitive ferrite which is brought into contact with a temperature-measuring object through a cover made of a non-magnetic material and is thermally conducted from the temperature-measuring object, and a magnetism which depends on the temperature of the temperature-sensitive ferrite. A relative position between the temperature-sensitive ferrite and the magnet, which includes a magnet that attracts and desorbs from the temperature-sensitive ferrite according to a change, and a yoke that covers an outer peripheral portion of the magnet other than the attraction surface and is in contact with the temperature-sensitive ferrite. In the temperature-sensitive sensor that detects the temperature based on the relationship, the contact surface of the yoke and the magnet with the temperature-sensitive ferrite, or the contact surface of the temperature-sensitive ferrite with the yoke and the magnet is formed to have innumerable irregularities. Is the gist.

【0007】第4の感温センサーは、非磁性体のカバー
を介して測温物に接触し測温物から熱伝導される感温フ
ェライトと、上記感温フェライトの温度による磁性の変
化に応じて上記感温フェライトに吸着,離脱する磁石
と、上記磁石の吸着面以外の外周部を覆い上記感温フェ
ライトと接触するヨークとを備え、上記感温フェライト
と上記磁石との相対位置関係で温度検出する感温センサ
ーにおいて、上記ヨーク及び上記磁石の上記感温フェラ
イトとの接触面に加えて、上記感温フェライトの上記ヨ
ーク及び上記磁石との接触面は、無数の凹凸に形成した
ことを要旨とする。
The fourth temperature-sensitive sensor responds to a temperature-sensitive ferrite that comes into contact with the temperature-measuring object through a cover made of a non-magnetic material and conducts heat from the temperature-measuring object, and a change in magnetism due to the temperature of the temperature-sensitive ferrite. And a yoke that covers the outer peripheral portion of the magnet other than the attraction surface and is in contact with the temperature-sensitive ferrite. In the temperature-sensitive sensor for detecting, in addition to the contact surfaces of the yoke and the magnet with the temperature-sensitive ferrite, the contact surfaces of the temperature-sensitive ferrite with the yoke and the magnet are formed in innumerable irregularities. And

【0008】[0008]

【作用】上記構成を有する本発明の第1の感温センサー
は、感温フェライトと感温フェライトの温度による磁性
の変化に応じて吸着,離脱する磁石を備え、感温フェラ
イトは非磁性体のカバーを介して測温物に接触して測温
物から熱伝導される。感温フェライトは、外周部をヨー
クで覆われた磁石と向かい合い、熱伝導により感温フェ
ライトの磁性が変化すると、感温フェライトと磁石との
相対位置関係で温度検出する。例えば磁石と感温フェラ
イトとの吸着,離脱の動きに応じて電磁弁のスイッチを
オン,オフしたり、ガス流路のバルブを開閉したりす
る。この時、ヨークは感温フェライトとの接触部を山形
状または突起形状としているので、測温物から感温フェ
ライトに熱伝導された熱が、感温フェライトと接触する
ヨークから逃げてしまうのを低減する。その結果、感温
フェライトの温度上昇が遅れることがないので、測温物
が所定温度に達するとすぐに温度検出でき、熱応答性が
よくなる。
The first temperature-sensitive sensor of the present invention having the above structure is provided with a temperature-sensitive ferrite and a magnet that attracts and desorbs according to the change in magnetism due to the temperature of the temperature-sensitive ferrite. The temperature-measuring object comes into contact with the temperature-measuring object through the cover and heat is conducted from the temperature-measuring object. The temperature-sensitive ferrite faces a magnet whose outer peripheral portion is covered with a yoke. When the magnetism of the temperature-sensitive ferrite changes due to heat conduction, the temperature is detected by the relative positional relationship between the temperature-sensitive ferrite and the magnet. For example, the switch of the solenoid valve is turned on / off or the valve of the gas flow path is opened / closed according to the movement of the adsorption and separation of the magnet and the temperature-sensitive ferrite. At this time, since the contact portion of the yoke with the temperature-sensitive ferrite has a mountain shape or a protrusion shape, the heat conducted to the temperature-sensitive ferrite from the temperature-measuring substance escapes from the yoke in contact with the temperature-sensitive ferrite. Reduce. As a result, the temperature rise of the temperature-sensitive ferrite is not delayed, so that the temperature can be detected as soon as the temperature of the temperature-measuring object reaches a predetermined temperature, and the thermal response is improved.

【0009】第2の感温センサーは、さらに、感温フェ
ライトの周縁をセンサー本体に支持されるとともに、そ
のセンサー本体の感温フェライトとの接触部をも山形状
または突起形状としている。そのため、測温物から感温
フェライトに熱伝導された熱が、感温フェライトと接触
するヨークばかりでなくセンサー本体から逃げてしまう
ことをも低減する。その結果、感温フェライトの温度上
昇が遅れることがないので、熱応答性がよりいっそうよ
くなる。
In the second temperature-sensitive sensor, the periphery of the temperature-sensitive ferrite is supported by the sensor body, and the contact portion of the sensor body with the temperature-sensitive ferrite is also mountain-shaped or protrusion-shaped. Therefore, the heat conducted to the temperature-sensitive ferrite from the temperature-measuring object is also prevented from escaping from the sensor body as well as the yoke in contact with the temperature-sensitive ferrite. As a result, the temperature rise of the temperature-sensitive ferrite is not delayed, and the thermal response is further improved.

【0010】第3の感温センサーは、感温フェライトと
感温フェライトの温度による磁性の変化に応じて吸着,
離脱する磁石を備え、感温フェライトは非磁性体のカバ
ーを介して測温物に接触して測温物から熱伝導される。
感温フェライトは、外周部をヨークで覆われた磁石と接
触し、熱伝導により感温フェライトの磁性が変化する
と、感温フェライトと磁石との相対位置関係で温度検出
する。例えば磁石と感温フェライトとの吸着,離脱の動
きに応じて電磁弁のスイッチをオン,オフしたり、ガス
流路のバルブを開閉したりする。この時、ヨーク及び磁
石の感温フェライトとの接触面あるいは、感温フェライ
トのヨーク及び磁石との接触面は、無数の凹凸に形成し
ているので、凸部からはよく熱伝導されるが、凹部から
は熱伝導が悪くなる。そのため、測温物から感温フェラ
イトに熱伝導された熱が、感温フェライトと接触する磁
石やヨークに逃げてしまうのを低減する。その結果、感
温フェライトの温度上昇が遅れることがないので、測温
物が所定温度に達するとすぐに温度検出でき、熱応答性
がよくなる。また、接触面の凹凸は無数であることか
ら、感温フェライトから熱伝導により磁石へ逃げていく
熱量もばらつきが少ないので、熱応答性がよくなるばか
りでなく、感温フェライトが所定温度に達するのに時間
的ばらつきが少ない。その結果、温度検出時間が安定す
る。
The third temperature-sensitive sensor adsorbs in accordance with the temperature-sensitive ferrite and the change in magnetism due to the temperature of the temperature-sensitive ferrite,
The temperature-sensitive ferrite is brought into contact with the temperature-measuring object through the cover made of a non-magnetic material so as to be thermally conducted from the temperature-measuring object.
When the temperature-sensitive ferrite comes into contact with a magnet whose outer peripheral portion is covered with a yoke and the magnetism of the temperature-sensitive ferrite changes due to heat conduction, the temperature is detected by the relative positional relationship between the temperature-sensitive ferrite and the magnet. For example, the switch of the solenoid valve is turned on / off or the valve of the gas flow path is opened / closed according to the movement of the adsorption and separation of the magnet and the temperature-sensitive ferrite. At this time, since the contact surface of the yoke and the magnet with the temperature-sensitive ferrite or the contact surface of the temperature-sensitive ferrite with the yoke and the magnet is formed in innumerable irregularities, heat is well conducted from the convex portion, The heat conduction from the recess becomes poor. Therefore, the heat conducted to the temperature-sensitive ferrite from the temperature-measuring object is prevented from escaping to the magnet or the yoke that comes into contact with the temperature-sensitive ferrite. As a result, the temperature rise of the temperature-sensitive ferrite is not delayed, so that the temperature can be detected as soon as the temperature of the temperature-measuring object reaches a predetermined temperature, and the thermal response is improved. In addition, since the contact surface has innumerable irregularities, the amount of heat that escapes from the temperature-sensitive ferrite to the magnet due to heat conduction does not fluctuate, so that not only the thermal response improves, but also the temperature-sensitive ferrite reaches a predetermined temperature. There is little time variation. As a result, the temperature detection time becomes stable.

【0011】第4の感温センサーは、ヨーク及び磁石の
感温フェライトとの接触面に加えて、感温フェライトの
ヨーク及び磁石との接触面をも、無数の凹凸に形成して
いるので、測温物から感温フェライトに熱伝導された熱
が、感温フェライトと接触する磁石やヨークに逃げてし
まうのをよりいっそう低減する。その結果、感温フェラ
イトの温度上昇が遅れることがないので、測温物が所定
温度に達するとすぐに温度検出でき、熱応答性がいっそ
うよくなる。
In the fourth temperature-sensitive sensor, in addition to the contact surfaces of the yoke and the magnet with the temperature-sensitive ferrite, the contact surfaces of the temperature-sensitive ferrite with the yoke and the magnet are also formed in innumerable irregularities. The heat conducted to the temperature-sensitive ferrite from the temperature-measuring object is further reduced from escaping to the magnet or yoke that comes into contact with the temperature-sensitive ferrite. As a result, since the temperature rise of the temperature-sensitive ferrite is not delayed, the temperature can be detected as soon as the temperature of the temperature-measuring object reaches a predetermined temperature, and the thermal response is further improved.

【0012】[0012]

【実施例】以上説明した本発明の構成・作用を一層明ら
かにするために、以下本発明の感温センサーの好適な実
施例について図を用いて説明する。図1は一実施例とし
てのテーブルコンロ用感温センサー10の概略構成図で
ある。本実施例の感温センサー10と、図8を用いて説
明した従来の感温センサー20とは、感温フェライト2
に接触するヨーク4とセンサー本体8の形状が異なる。
つまり、ヨーク4は感温フェライト2と接触するリング
状の全周を図2に示すように山形状にしている。さら
に、センサー本体8は、感温フェライト2の周縁と接し
ているリング状の全周を図3に示すように山形状にして
いる。
EXAMPLES In order to further clarify the constitution and operation of the present invention described above, preferred examples of the temperature-sensitive sensor of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a temperature sensor 10 for a table cooker as an example. The temperature sensor 10 of the present embodiment and the conventional temperature sensor 20 described with reference to FIG.
The shapes of the yoke 4 and the sensor body 8 that contact with each other are different.
That is, the yoke 4 has a ring-shaped entire circumference that is in contact with the temperature-sensitive ferrite 2 and has a mountain shape as shown in FIG. Furthermore, the sensor body 8 has a ring-shaped entire circumference which is in contact with the peripheral edge of the temperature-sensitive ferrite 2 and has a mountain shape as shown in FIG.

【0013】感温センサー10は、調理容器1の鍋底に
密着させた状態で使用される場合が多い。こうした状態
で、カバー7を介して鍋底の熱を伝達された感温フェラ
イト2は、所定温度に達すると磁性が変化して、強磁性
体より常磁性体になる。そのため、感温フェライト2を
吸着していた磁石3は、感温フェライト2との間の吸着
力が低下して、戻しバネ6の力に抗しきれず、感温フェ
ライト2より離脱する。同時にヨーク4を介して磁石3
に連動した連結棒22がマイクロスイッチ21の可動接
点21aを押して作動させる。また、調理容器1が取り
除かれたりして、感温フェライト2の温度が常温に戻る
と、それにつれて常磁性体より強磁性体に戻るので、再
び磁石3と感温フェライト2間の吸着力が増加して、両
者は吸着する。その動きに連動して、連結棒22がマイ
クロスイッチ21の可動接点21aを離れるので、マイ
クロスイッチ21も元に復帰する。
The temperature sensor 10 is often used in a state of being brought into close contact with the bottom of the pan of the cooking container 1. In such a state, the temperature-sensitive ferrite 2 to which the heat of the pot bottom is transferred via the cover 7 changes its magnetism when it reaches a predetermined temperature, and becomes a paramagnetic substance rather than a ferromagnetic substance. Therefore, the magnet 3 that has adsorbed the temperature-sensitive ferrite 2 has a reduced attraction force between the magnet 3 and the temperature-sensitive ferrite 2 and cannot withstand the force of the return spring 6, and is separated from the temperature-sensitive ferrite 2. At the same time, through the yoke 4, the magnet 3
The connecting rod 22 interlocked with pushes the movable contact 21a of the microswitch 21 to operate it. Also, when the temperature of the temperature-sensitive ferrite 2 returns to room temperature due to the removal of the cooking container 1 or the like, the paramagnetic material returns to a ferromagnetic material, and the attraction force between the magnet 3 and the temperature-sensitive ferrite 2 is increased again. Increase and both are adsorbed. Since the connecting rod 22 leaves the movable contact 21a of the micro switch 21 in conjunction with the movement, the micro switch 21 also returns to its original state.

【0014】感温フェライト2と磁石3とが吸着した状
態で、調理容器1から一定の熱を感温センサー10に与
え、磁石3が感温フェライト2から離脱するまでの間、
感温フェライト2と磁石3との間の吸着力Fの変化を測
定し、従来の感温センサー20,30と比較してみると
図6に示すように、大きな差がある。図6は、横軸に時
間Tをとり、縦軸に感温フェライト2と磁石3との間の
吸着力Fを測定した結果である。実施例の感温センサー
10の場合を実線で、従来例の感温センサー20,30
の場合を破線で表す。それぞれの感温センサーは、いず
れも時間Tが経過するにつれて、吸着力Fが減少し、あ
る時間T1,T2(以下、熱応答時間と呼ぶ)だけ経過
した時点で、ほぼ0となる。これは、時間とともに調理
容器1から一定の熱が与えられると、カバー7を介して
感温フェライト2に熱伝導され、それに応じて感温フェ
ライト2の温度が上昇するからである。つまり、感温フ
ェライト2は、温度が上昇するにつれて磁性が変化し、
磁石3に対する吸着力Fを徐々に低下させる。そして、
所定温度(いわゆるキュリー点)に達した時、強磁性体
より常磁性体に変化するので、吸着力Fはほぼ0となる
のである。実施例の感温センサー10の熱応答時間T1
は、従来例の感温センサー20の熱応答時間T2に比較
して短い(T1<T2)が、同じく従来例の感温センサ
ー30とはあまり差がない。しかしながら、吸着力Fを
比較してみると、図7(横軸に感温フェライト2の温度
tをとり、縦軸に感温フェライト2と磁石3との間の吸
着力Fを測定した結果である)に示すように、同じ温度
であっても、感温センサー10の方が感温センサー30
より強い。つまり、感温センサー10と30とは、熱応
答時間T1において同一であっても、感温センサー10
の方が感温センサー30より吸着力Fの劣化が少なく、
その点で勝っているということがわかる。なお、これに
よると、全温度領域において感温センサー20は、感温
センサー10より吸着力Fが強いが、先に述べたよう
に、熱応答性が悪いという問題がある。
While the temperature-sensitive ferrite 2 and the magnet 3 are adsorbed, a certain amount of heat is applied from the cooking container 1 to the temperature-sensitive sensor 10 until the magnet 3 is separated from the temperature-sensitive ferrite 2.
When a change in the attraction force F between the temperature-sensitive ferrite 2 and the magnet 3 is measured and compared with the conventional temperature-sensitive sensors 20 and 30, there is a large difference as shown in FIG. FIG. 6 shows the results of measuring the adsorbing force F between the temperature-sensitive ferrite 2 and the magnet 3 on the vertical axis and the time T on the horizontal axis. The temperature sensor 10 of the embodiment is shown by a solid line, and the temperature sensors 20 and 30 of the conventional example are shown.
The case is represented by a broken line. In each of the temperature-sensitive sensors, the adsorption force F decreases as the time T elapses, and becomes almost 0 when a certain time T1, T2 (hereinafter referred to as a thermal response time) elapses. This is because when a certain amount of heat is applied from the cooking container 1 over time, heat is conducted to the temperature-sensitive ferrite 2 via the cover 7, and the temperature of the temperature-sensitive ferrite 2 rises accordingly. That is, the magnetism of the temperature-sensitive ferrite 2 changes as the temperature rises,
The attraction force F on the magnet 3 is gradually reduced. And
When it reaches a predetermined temperature (so-called Curie point), it changes from a ferromagnetic material to a paramagnetic material, so that the attractive force F becomes almost zero. Thermal response time T1 of the temperature sensor 10 of the embodiment
Is shorter than the thermal response time T2 of the temperature sensor 20 of the conventional example (T1 <T2), but there is not much difference from the temperature sensor 30 of the conventional example. However, comparing the attractive force F, FIG. 7 shows the result obtained by measuring the attractive force F between the temperature-sensitive ferrite 2 and the magnet 3 on the vertical axis and the temperature t of the temperature-sensitive ferrite 2 on the horizontal axis. As shown in (A), even if the temperature is the same, the temperature sensor 10 is more sensitive to the temperature sensor 30.
Stronger. That is, even if the temperature sensors 10 and 30 are the same in the thermal response time T1, the temperature sensor 10 is the same.
Is less deteriorated in the adsorption force F than the temperature sensor 30,
You can see that you are winning in that respect. According to this, the temperature-sensitive sensor 20 has a stronger adsorption force F than the temperature-sensitive sensor 10 in the entire temperature region, but as described above, there is a problem that the thermal response is poor.

【0015】このように、感温センサー10は、調理容
器1の温度上昇が急激な場合であっても、調理容器1か
らの熱がヨーク4やセンサー本体8に逃げてしまうのを
低減するので、感温フェライト2の温度上昇が即座に対
応する。そのため、所定温度に達しても作動せずに燃焼
停止が遅れてしまうという不都合がない。また、熱応答
性をたかめるために、感温フェライト2とヨーク4及び
磁石3との間に断熱材31を挟む等しないで、ヨーク4
とセンサー本体8の形状を工夫して実現している。その
ため、断熱材31を挟んだことによる吸着力の低下もな
い。しかも、高価な断熱材31を使用しないのでコスト
も安い。この結果、この感温センサー10は、従来とは
違って、吸着力Fの減少を最小に押えつつ、簡易な構成
で熱応答性能を向上させることができる。
As described above, the temperature sensor 10 reduces the heat from the cooking container 1 escaping to the yoke 4 and the sensor body 8 even when the temperature of the cooking container 1 rises rapidly. The temperature rise of the temperature sensitive ferrite 2 immediately responds. Therefore, there is no inconvenience that the combustion is stopped and the combustion stop is delayed even when the temperature reaches the predetermined temperature. Further, in order to enhance the thermal response, the heat insulating material 31 is not sandwiched between the temperature-sensitive ferrite 2, the yoke 4 and the magnet 3, and the yoke 4 is
And the shape of the sensor body 8 is devised and realized. Therefore, the attraction force does not decrease due to the heat insulating material 31 being sandwiched. Moreover, the cost is low because the expensive heat insulating material 31 is not used. As a result, unlike the conventional case, the temperature sensor 10 can improve the thermal response performance with a simple configuration while suppressing the decrease of the adsorption force F to the minimum.

【0016】第2実施例について図を用いて説明する。
第2実施例の感温センサーは、図8に示すように、調理
容器1より熱伝導される感温フェライト12の吸着面
と、それに吸着する磁石13の吸着面及び磁石13を覆
い感温フェライト12と接触するヨーク14の接触面と
が、いずれも無数の凹凸に形成されていることが特徴で
ある。その他の構成は、従来例と同一である。吸着面あ
るいは接触面を拡大すると、図9(ア),(イ)に示す
ように、不規則で丸みのあるなだらかな凹凸(図9
(ア))あるいは均一の深さ及び大きさを持った凹部
(図9(イ))が形成されている。これらは、吸着面あ
るいは接触面の加工方法によりそれに応じた特徴的な形
状を示すものである。平面研磨を施した接触面の表面に
球状微粒子によるショットブラスチングを施すと、図9
(ア)に示すように、丸みのあるなだらかな凹凸が形成
される。球状微粒子は直径100ミクロン〜1mm程度
のガラスや鋼鉄製のものが使用され、ショットブラスチ
ングを施す材料によって、その材質(即ち硬度)や球径
を選択し、加工面(即ち接触面)の粗さを調節する。ま
た、接触面に凹凸を施す別の技術として、図9(イ)に
示すように、エッチング加工を採用してもよい。これ
は、予め設計された均一な模様,図形を用いて科学的に
腐食する方法である。他に金属を陽極的に溶解する方
法、レーザービームによる光学的処理、放電加工、電子
ビーム加工等を行なってもよい。
A second embodiment will be described with reference to the drawings.
As shown in FIG. 8, the temperature-sensitive sensor of the second embodiment covers the adsorption surface of the temperature-sensitive ferrite 12 that is thermally conducted from the cooking container 1, the adsorption surface of the magnet 13 that adsorbs to the adsorption surface, and the temperature-sensitive ferrite that covers the magnet 13. The feature is that the contact surface of the yoke 14 that contacts 12 is formed with innumerable irregularities. The other configuration is the same as the conventional example. When the suction surface or the contact surface is enlarged, as shown in FIGS. 9A and 9B, irregular and rounded smooth unevenness (see FIG.
(A)) or a recess (FIG. 9A) having a uniform depth and size is formed. These show characteristic shapes according to the processing method of the suction surface or the contact surface. When shot blasting with spherical fine particles is applied to the surface of the contact surface that has been flat-polished, FIG.
As shown in (A), rounded and smooth unevenness is formed. Spherical particles made of glass or steel with a diameter of about 100 microns to 1 mm are used. Depending on the material to be shotblasted, the material (ie hardness) and sphere diameter are selected, and the roughness of the processed surface (ie contact surface) is selected. Adjust. Further, as another technique for making unevenness on the contact surface, etching processing may be adopted as shown in FIG. This is a method of scientifically corroding using uniform patterns and figures designed in advance. Alternatively, a method of anodic dissolution of metal, optical treatment with a laser beam, electric discharge machining, electron beam machining or the like may be performed.

【0017】この感温センサー15によれば、磁石13
及び感温フェライト12及びヨーク14の接触面が、無
数の凹凸に形成されているので、互いに接触した凸部か
らはよく熱伝導されるが、凹部からは熱伝導が悪くな
る。そのため、調理容器1から感温フェライト12に熱
伝導された熱が、感温フェライト12から、接触する磁
石13やヨーク14に逃げてしまうのを低減する。その
結果、感温フェライト12の温度上昇が遅れることがな
いので、調理容器1が所定温度に達するとすぐに温度検
出してスイッチ21を作動させることができ、熱応答性
がよくなる。また、接触面の凹凸の深さ及び大きさが均
一であることから、感温フェライト12から熱伝導によ
り磁石13やヨーク14へ逃げていく熱量もばらつきが
少ないので、熱応答性がよくなるばかりでなく、感温フ
ェライト12が所定温度に達するのに時間的ばらつきが
少ない。その結果、温度検出してスイッチ21が作動す
るまでの時間が安定する。
According to the temperature sensor 15, the magnet 13
Also, since the contact surfaces of the temperature-sensitive ferrite 12 and the yoke 14 are formed in innumerable irregularities, the heat conduction is good from the convex portions that are in contact with each other, but the heat conduction is poor from the concave portions. Therefore, the heat conducted from the cooking container 1 to the temperature-sensitive ferrite 12 is prevented from escaping from the temperature-sensitive ferrite 12 to the magnets 13 and the yoke 14 in contact therewith. As a result, since the temperature rise of the temperature-sensitive ferrite 12 is not delayed, the temperature can be detected and the switch 21 can be operated immediately when the cooking container 1 reaches a predetermined temperature, and the thermal response is improved. Further, since the depth and size of the unevenness of the contact surface are uniform, the amount of heat escaping from the temperature-sensitive ferrite 12 to the magnet 13 or the yoke 14 by heat conduction does not vary so that the thermal response is improved. In other words, there is little time variation in the temperature-sensitive ferrite 12 reaching the predetermined temperature. As a result, the time from the temperature detection until the switch 21 operates becomes stable.

【0018】以上本発明の実施例について説明したが、
本発明はこうした実施例に何等限定されるものではな
く、本発明の要旨を逸脱しない範囲において、種々なる
態様で実施し得ることは勿論である。例えば、感温フェ
ライト2と接触するヨーク4やセンサー本体8の接触部
の形状は、図2および図3の様な山形状ではなく、図4
および図5に示す様に数個の突起形状でもよい。
The embodiment of the present invention has been described above.
The present invention is not limited to these examples, and it goes without saying that the present invention can be implemented in various modes without departing from the gist of the present invention. For example, the shape of the contact portions of the yoke 4 and the sensor body 8 that come into contact with the temperature-sensitive ferrite 2 is not the mountain shape as shown in FIGS.
Also, as shown in FIG. 5, it may have a shape of several protrusions.

【0019】[0019]

【発明の効果】以上詳述したように、本発明の第1の感
温センサーによれば、ヨークの感温フェライトとの接触
部を山形状または突起形状としているので、測温物から
感温フェライトに熱伝導された熱が、接触するヨークか
ら逃げてしまうのを低減する。その結果、感温フェライ
トの温度上昇が速くなり、熱応答性がよくなるので、例
えば測温物が急激に所定温度に達する場合でも、作動が
遅れてしまうという不都合がない。つまり、測温物の温
度変化をすばやく正確にとらえて、信頼性のある感温セ
ンサーが実現できる。
As described in detail above, according to the first temperature-sensitive sensor of the present invention, since the contact portion of the yoke with the temperature-sensitive ferrite has a mountain shape or a protrusion shape, the temperature-sensitive material is sensed by the temperature sensing object. The heat conducted to the ferrite is prevented from escaping from the contacting yoke. As a result, the temperature of the temperature-sensitive ferrite rises quickly and the thermal response is improved, so that there is no inconvenience that the operation is delayed even if, for example, the temperature-measuring object suddenly reaches a predetermined temperature. That is, it is possible to realize a reliable temperature sensor by quickly and accurately detecting the temperature change of the temperature measurement object.

【0020】第2の感温センサーは、さらに、センサー
本体においても、感温フェライトとの接触部を山形状ま
たは突起形状としているため、測温物から感温フェライ
トに熱伝導された熱が、接触するヨークばかりでなくセ
ンサー本体から逃げてしまうことをも低減する。その結
果、熱応答性がよりいっそうよくなるので、信頼性のあ
る感温センサーが実現できる。
In the second temperature-sensitive sensor, since the contact portion with the temperature-sensitive ferrite is also mountain-shaped or protrusion-shaped in the sensor body, the heat conducted from the temperature-measuring object to the temperature-sensitive ferrite is It reduces not only the contacting yoke but also the escape from the sensor body. As a result, the thermal response is further improved, so that a reliable temperature sensor can be realized.

【0021】第3の感温センサーによれば、接触面のい
ずれかに無数の凹凸を形成しているので、測温物から感
温フェライトに熱伝導された熱が、接触する磁石及びヨ
ークから逃げてしまうのを低減する。その結果、感温フ
ェライトの温度上昇が速くなり、熱応答性がよくなるの
で、例えば測温物が急激に所定温度に達する場合でも、
作動が遅れてしまうという不都合がない。また、接触面
の凹凸が無数に形成されていることから、感温フェライ
トから熱伝導により磁石及びヨークへ逃げていく熱量も
ばらつき少ないので、感温フェライトが所定温度に達す
るのに時間的ばらつきが少ない。その結果、熱応答性が
よくなるばかりでなく、温度検出時間も安定する。つま
り、測温物の温度変化をすばやく正確にとらえて、信頼
性のある感温センサーが実現できる。
According to the third temperature-sensitive sensor, since innumerable irregularities are formed on any of the contact surfaces, the heat conducted to the temperature-sensitive ferrite from the temperature-measuring substance is transferred from the magnet and the yoke which come into contact therewith. Reduce the escape. As a result, the temperature of the temperature-sensitive ferrite rises quickly and the thermal response improves, so even if the temperature-measuring object suddenly reaches a predetermined temperature, for example,
There is no inconvenience that the operation is delayed. In addition, since the contact surface has innumerable irregularities, the amount of heat that escapes from the temperature-sensitive ferrite to the magnet and yoke due to heat conduction does not fluctuate, so there is a time-dependent variation in the temperature-sensitive ferrite reaching a predetermined temperature. Few. As a result, not only the thermal response is improved, but also the temperature detection time is stabilized. That is, it is possible to realize a reliable temperature sensor by quickly and accurately detecting the temperature change of the temperature measurement object.

【0022】さらに、第4の感温センサーは、互いの接
触面の両方に、無数の凹凸を形成しているので、熱応答
性がいっそうよくなり、測温物の温度変化をすばやくと
らえることができる。
Furthermore, since the fourth temperature-sensitive sensor has innumerable irregularities formed on both contact surfaces of each other, the thermal response is further improved, and the temperature change of the temperature-measuring object can be detected quickly. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の概略構成図である。FIG. 1 is a schematic configuration diagram of a first embodiment.

【図2】第1実施例におけるヨーク4の形状を表した概
略図である。
FIG. 2 is a schematic diagram showing the shape of a yoke 4 in the first embodiment.

【図3】第1実施例におけるセンサー本体8の形状を表
した概略図である。
FIG. 3 is a schematic view showing the shape of a sensor body 8 in the first embodiment.

【図4】第1実施例におけるヨーク4の形状を変化させ
た例である。
FIG. 4 is an example in which the shape of the yoke 4 in the first embodiment is changed.

【図5】第1実施例におけるセンサー本体8の形状を変
化させた例である。
FIG. 5 is an example in which the shape of the sensor body 8 in the first embodiment is changed.

【図6】熱応答時間と吸着力の変化を表したグラフであ
る。
FIG. 6 is a graph showing changes in thermal response time and adsorption force.

【図7】感温フェライト温度と吸着力の変化を表したグ
ラフである。
FIG. 7 is a graph showing changes in temperature-sensitive ferrite temperature and adsorption force.

【図8】第2実施例の概略構成図である。FIG. 8 is a schematic configuration diagram of a second embodiment.

【図9】第2実施例における接触面の表面を説明した拡
大図である。
FIG. 9 is an enlarged view illustrating the surface of the contact surface in the second embodiment.

【図10】従来例の概略構成図である。FIG. 10 is a schematic configuration diagram of a conventional example.

【図11】別の従来例の概略構成図である。FIG. 11 is a schematic configuration diagram of another conventional example.

【符号の説明】[Explanation of symbols]

1 調理容器 10,15,20,30 感温センサー 2,12 感温フェライト 3,13 磁石 4,14,24,34 ヨーク 5 バネ受け 6 戻しバネ 7 カバー 8,28,38 センサー本体 21 マイクロスイッチ 22 連結棒 1 Cooking container 10,15,20,30 Temperature sensor 2,12 Temperature sensitive ferrite 3,13 Magnet 4,14,24,34 Yoke 5 Spring receiver 6 Return spring 7 Cover 8,28,38 Sensor body 21 Micro switch 22 Connecting rod

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非磁性体のカバーを介して測温物に接触
し測温物から熱伝導される感温フェライトと、 上記感温フェライトの温度による磁性の変化に応じて上
記感温フェライトに吸着,離脱する磁石と、 上記磁石の吸着面以外の外周部を覆い上記感温フェライ
トと接触するヨークとを備え、 上記感温フェライトと上記磁石との相対位置関係で温度
検出する感温センサーにおいて、 上記ヨークは上記感温フェライトとの接触部を山形状ま
たは突起形状としたことを特徴とする感温センサー。
1. A temperature-sensitive ferrite that comes into contact with a temperature-measuring object through a cover made of a non-magnetic material and conducts heat from the temperature-measuring object, and the temperature-sensitive ferrite is adapted to change in magnetism according to the temperature of the temperature-sensitive ferrite. A temperature-sensitive sensor that includes a magnet that attracts and desorbs, and a yoke that covers an outer peripheral portion of the magnet other than the attracting surface and is in contact with the temperature-sensitive ferrite, and that detects a temperature based on a relative positional relationship between the temperature-sensitive ferrite and the magnet. The temperature sensor, wherein the yoke has a mountain-shaped or protrusion-shaped contact portion with the temperature-sensitive ferrite.
【請求項2】 上記感温フェライトの周縁は上記磁石を
収納するセンサー本体に支持され、該センサー本体は上
記感温フェライトを支持する接触部を山形状または突起
形状としたことを特徴とする請求項1記載の感温センサ
ー。
2. A peripheral portion of the temperature-sensitive ferrite is supported by a sensor body that houses the magnet, and the sensor body has a contact portion that supports the temperature-sensitive ferrite in a mountain shape or a protrusion shape. Item 1. The temperature sensor according to item 1.
【請求項3】 非磁性体のカバーを介して測温物に接触
し測温物から熱伝導される感温フェライトと、 上記感温フェライトの温度による磁性の変化に応じて上
記感温フェライトに吸着,離脱する磁石と、 上記磁石の吸着面以外の外周部を覆い上記感温フェライ
トと接触するヨークとを備え、 上記感温フェライトと上記磁石との相対位置関係で温度
検出する感温センサーにおいて、 上記ヨーク及び上記磁石の上記感温フェライトとの接触
面、あるいは、上記感温フェライトの上記ヨーク及び上
記磁石との接触面は、無数の凹凸に形成したことを特徴
とする感温センサー。
3. A temperature-sensitive ferrite that comes into contact with a temperature-measuring object through a cover made of a non-magnetic material and is thermally conducted from the temperature-measuring object, and the temperature-sensitive ferrite according to a change in magnetism due to the temperature of the temperature-sensitive ferrite. A temperature-sensitive sensor that includes a magnet that attracts and desorbs, and a yoke that covers an outer peripheral portion of the magnet other than the attracting surface and is in contact with the temperature-sensitive ferrite, and that detects a temperature based on a relative positional relationship between the temperature-sensitive ferrite and the magnet. A temperature-sensitive sensor characterized in that the contact surface of the yoke and the magnet with the temperature-sensitive ferrite, or the contact surface of the temperature-sensitive ferrite with the yoke and the magnet is formed in innumerable irregularities.
【請求項4】 非磁性体のカバーを介して測温物に接触
し測温物から熱伝導される感温フェライトと、 上記感温フェライトの温度による磁性の変化に応じて上
記感温フェライトに吸着,離脱する磁石と、 上記磁石の吸着面以外の外周部を覆い上記感温フェライ
トと接触するヨークとを備え、 上記感温フェライトと上記磁石との相対位置関係で温度
検出する感温センサーにおいて、 上記ヨーク及び上記磁石の上記感温フェライトとの接触
面に加えて、上記感温フェライトの上記ヨーク及び上記
磁石との接触面は、無数の凹凸に形成したことを特徴と
する感温センサー。
4. A temperature-sensitive ferrite that comes into contact with a temperature-measuring object through a cover made of a non-magnetic material and conducts heat from the temperature-measuring object, and the temperature-sensitive ferrite is adapted to change in magnetism depending on the temperature of the temperature-sensitive ferrite. A temperature-sensitive sensor that includes a magnet that attracts and desorbs, and a yoke that covers an outer peripheral portion of the magnet other than the attracting surface and is in contact with the temperature-sensitive ferrite, and that detects a temperature based on a relative positional relationship between the temperature-sensitive ferrite and the magnet. In addition to the contact surfaces of the yoke and the magnet with the temperature-sensitive ferrite, the contact surface of the temperature-sensitive ferrite with the yoke and the magnet is formed into innumerable irregularities.
JP31253194A 1994-11-22 1994-11-22 Temperature sensor Expired - Fee Related JP3459848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31253194A JP3459848B2 (en) 1994-11-22 1994-11-22 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31253194A JP3459848B2 (en) 1994-11-22 1994-11-22 Temperature sensor

Publications (2)

Publication Number Publication Date
JPH08145366A true JPH08145366A (en) 1996-06-07
JP3459848B2 JP3459848B2 (en) 2003-10-27

Family

ID=18030352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31253194A Expired - Fee Related JP3459848B2 (en) 1994-11-22 1994-11-22 Temperature sensor

Country Status (1)

Country Link
JP (1) JP3459848B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108006711A (en) * 2018-01-04 2018-05-08 杨明斌 Gas furnace temperature sensor
CN108497939A (en) * 2018-06-07 2018-09-07 贺运香 A kind of heated base and the cooking device using the heated base
US10422704B2 (en) 2014-12-02 2019-09-24 3M Innovative Properties Company Magnetic based temperature sensing for electrical transmission line
CN110397954A (en) * 2019-07-31 2019-11-01 华帝股份有限公司 Temperature sensor controlled by microswitch and gas stove using temperature sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623923A (en) * 1979-08-01 1981-03-06 Matsushita Electric Ind Co Ltd Heat sensor of cooker
JPS61190219A (en) * 1985-02-20 1986-08-23 Matsushita Electric Ind Co Ltd Burner device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623923A (en) * 1979-08-01 1981-03-06 Matsushita Electric Ind Co Ltd Heat sensor of cooker
JPS61190219A (en) * 1985-02-20 1986-08-23 Matsushita Electric Ind Co Ltd Burner device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10422704B2 (en) 2014-12-02 2019-09-24 3M Innovative Properties Company Magnetic based temperature sensing for electrical transmission line
CN108006711A (en) * 2018-01-04 2018-05-08 杨明斌 Gas furnace temperature sensor
CN108006711B (en) * 2018-01-04 2024-05-24 杨明斌 Temperature sensor for gas stove
CN108497939A (en) * 2018-06-07 2018-09-07 贺运香 A kind of heated base and the cooking device using the heated base
CN110397954A (en) * 2019-07-31 2019-11-01 华帝股份有限公司 Temperature sensor controlled by microswitch and gas stove using temperature sensor

Also Published As

Publication number Publication date
JP3459848B2 (en) 2003-10-27

Similar Documents

Publication Publication Date Title
JP3459848B2 (en) Temperature sensor
KR20180068366A (en) Cup holder for vehicle and tumbler for cup holder
JP6129148B2 (en) Cooking container detector
JPH1038707A (en) Temperature sensor
JPH08219905A (en) Temperature sensor for cooker
JP3591005B2 (en) Temperature sensor
JP7134715B2 (en) Thermal device for heating cooker
JP3654613B2 (en) Temperature sensor
JP3375757B2 (en) Cooking device
JPH10281457A (en) Bimetal type sensor for preventing over-heating of tempura-oil
JP6842266B2 (en) Cooking utensils
JPS6023876Y2 (en) thermal response device
JPS622381Y2 (en)
JPH0650804A (en) Vibration sensor and its production method
JP3439263B2 (en) Temperature sensor of cooking device
JPS59605Y2 (en) thermal device
JP3561090B2 (en) Automatic fire extinguisher
JPH11108362A (en) Safety device for cooker
JPH0350819Y2 (en)
JPH11108365A (en) Automated extinguishing apparatus for heating cooker
JPS6023714Y2 (en) thermal response device
JP2002328060A (en) Vibration sensor and earthquake sensing safety apparatus for gas appliance
JP3535941B2 (en) Automatic fire extinguisher
JPH02119083A (en) Induction heating cooker
JPS6317959Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees