JPH08144682A - Survey system of tunnel ground - Google Patents

Survey system of tunnel ground

Info

Publication number
JPH08144682A
JPH08144682A JP30838394A JP30838394A JPH08144682A JP H08144682 A JPH08144682 A JP H08144682A JP 30838394 A JP30838394 A JP 30838394A JP 30838394 A JP30838394 A JP 30838394A JP H08144682 A JPH08144682 A JP H08144682A
Authority
JP
Japan
Prior art keywords
pressure
standard
drilling speed
rock
elastic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30838394A
Other languages
Japanese (ja)
Other versions
JP3238840B2 (en
Inventor
Takashi Yamanoi
隆 山野井
Masatoshi Muto
雅俊 武藤
Takuji Endo
拓二 遠藤
Kenichi Nagamoto
健一 永本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Construction Co Ltd filed Critical Fudo Construction Co Ltd
Priority to JP30838394A priority Critical patent/JP3238840B2/en
Publication of JPH08144682A publication Critical patent/JPH08144682A/en
Application granted granted Critical
Publication of JP3238840B2 publication Critical patent/JP3238840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Earth Drilling (AREA)

Abstract

PURPOSE: To increase the survey accuracy, by finding the average drilling speed and rotary pressure from the measured data by a hydraulically driven drill bit and obtaining a converted elastic wave speed from the correlation thereof with the elastic wave speed of the ground. CONSTITUTION: Drilling speed, rotary pressure, feed pressure, striking pressure, bit abrasiveness, and size of drilled chips in different kinds of rock of standard rock samples, are measured by a jumbo 1. Then the size of drilled chips of which measured figure is cancelled, is decided and a corrective coefficient corresponding to the feed pressure, striking pressure, and bit abrasiveness against the drilling speed and the rotary pressure, is decided at every kind of sample rocks. After the same factor has been measured by the jumbo 1 in the initial excavation stage, the drilling speed and the rotary pressure are corrected by the corrective coefficient of the same kind of rock to get the standard drilling speed and rotary pressure. Further, a correlation formula between the figure and the elastic wave speed measured by a hammer switch 11 is found. At the final excavation, the correlation formula is applied to the standard drilling speed and rotary pressure obtained likewise to find a converted elastic wave speed and evaluate the ground. In this way, the evaluation accuracy can be remarkably increased and the operability and the safety can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トンネル掘削など、地
下空洞の掘削時における最適支保工、補助工法及び覆工
仕様の判定指標としての周辺地山の物性、状態の探査及
び崩落等の予知による安全性・経済性を向上させるシス
テムに関する。
[Field of Industrial Application] The present invention predicts the physical properties and condition of surrounding rocks as a judgment index for optimum support work, auxiliary work method and lining specifications during excavation of underground cavities such as tunnel excavation and prediction of collapse. Related to a system that improves safety and economy.

【0002】[0002]

【従来の技術】トンネル掘削時における周辺地山、殊に
掘削進行方向地山における探査は、これから支保を施工
する個所の地山等級の評価を行い、切羽近傍の安全性を
確保すると共に、切羽の地山条件に応じた適切な支保の
選定に必要で、従来、 掘進時、日常的には作業者の切羽観察、すなわち、
切羽の状態、ハンマによる岩盤の割れ方、風化変質、割
れ目間隔、割れ目状態及び湧水などの観察の結果を整理
して評価をしているが、各切羽ごとに連続してデータが
得られるとか、リアルタイムでの情報を与えられる利点
がある一方、切羽観察の方法や評価方法が定性的になり
易く客観性に欠ける結果が得られ勝ちである。
2. Description of the Related Art In exploration of surrounding rocks during tunnel excavation, especially rocks in the direction of excavation, the rock grade of the area where the support is to be constructed is evaluated to ensure safety in the vicinity of the cutting face and It is necessary to select an appropriate support according to the natural conditions of
We are arranging and evaluating the results of observations such as the state of the face, how the rock breaks due to hammers, weathering, crack spacing, state of fracture, and spring water. While having the advantage of being able to give real-time information, the method of observing the face and the evaluation method are likely to be qualitative, resulting in lack of objectivity.

【0003】 削岩機を用い探りノミを入れる手段も
知られているが、せん孔速度以外の要因を考慮に入れて
いないため、測定の精度が悪い。また、局所的な測定デ
ータしか得られないため、二次元的評価が難しい。 先進ボーリングによれば、数10m先までのコアサ
ンプルが得られるが、トンネル掘削と並行しては実施で
きないため、作業の支障となり、掘進作業の低下を招
く。また、ボーリング個所は限られているため、局所的
なデータしか得られない。
[0003] Although means for using a rock drill to insert a groin are known, the accuracy of measurement is poor because factors other than the drilling speed are not taken into consideration. In addition, two-dimensional evaluation is difficult because only local measurement data can be obtained. According to advanced boring, a core sample up to several tens of meters can be obtained, but since it cannot be performed in parallel with tunnel excavation, it hinders the work and lowers the excavation work. Moreover, since the number of boring points is limited, only local data can be obtained.

【0004】 最近、岩石の破壊エネルギの多寡によ
り岩盤評価及び切羽前方地質の予測を行う方法(特開平
4−161588号公報参照)が提案された。すなわ
ち、パッカーションドリル掘削時に掘削深度及び各深度
における累積掘削時間、瞬間削孔速度、打撃エネルギ、
給進力、トルク、送水圧の削孔データを一括処理して破
壊エネルギを算出し、単位孔長当りの平均破壊エネルギ
を求めた上、統計的手法を施して、岩盤評価を実施する
方法である。
Recently, a method (see Japanese Patent Laid-Open No. 4-161588) for evaluating rock mass and predicting the geology ahead of the cutting face based on the amount of fracture energy of rock has been proposed. That is, the excavation depth and the cumulative excavation time at each depth, the instantaneous drilling speed, the striking energy at the time of excavating the packer-action drill,
A method of performing rock mass evaluation by collectively processing the drilling data of feed force, torque, and water pressure to calculate the fracture energy, obtaining the average fracture energy per unit hole length, and applying a statistical method. is there.

【0005】ところで地山を掘削する場合、各岩種に応
じ最適なドリルのフィード圧、打撃圧、ビットの種類な
どがあり、それらの条件設定により掘削効率が変化す
る。また、ビツトの刃先摩耗により上記掘削効率が変化
するので、ビツト摩耗の程度を把握しておくことも不可
欠である。上記方法において掘削効率が悪い場合には、
岩石の破壊エネルギが地山の掘削以外のくり粉の破砕な
どに浪費され、適正な地山評価は不可能である。
By the way, when excavating the natural ground, there are optimum feed pressure, impact pressure, bit type, etc. of the drill depending on each rock type, and the excavation efficiency changes depending on the setting of these conditions. Further, since the excavation efficiency changes due to the wear of the cutting edge of the bit, it is indispensable to grasp the degree of the bit wear. If the drilling efficiency is poor in the above method,
The rock breaking energy is wasted in the crushing of rock powder other than the excavation of the ground, and proper ground evaluation is impossible.

【0006】 削岩機により岩盤を掘削する場合、そ
の打撃状態を測定することにより岩盤の弾性波速度を測
定し、地質調査をする装置(特開平4−353191号
公報参照)が開発されている。つまり、削岩機により岩
盤を掘削する場合、その打撃に伴なう振動波形を打撃検
出器により検出し、また、フィード長検出器により打撃
点の深さを計測する。他方、岩盤面に受信機を設置し、
前記打撃検出器により検出した波形に対する位相差とフ
ィード長により、岩盤の弾性波速度を算出する装置であ
る。
When excavating a rock mass with a rock drill, a device has been developed (see Japanese Patent Application Laid-Open No. 4-353191) that measures the impact state of the rock mass to measure the elastic wave velocity of the rock mass and perform a geological survey. . That is, when excavating the rock mass with a rock drill, the vibration waveform associated with the impact is detected by the impact detector, and the depth of the impact point is measured by the feed length detector. On the other hand, installing a receiver on the rock surface,
The elastic wave velocity of rock is calculated by the phase difference and the feed length of the waveform detected by the impact detector.

【0007】上記装置を使用するとき、切羽で発破孔を
削孔時には通常、複数の削岩機を使用し、また、当該個
所には他の機械・装置等も稼働しているため、これら機
械から発生するノイズなどの混入により弾性波速度の測
定は困難であるから、前記弾性波速度の測定時には切羽
における掘進をストップする必要がある。また、削岩機
本体より発生するノイズが測定点に伝搬し、かつ、それ
らのノイズを遮断することは困難であるため、通常の削
岩機は使用不可能である。等々の問題があることが知ら
れている。
When using the above device, a plurality of rock drilling machines are usually used at the time of drilling a blast hole with a face, and other machines / devices are also operating at the location. Since it is difficult to measure the elastic wave velocity due to the inclusion of noise and the like generated from the above, it is necessary to stop the excavation at the face when measuring the elastic wave velocity. Further, since noise generated from the rock drilling machine main body propagates to the measurement point and it is difficult to block the noises, a normal rock drilling machine cannot be used. It is known that there are problems such as.

【0008】[0008]

【発明が解決しようとする課題】そこで本発明は、従来
方式の地山探査システムに比較して、トンネル掘進段階
で、作業を妨げることなく、より多くの要因を採用して
切羽前方の地山物性及び状態を定量的に把握して判断の
不均一さを解消し、探査範囲を未掘削部分まで拡げて地
山の弱層を探査するなど、早期に地山の変化を捉えて迅
速に対応して、工事の安全性及び経済性の向上を図るこ
とを可能とし、かつ、上記の従来方法・装置に内在する
問題点を可及的に解消する、新規なトンネル地山探査シ
ステムを提供することを目的とする。
Therefore, the present invention adopts more factors in the tunnel excavation stage without hindering the work, as compared with the conventional ground excavation system, and adopts more factors in front of the face. Quantitatively grasp the physical properties and condition to eliminate unevenness of judgment, expand the exploration range to the unexcavated part and explore the weak layer of the ground, etc. In addition, it is possible to improve the safety and economic efficiency of the construction, and to provide a new tunnel rock mass survey system that eliminates the problems inherent in the above-mentioned conventional methods and devices as much as possible. The purpose is to

【0009】[0009]

【課題を解決するための手段】本発明システムは、岩盤
評価の手段として油圧駆動のドリルビットのせん孔速度
及び回転圧に着目し、掘進初期段階で、くり粉の粒度を
確認してビット及び作動圧の適合性を判断した後、標準
せん孔速度及び標準回転圧を計測する。切削(せん孔)
効率が悪い場合は、くり粉は、より細かく破砕され、効
率が良い場合には、くり粉は大きな粒のまま排出される
ことに着目し、例えば、くり粉の60%粒径等を測定する
ことにより、上記ビット及び作動圧の適合性が把握でき
る。
The system of the present invention pays attention to the drilling speed and rotating pressure of a hydraulically driven drill bit as a means for rock mass evaluation, and confirms the grain size of the boring powder at the initial stage of excavation to check the bit and operation. After determining the suitability of pressure, measure the standard drilling speed and standard rotary pressure. Cutting (drilling)
When the efficiency is poor, the chestnut is crushed into smaller pieces, and when the efficiency is good, pay attention to the fact that the chestnut is discharged as large particles. For example, measure the 60% particle size of the chestnut. As a result, the suitability of the bit and the operating pressure can be grasped.

【0010】なお、本明細書において使用する「標準せ
ん孔速度」及び「標準回転圧」とは、次に述べるのよう
なものを指す。同一仕様の削岩機により同一の岩石をせ
ん孔する場合、その時のドリルのフィード圧、打撃圧、
ビットの摩耗程度等の影響により、せん孔速度、回転圧
が異なった値となる。通常の掘削では、ドリルのフィー
ド圧、打撃圧は、作業員が各自の経験に基づいて適当と
判断した値に設定して作業をしており、また経済的な理
由から、ビットについても常に新品の状態のものを使用
することはあり得ない。
The "standard perforation speed" and "standard rotation pressure" used in the present specification refer to the following. When drilling the same rock with a rock drill of the same specification, the feed pressure of the drill, the impact pressure,
Depending on the bit wear, etc., the drilling speed and rotation pressure will have different values. In normal excavation, the feed pressure and impact pressure of the drill are set to the values determined by the workers based on their own experience, and for economic reasons, the bits are always new. It is impossible to use the one in the state.

【0011】このため本掘進段階で専門の係員なしに、
通常の施工機械を使用して適正なせん孔速度、回転圧の
データを採取するには、各岩種についてフィード圧、打
撃圧、ビット摩耗度の各値に応じた補正係数を実験的に
決定したデータベースを用意しておき、現場で採取した
せん孔速度、回転圧に対して前記補正係数を用いて補正
し、それぞれ岩種に対して適合する「標準的なせん孔速
度」及び「標準的な回転圧」に換算することが、正当な
地山評価のために必要となる。
Therefore, at the stage of the main excavation, without a special staff member,
In order to collect the data of appropriate drilling speed and rotation pressure using a normal construction machine, the correction coefficient according to each value of feed pressure, impact pressure and bit wear degree was experimentally determined for each rock type. Prepare a database and correct the hole speed and rotation pressure sampled at the site using the above-mentioned correction coefficient, and adjust the "standard hole speed" and "standard rotating pressure" that are suitable for each rock type. It is necessary to convert into "" for proper ground evaluation.

【0012】この換算後のせん孔速度、回転圧を、それ
ぞれ「標準せん孔速度」、「標準回転圧」と呼び、通常
作業時に採取されるせん孔速度、回転圧のデータに替え
て用いることにより、せん孔時におけるフィード圧及び
打撃圧の変化、ビット摩耗等の不確定要素を排除するこ
とが可能で、より正確なデータを収集することができ
る。なお、せん孔時に得られる、くり粉の60%粒径が所
定値の範囲外の場合には、ドリルビットの切削効率が悪
いものと判定し、これらの測定値は採用しない。ところ
で、前記標準せん孔速度及び標準回転圧から、地山強度
を直接計算式等により算出できればよいが、これらの相
関式は地山によって異なり一概に決定することはできな
い。
The converted perforation speed and rotational pressure are referred to as "standard perforation speed" and "standard rotational pressure", respectively. By using them instead of the perforation speed and rotational pressure data collected during normal work, Uncertainties such as changes in feed pressure and impact pressure over time, bit wear, etc. can be eliminated, and more accurate data can be collected. If the 60% particle size of the flour obtained during drilling is outside the specified range, it is determined that the cutting efficiency of the drill bit is poor and these measurements are not used. By the way, the ground strength may be directly calculated from the standard perforation speed and the standard rotational pressure by a direct calculation formula or the like, but these correlation formulas differ depending on the ground and cannot be determined unconditionally.

【0013】そこで本発明システムでは、掘進初期段階
において地山の弾性波速度を簡易的に測定し、この簡易
弾性波速度と標準せん孔速度及び標準回転圧との相関式
を決定する。前記相関式が得られば、以後の本掘進段階
においては、上記標準せん孔速度及び標準回転圧を測定
し、それらの値を同相関式に当て嵌めることにより、切
羽での地山弾性波速度を推定することができる。この相
関式により推定した地山弾性波速度を換算弾性波速度と
し、前記換算弾性波速度により、従来の地山分類に基づ
き評価を行うようにしたもので、本発明システムは上記
目的を達成するため、以下に述べるとおりの各構成要件
を具備している。
Therefore, in the system of the present invention, the elastic wave velocity of the ground is simply measured in the initial stage of excavation, and the correlation equation between the simple elastic wave velocity and the standard drilling speed and the standard rotating pressure is determined. If the correlation equation is obtained, in the subsequent main excavation stage, the standard drilling speed and the standard rotation pressure are measured, and by fitting those values to the correlation equation, the natural elastic wave velocity at the face is calculated. Can be estimated. The ground elastic wave velocity estimated by this correlation equation is used as the converted elastic wave velocity, and the converted elastic wave velocity is used for evaluation based on the conventional rock mass classification. The system of the present invention achieves the above object. Therefore, it has the respective constituents as described below.

【0014】(1) 油圧駆動のドリルビットにより、
岩石の標準供試体をせん孔し、そのときのせん孔速度及
び回転圧並びにフィード圧、打撃圧、及びビット摩耗度
及びくり粉粒度を測定し、粒度の如何によっては前記測
定値を破棄するくり粉粒度を決定する一方、前記標準供
試体の岩種ごとに、そのせん孔速度及び回転圧に対する
フィード圧、打撃圧の段階的差異及びビット摩耗度に相
当する補正係数を実験的に定めたデータベースを作成
し、地下空洞の掘進初期段階で測定した地山弾性波速度
と、同一仕様の前記油圧駆動ドリルビットによるせん孔
時の、せん孔速度及び回転圧並びにフィード圧、打撃圧
及びビット摩耗度を測定し、また、くり粉粒度を確認
し、そのせん孔速度及び回転圧に対して当該岩種と同ク
ラスの岩種につき、さきに作成したデータベースに基づ
く前記各補正係数を用いて補正し、それぞれ標準せん孔
速度及び標準回転圧を算出して、前記地山弾性波速度と
前記標準せん孔速度及び標準回転圧との相関式を求め、
本掘進段階において、同一仕様の油圧駆動ドリルビット
のせん孔速度及び回転圧を測定し、併せて、そのときの
ドリルのフィード圧、打撃圧及びビット摩耗度を求め、
前記データによって当該切羽の岩種と同クラスの上記デ
ータベースの岩種についての各補正係数を特定して、そ
れら各補正係数を用い前記せん孔速度及び回転圧の測定
値を補正することにより、本掘進段階における標準せん
孔速度及び標準回転圧を算出し、その数値を前記相関式
に当て嵌めて得られた値を換算弾性波速度とし、前記換
算弾性波速度により従来の地山分類に基づき評価を行う
ことを特徴とするトンネル地山探査システム。
(1) With a hydraulic driven drill bit,
Drill a standard rock specimen, measure the drilling speed and rotation pressure, feed pressure, percussion pressure, bit wear degree and grain size, and discard the measured values depending on the grain size. On the other hand, for each rock type of the standard test specimen, a database was experimentally determined for which the feed pressure with respect to the drilling speed and rotation pressure, the stepwise difference in impact pressure, and the correction coefficient corresponding to the bit wear degree were created. , The natural elastic wave velocity measured in the initial stage of excavation of the underground cavity, and the drilling speed and rotation pressure, the feed pressure, the impact pressure and the bit wear degree at the time of drilling by the hydraulically driven drill bit of the same specifications, and Check the grain size of the chestnut powder, and use the above correction factors based on the database created earlier for the rock type of the same class as the rock type for the drilling speed and rotation pressure. Correction Te, and each calculates a standard drilling speed and standard rotational pressure, the correlation equation between the natural ground wave velocity and the standard drilling speed and standard rotational pressure,
In the main excavation stage, the drilling speed and the rotating pressure of the hydraulically driven drill bit of the same specifications are measured, and at the same time, the feed pressure of the drill, the impact pressure and the bit wear degree are obtained.
By identifying the respective correction factors for the rock types of the above-mentioned database in the same class as the rock type of the relevant face using the above-mentioned data, and correcting the measured values of the drilling speed and rotational pressure using these correction factors, the main excavation Calculate the standard perforation speed and standard rotational pressure at the stage, apply the numerical values to the above correlation equation to obtain the converted elastic wave velocity, and perform the evaluation based on the conventional rock mass classification by the converted elastic wave velocity. A tunnel ground exploration system characterized by the following.

【0015】(2) 換算弾性波速度をコンターなどに
より2次元表示し、また、2次元表示を並べることによ
り連続した切羽の表示を可能とする上記第(1)項記載
のトンネル地山探査システム。 (3) 標準回転圧を測定して、その一孔当たり深度方
向の変化率を算出し、その結果により弱層の位置と深さ
を推定・検出して弱層の位置及び深さを3次元表示する
ことにより、岩盤の弱層について把握する上記第(1)
項記載のトンネル地山探査システム。
(2) The tunnel rock mass surveying system according to the above item (1), wherein the converted elastic wave velocity is two-dimensionally displayed by a contour or the like, and continuous facets can be displayed by arranging the two-dimensional displays. . (3) The standard rotation pressure is measured, the rate of change in the depth direction per hole is calculated, and the position and depth of the weak layer are estimated and detected based on the results, and the position and depth of the weak layer are calculated in three dimensions. The above (1) to understand the weak layer of the bedrock by displaying
Tunnel ground exploration system described in paragraph.

【0016】[0016]

【作用】 より多くの要因(フィード圧、打撃圧及びビット摩
耗度など)を計測して、標準せん孔速度、標準回転圧を
求め、地山弾性波速度との相関により換算弾性波速度を
得て、従来の地山分類に基づき地山をより定量的に評価
する。 トンネル掘削時、作業を妨げることなく、リアルタ
イムで、かつ、連続的に地山の探査を可能とする。 未施工区間の地山についての情報が得られる。 早期に地山の弱層を把握し、迅速な対応を可能にす
る。
[Operation] By measuring more factors (feed pressure, impact pressure, bit wear degree, etc.), the standard drilling speed and standard rotational pressure are obtained, and the converted elastic wave velocity is obtained by correlation with the natural elastic wave velocity. , Quantitatively evaluate the ground based on the conventional ground classification. It enables real-time and continuous exploration of ground without interrupting work during tunnel excavation. Information about the ground in the unconstructed section can be obtained. We will quickly understand the weak layers of the ground and enable swift response.

【0017】[0017]

【実施例】以下に、本発明システムの構成及び同システ
ムにより地山の評価を行う場合の典型的な実施例を図面
に沿って説明する。 〔システムの全体構成〕ジャンボ(削岩機)にセンサを
取付け、発破用孔のせん孔作業中のドリルのせん孔速度
(Vd)、回転圧(Pr)等のデータを計測することによ
り、地山強度を推定する。また、せん孔データと地山強
度との相関を調べるため、掘進初期段階で地山の弾性波
速度(Vp)を測定し、以後の計測値に対する地山評価の
ベースとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the system of the present invention and a case of evaluating a natural ground by the system will be described below with reference to the drawings. [Overall system configuration] By installing a sensor on a jumbo (rock drill) and measuring data such as the drilling speed (Vd) and rotation pressure (Pr) of the drill during drilling work for the blasting hole, the ground strength is improved. To estimate. In addition, in order to investigate the correlation between the drilling data and the ground strength, the elastic wave velocity (Vp) of the ground is measured at the initial stage of excavation, and it is used as the basis for the ground evaluation for the subsequent measured values.

【0018】さらに、補助工法(フォアパイリング、水
抜き孔等)のせん孔時にもデータを採取し、データの追
加・検討を行う。せん孔データの項目は、既往の研究等
に基づき、ドリルのせん孔速度(Vd)、せん孔長、油圧
駆動のドリルの回転圧(Pr)、フィード圧(Pf)、打撃
圧(Pp)、ビット摩耗度(Ba)及び、くり粉粒度(U)
とする。図3に地山探査システムの概念図を、図4に同
システムのフローを示す。図3に示す地山探査システム
は、以下に記載の各装置の組合せにより構成されてい
る。
Further, data is also collected at the time of punching the auxiliary construction method (fore piling, drainage hole, etc.), and the data is added and examined. The items of drilling data are based on past research, etc., drilling speed (Vd), drilling length, hydraulically driven drill rotation pressure (Pr), feed pressure (Pf), impact pressure (Pp), bit wear rate. (Ba) and Chestnut grain size (U)
And Fig. 3 shows a conceptual diagram of the geological exploration system, and Fig. 4 shows the flow of the system. The rock mass exploration system shown in FIG. 3 is configured by a combination of the respective devices described below.

【0019】〔システムの仕様〕 (a)せん孔データ記録 (1)ジャンボ(削岩機)1の左右ブームに各一式宛取
り付けたセンサの型及び特性(図5のせん孔データ記録
装置を参照) ドリルのせん孔速度(Vd)検出 ……フィード位
置、速度検出センサ2 穿孔長 ……フィード位
置、速度検出センサ2 回転圧(ドリルのトルク)(Pr)……回転圧センサ
3 フィード圧(ドリルの推力)(Pf)…フィード圧セ
ンサ4 ドリルの打撃圧(Pp) ……打撃圧センサ
[System Specifications] (a) Drilling Data Recording (1) Type and Characteristics of Sensors Attached to the Left and Right Booms of Jumbo (rock drill) 1 for Each Set (Refer to Drilling Data Recording Device in FIG. 5) Drill Drilling speed (Vd) detection …… Feed position, speed detection sensor 2 Drilling length …… Feed position, speed detection sensor 2 Rotation pressure (drill torque) (Pr) …… Rotation pressure sensor 3 Feed pressure (drill thrust) (Pf)… Feed pressure sensor 4 Impact pressure of drill (Pp) …… Impact pressure sensor 5

【0020】(2)せん孔データ記録装置(可搬式)6 コンピュータ メモリカードライタ、他 (3)データ処理 事務所コンピュータ用メモリカードリーダ7 パソコン(周辺機器一式)8(2) Perforation data recording device (portable) 6 Computer memory card writer, etc. (3) Data processing Memory card reader for office computer 7 Personal computer (peripheral device set) 8

【0021】(b)弾性波速度データ記録 (1)簡易弾性波速度測定器(メモリカード記録装置付
き)9 (2)データ処理 事務所コンピュータ用メモリカードリーダ10 パソコン(せん孔データ記録用と同一)8
(B) Elastic wave velocity data recording (1) Simple elastic wave velocity measuring device (with memory card recording device) 9 (2) Data processing Memory card reader for office computer 10 Personal computer (same as for recording punch data) 8

【0022】図3及び図5のせん孔データ記録装置7に
おいて、せん孔データの計測、記録は、それぞれジャン
ボ1の左右ブームに各一式宛取付けたセンサ、すなわ
ち、ドリルのせん孔速度(Vd)及びせん孔長は、フィー
ド位置、速度検出センサ2からの信号によって、油圧駆
動のドリルの回転圧(Pr)、フィード圧(Pf)及び打撃
圧(Pp)は、それぞれ回転圧センサ3、フィード圧セン
サ4及び打撃圧センサ5からの信号により、データを採
取する。
In the drilling data recording device 7 of FIGS. 3 and 5, the drilling data is measured and recorded by the sensors attached to the left and right booms of the jumbo 1 for each set, that is, the drilling speed (Vd) and the drilling length. Is the rotation position (Pr), feed pressure (Pf) and impact pressure (Pp) of the hydraulically driven drill according to the feed position and the signal from the speed detection sensor 2, respectively. Data is collected by the signal from the pressure sensor 5.

【0023】図3示の中央付近及び図4を参照して、掘
進初期段階の切羽面において、相対的に離れた個所に、
それぞれハンマスイッチ(起振器)11及び弾性波受信器
a,bを取付け、前記ハンマスイッチを作動させて発生
する弾性波を受信器a,bにより検出することにより切
羽岩盤の弾性波速度を測定し、そのデータを簡易弾性波
速度測定器9のメモリーカードに記録する。ここまで
は、作業現場等における計測となる。
Referring to the vicinity of the center of FIG. 3 and FIG. 4, in the face face at the early stage of excavation, at relatively distant points,
Attaching a hammer switch (oscillator) 11 and elastic wave receivers a and b, respectively, and measuring the elastic wave velocity of the face rock by detecting elastic waves generated by operating the hammer switch with the receivers a and b. Then, the data is recorded in the memory card of the simple elastic wave velocity measuring device 9. Up to this point, measurement is performed at the work site.

【0024】前記各メモリーカードは、現場(管理)事
務所に備付けのコンピュータ用メモリカードリーダ7,
10により読み出され、当該データをパーソナルコンピュ
ータ8に入力し、数値処理、統計処理を経てアウトプッ
トする。図3及び図4に表示された共通の符号〜の
それぞれは、対応する同一符号個所で同一内容の作業・
操作が行われていることを示している。
Each of the above-mentioned memory cards is a memory card reader 7 for a computer installed in a field (management) office,
The data is read out by 10 and input to the personal computer 8 for numerical data processing, statistical processing, and output. Each of the common symbols (1) to (3) shown in FIGS. 3 and 4 corresponds to a work having the same content at the same symbol.
It indicates that an operation is being performed.

【0025】なお、図3に示すジャンボ1は、実施工時
において切羽面に配置され、同ジャンボに取り付けたブ
ームにドリルビットを装備し、これを油圧により駆動し
て切羽面の岩盤をせん孔する。図4は、さきに説明した
せん孔データ記録装置(システム)を示し、ジャンボ1
に搭載した上述センサとせん孔データ記録装置6及びメ
モリカードとの間を繋ぐ信号系統についての詳細構成を
具体的に記載している。
The jumbo 1 shown in FIG. 3 is placed on the face of the face during the construction work, and the boom attached to the same jumbo is equipped with a drill bit, which is hydraulically driven to punch the rock face of the face of the face. . FIG. 4 shows the perforation data recording device (system) described above, which includes a jumbo 1
The detailed configuration of the signal system connecting the above-mentioned sensor mounted on the above-mentioned sensor, the punch data recording device 6, and the memory card is specifically described.

【0026】〔データ処理〕図1及び図2に、上述シス
テムを用いた例えば、切羽の評価を行うフローを示す。 (1)地山探査システムベースの構築(図2を参照) 標準供試体による補正係数の決定 予め、標準供試体をせん孔して岩種により実験的に補正
係数を決定する。さきに「標準せん孔速度」(Vd’)及
び「標準回転圧」(Pr’)について述べたとおり、地山
を掘削する場合、岩種に応じて、ドリルの最適なフィー
ド圧、打撃圧、ビットの種類などがあり、これらの条件
により掘削の効率が変化する。
[Data Processing] FIGS. 1 and 2 show a flow for performing, for example, face evaluation using the above system. (1) Construction of a ground exploration system base (see Fig. 2) Determination of correction coefficient by standard specimen The correction coefficient is experimentally determined according to the rock type by drilling the standard specimen in advance. As mentioned above regarding "standard drilling speed" (Vd ') and "standard rotation pressure"(Pr'), when excavating the natural ground, the optimum feed pressure, impact pressure, bit There are various types, and the efficiency of excavation changes depending on these conditions.

【0027】実施工時においては、作業員は各自の経験
から適切と判断する条件に基づき作業を進めているか
ら、これらの数値を上述の適正条件に補正した後でなけ
れば、当該数値に基づき適正な地山の評価を下すことが
できない。また、ビットの摩耗により、前記掘削効率が
変化し、くり粉粒度により掘削効率の良否が判断できる
ので、上記データにより適正な地山評価を下すために
は、ビット摩耗及びくり粉粒度の計測が不可欠である。
At the time of execution of construction work, the workers proceed with the work based on the conditions judged appropriate from their own experience, so unless these values have been corrected to the above-mentioned appropriate conditions, the work will be carried out based on these values. We cannot make a proper evaluation of the ground. Further, since the excavation efficiency changes due to the wear of the bit and the quality of the excavation efficiency can be judged by the grain size of the flour, in order to make a proper ground evaluation based on the above data, it is necessary to measure the bit wear and the grain size of the grain. It is essential.

【0028】そこで例えば、岩種を大別して、軟岩、中
硬岩及び硬岩に区分し、それらをせん孔するときにドリ
ルビットに加えられるフィード圧(Pf)、打撃圧(P
p)、ビット摩耗度(Ba)の程度に応じて、それぞれ事
前に補正係数を決めたデータベースを作り、切羽におい
て採取されるせん孔速度(Vd)、回転圧(Pr)の測定値
をに前記データベースの補正係数により補正し、適正条
件に置換して標準せん孔速度(Vd’)及び標準回転圧
(Pr’)を求める。そのとき得られる、くり粉の粒度
(U)は、ドリル及び作動圧の岩盤に対する適合性、掘
削能率の良否を測る目安となる。
Therefore, for example, rock types are roughly classified into soft rock, medium hard rock and hard rock, and feed pressure (Pf) and impact pressure (Pf) applied to a drill bit when punching them.
p), a correction coefficient is determined in advance according to the degree of wear of the bit (Ba), and the database for the measured values of the drilling speed (Vd) and rotational pressure (Pr) collected at the face The standard perforation speed (Vd ') and the standard rotation pressure (Pr') are calculated by correcting with the correction coefficient of 1 and substituting the appropriate conditions. The grain size (U) of the chestnut powder obtained at that time is a standard for measuring the suitability of the drill and the working pressure for the rock mass and the excavation efficiency.

【0029】上記せん孔速度(Vd)に対する補正係数の
例としては、例えば、図2に示すように、フィード圧
(Pf)を、それぞれ、30〜35Kgf/cm2 、35〜40Kgf/
cm2 、40〜45Kgf/cm2 の範囲に区分した場合、各岩種
についてのフィード圧に関する補正係数を、実験的に図
示のとおり決定する。予め、決定した岩種に対する上記
各フィード圧の補正係数の適用範囲と、掘削時における
切羽面の岩種及び、現場において計測したフィード圧
(Pf)の値(前述のように作業員各自の判断により、あ
る程度の幅がある)とを勘案し、対応する補正係数によ
り、その時の測定せん孔速度(Vd)を補正することによ
り、現場での生の測定値を適正条件におけるせん孔速度
に近付ける。
As an example of the correction coefficient for the perforation speed (Vd), for example, as shown in FIG. 2, the feed pressure (Pf) is 30 to 35 Kgf / cm 2 and 35 to 40 Kgf / cm 2 , respectively.
When divided into cm 2 and 40 to 45 kgf / cm 2, the correction coefficient for the feed pressure for each rock type is experimentally determined as shown. The range of application of the above-mentioned correction factors for each feed pressure to the rock type determined in advance, the rock type of the face face at the time of excavation, and the value of the feed pressure (Pf) measured at the site (as determined by each worker, as described above) By adjusting the corresponding correction coefficient to the measured hole speed (Vd) at that time, the raw measured value at the site can be made closer to the hole speed under appropriate conditions.

【0030】その際の打撃圧(Pp)及びビット摩耗度
(Ba)に関する補正係数についても、ほぼ上記と同様
で、例えば図2に示すとおりの数値であり、いずれも適
正条件にある場合の、せん孔速度(Vd’)を算出するた
めの係数である。回転圧(Pr)についても、上記同様の
補正を行うことにより、適正条件にある場合の回転圧
(Pr’)を算出する。掘進初期段階または本掘進段階で
計測された、せん孔速度(Vd)及び回転圧(Pr)に対
し、これら総ての補正を行ったものを「標準せん孔速度
(Vd’)」及び「標準回転圧(Pr’)」とする。
The correction coefficients relating to the impact pressure (Pp) and the bit wear degree (Ba) at that time are almost the same as above, and for example, the values are as shown in FIG. 2, and when both are in proper conditions, This is a coefficient for calculating the drilling speed (Vd '). With respect to the rotational pressure (Pr) as well, the rotational pressure (Pr ′) under appropriate conditions is calculated by performing the same correction as described above. "Standard drilling speed (Vd ')" and "Standard rotating pressure" are obtained by making all these corrections to the drilling speed (Vd) and rotating pressure (Pr) measured at the initial stage or main stage (Pr ') ".

【0031】図2のうち「くり粉の粒度(U)」につい
ては他の補正係数と異なり、例えば得られた、くり粉の
60%粒径が0.3 mm以下の場合は、ドリルの掘削効率が著
しく低い状態を示すものと判断し、その際の、せん孔速
度(Vd)及び回転圧(Pr)のデータは不採用とし、ビッ
ト及び作動圧の適合性を再チェックする。ここで、図2
に示した上記補正係数の数値は、あくまでも一例であっ
て、他の要因により若干の補正を行う場合があり得る。
これら補正係数の決定作業は、実験的に行うことができ
る。
In FIG. 2, the "grain size (U)" of the chestnut powder is different from other correction factors, and for example, the obtained
If the 60% grain size is 0.3 mm or less, it is judged that the drilling efficiency is extremely low, and the data of drilling speed (Vd) and rotation pressure (Pr) at that time are not adopted and And recheck operating pressure compatibility. Here, FIG.
The value of the correction coefficient shown in (1) is just an example, and some correction may be performed due to other factors.
The work of determining these correction coefficients can be performed experimentally.

【0032】(2)掘進初期段階における計測(図1参
照) 標準せん孔速度(Vd’)、標準回転圧(Pr’)の測
定 実施工時のうち掘進初期段階には地山を評価する指標と
して、以下の項目を測定する。 (a)掘削現場において、掘進作業中、上記装置に装備
したセンサからの信号に基づき、ドリルビットのせん孔
速度(Vd)、回転圧(Pr)の測定を行う。 (b)併せて、そのフィード圧(pf)、打撃圧(Pp)、
ビット摩耗度(Ba)、くり粉の粒度(U)の測定を行
う。さきに述べたように、そのとき得られるくり粉の60
%粒径が0.3 mm以下の粒度(U)の場合は、掘削効率が
著しく低いのであるから、このデータから地山強度の評
価は可能でなく、また、実際とは解離した評価となるお
それがあるから、この際のせん孔速度(Vd)及び回転圧
(Pr)のデータは不採用とする。
(2) Measurement in the initial stage of excavation (see Fig. 1) Measurement of standard drilling speed (Vd ') and standard rotational pressure (Pr') As an index for evaluating the ground in the initial stage of excavation during the actual work , The following items are measured. (A) At the excavation site, during the excavation work, the drilling speed (Vd) and the rotational pressure (Pr) of the drill bit are measured based on the signals from the sensor equipped in the above device. (B) In addition, the feed pressure (pf), impact pressure (Pp),
Bit wear (Ba) and grain size (U) of the powder are measured. As mentioned earlier, 60 of the chestnut obtained at that time
When the% particle size is 0.3 mm or less (U), the excavation efficiency is extremely low, so it is not possible to evaluate the ground strength from this data, and there is a possibility that the evaluation will be dissociated from the actual one. Therefore, the data of perforation velocity (Vd) and rotational pressure (Pr) at this time are not adopted.

【0033】(c)上記せん孔速度(Vd)、回転圧(P
r)の測定値に対し、さきに実験的に決定したデータベ
ースの、被掘削岩種に相当する岩種に対するフィード圧
(Pf)、打撃圧(Pp)及びビット摩耗度(Ba)について
の補正係数を施して補正し、標準せん孔速度(Vd’)、
標準回転圧(Pr’)を算出する。
(C) Punch speed (Vd), rotational pressure (P
Correction factors for feed pressure (Pf), impact pressure (Pp) and bit wear degree (Ba) for the rock type corresponding to the rock type to be excavated from the database previously experimentally determined for the measured value of r). The standard drilling speed (Vd '),
Calculate the standard rotation pressure (Pr ').

【0034】 標準せん孔速度(Vd’)、標準回転圧
(Pr’)と地山弾性波速度(Vp)との相関式の算出 (a)さきに述べた手段に基づき、トンネル掘進の初期
段階または実験段階で、簡易弾性波速度測定器10などを
用い、地山弾性波速度(Vp)の測定を行う。その測定方
法の一例については概略、図3に関連して説明した。 (b)掘進初期段階において測定した地山弾性波速度
(Vp)と、標準せん孔速度(Vd’)及び標準回転圧(P
r’)との相関式を求める。 Vp≒Vp’=f(Vd’,Pr’) 上記相関式は、現場ごと、岩種よって異なり、単純では
ない。
Calculation of correlation equation between standard drilling velocity (Vd ′), standard rotation pressure (Pr ′) and natural elastic wave velocity (Vp) (a) Based on the means described above, the initial stage of tunnel excavation or At the experimental stage, the natural elastic wave velocity (Vp) is measured using a simple elastic wave velocity measuring device 10 or the like. An example of the measuring method is described in outline with reference to FIG. (B) Ground elastic wave velocity (Vp) measured at the initial stage of excavation, standard drilling velocity (Vd '), and standard rotational pressure (P
Calculate the correlation equation with r '). Vp ≒ Vp '= f (Vd', Pr ') The above correlation equation is not simple because it differs from site to site and rock type.

【0035】(3)本掘進段階における計測 本掘進段階において作業のサイクルタイムに併せて、上
記手段と同一の方法を用いて標準せん孔速度(Vd’)及
び、標準回転圧(Pr’)を測定する。採取した上記標準
せん孔速度(Vd’)及び標準回転圧(Pr’)を上述の相
関式に挿入することにより、その時点における換算弾性
波速度(Vp’)を算出する。換算弾性波速度(Vp’)よ
り、従来の地山分類に基づき、施工当該時点における地
山の評価を行う。
(3) Measurement in the main excavation stage In the main excavation stage, the standard drilling speed (Vd ') and the standard rotation pressure (Pr') are measured by the same method as the above means in accordance with the work cycle time. To do. The converted elastic wave velocity (Vp ′) at that time is calculated by inserting the collected standard perforation velocity (Vd ′) and standard rotational pressure (Pr ′) into the above correlation equation. Based on the converted elastic wave velocity (Vp '), based on the conventional rock mass classification, the rock mass at the time of construction is evaluated.

【0036】(4)弱層の探査 標準回転圧(Pr’)を測定し、その(振幅)瞬間変動率
を算出する。標準回転圧(Pr’)の瞬間変動率の変化に
着目して変動の不連続点を見出し、地山の弱層の位置と
深さを推定する。
(4) Exploration of weak layer The standard rotational pressure (Pr ') is measured, and the (amplitude) instantaneous fluctuation rate is calculated. Focusing on the change of the instantaneous fluctuation rate of standard rotational pressure (Pr '), we find the discontinuity point of the fluctuation and estimate the position and depth of the weak layer of the ground.

【0037】(5)結果の表示 換算弾性波速度(Vp’)をコンターなどにより2次元に
表示し、切羽の状況を定量的に表示する。2次元表示を
並べることによって、連続した切羽状況の表示が可能と
なり、地山の変化、傾向を把握できる。検出した弱層の
位置及び、深さを3次元表示することにより、従来不可
能であった岩盤の弱層について把握することができる。
任意の断面における換算弾性波速度と、弱層の位置とを
合成表示することにより、より具体的な地山の把握が可
能となる。
(5) Display of results The converted elastic wave velocity (Vp ') is two-dimensionally displayed by a contour or the like, and the situation of the face is quantitatively displayed. By arranging the two-dimensional displays, it is possible to continuously display the face condition, and it is possible to grasp changes and trends in the natural ground. By displaying the detected position and depth of the weak layer three-dimensionally, it is possible to understand the weak layer of the bedrock, which has been impossible in the past.
By combining and displaying the converted elastic wave velocity in the arbitrary section and the position of the weak layer, it is possible to grasp the ground more concretely.

【0038】(6)応用例 上記作業及び測定を長尺で実施することにより、数十m
程度の切羽前方の地山の探査が可能となる。上記測定
を、ロックボルトせん孔時にも行なうことにより、トン
ネル周囲の地山評価及び弱層の把握が可能となる。
(6) Application example By performing the above work and measurement in a long length, several tens of meters can be obtained.
Exploration of the ground ahead of the face is possible. By carrying out the above-mentioned measurement even when the rock bolt is drilled, it becomes possible to evaluate the ground around the tunnel and grasp the weak layer.

【0039】[0039]

【発明の効果】本発明システムによれば、ドリルの回転
圧、フィード圧、打撃圧及びビット摩耗、並びにくり粉
の粒度を測定し、補正を加えることにより、従来のせん
孔速度のみの計測による地山評価の手法よりも、格段に
精度が向上する。また、本発明システムでは、従来方式
には期待できない下記に挙げる施工の安全性、経済性が
得られる。
According to the system of the present invention, the rotational pressure of the drill, the feed pressure, the impact pressure, the bit wear, and the grain size of the dust powder are measured and corrected, so that only the conventional measurement of the drilling speed is performed. The accuracy is significantly improved compared to the mountain evaluation method. In addition, the system of the present invention provides the following safety and economic efficiency in construction, which cannot be expected with conventional methods.

【0040】 地山の急変を予測することができるの
で、早期に補助工法の採用や掘削方法の変更が可能とな
り、地山を傷めない。 地山の崩落などによる掘進の妨げを生じさせない。 地山状態が定量的に把握できることで、最適発破パ
ターン及び装薬量の設定が可能となり、施工速度が向上
する。
Since it is possible to predict a sudden change in the ground, it is possible to adopt an auxiliary construction method or change the excavation method at an early stage, and the ground is not damaged. It does not hinder the excavation due to the collapse of the ground. Since the ground condition can be quantitatively grasped, the optimum blasting pattern and the amount of the charge can be set, and the construction speed is improved.

【0041】 せん孔作業中のデータを用いるので、
施工サイクルタイム内での探査が可能であり、また、別
途に探査機が必要でないから、掘進の妨げとならない。 切羽の大断面化、ミニベンチ工法への移行に伴な
い、地山探査の重要性が更に増加する。 等々、従来の方法、装置によっては、実施が可能でない
格別の作用、効果を奏することができる。
Since data during drilling work is used,
Exploration is possible within the construction cycle time, and since no separate exploration machine is required, it does not hinder the excavation. The importance of ground exploration will increase with the increase in cross section of the face and the shift to the mini bench method. And so on, depending on the conventional method and apparatus, it is possible to obtain special actions and effects that cannot be implemented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の地山探査システムにより、切羽の評価
を行う場合のフローである。
FIG. 1 is a flow chart when a face is evaluated by a rock mass exploration system of the present invention.

【図2】本発明の地山探査システムデータベースの一例
を示す。
FIG. 2 shows an example of a rock mass survey system database of the present invention.

【図3】地山探査システムの概念図である。FIG. 3 is a conceptual diagram of a rock mass exploration system.

【図4】図3に示す地山探査システムのフローである。FIG. 4 is a flow of the rock mass exploration system shown in FIG.

【図5】せん孔データ記録システムを示す。FIG. 5 shows a drilling data recording system.

【符号の説明】[Explanation of symbols]

1 ジャンボ(削岩機) 2 フィード位置、速度検出センサ 3 回転圧センサ 4 フィード圧センサ 5 打撃圧センサ 6 せん孔データ記録装置 7 メモリーカードリーダ 8 事務所側パソコン 9 簡易弾性波速度測定器 10 メモリーカードリーダ 11 ハンマスイッチ。 1 Jumbo (rock drilling machine) 2 Feed position / speed detection sensor 3 Rotation pressure sensor 4 Feed pressure sensor 5 Impact pressure sensor 6 Perforation data recording device 7 Memory card reader 8 Office side PC 9 Simple elastic wave velocity measuring device 10 Memory card Reader 11 Hammer switch.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永本 健一 東京都台東区台東1丁目2番1号 不動建 設株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Kenichi Nagamoto Inventor Kenichi Nagamoto 1-2-1 Taito, Taito-ku, Tokyo Fudo Construction Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 油圧駆動のドリルビットにより、岩石の
標準供試体をせん孔し、そのときのせん孔速度及び回転
圧並びにフィード圧、打撃圧、及びビット摩耗度及びく
り粉粒度を測定し、粒度の如何によっては前記測定値を
破棄するくり粉粒度を決定する一方、前記標準供試体の
岩種ごとに、そのせん孔速度及び回転圧に対するフィー
ド圧、打撃圧の段階的差異及びビット摩耗度に相当する
補正係数を実験的に定めたデータベースを作成し、地下
空洞の掘進初期段階で測定した地山弾性波速度と、同一
仕様の前記油圧駆動ドリルビットによるせん孔時の、せ
ん孔速度及び回転圧並びにフィード圧、打撃圧及びビッ
ト摩耗度を測定し、また、くり粉粒度を確認し、そのせ
ん孔速度及び回転圧に対して当該岩種と同クラスの岩種
につき、さきに作成したデータベースに基づく前記各補
正係数を用いて補正し、それぞれ標準せん孔速度及び標
準回転圧を算出して、前記地山弾性波速度と前記標準せ
ん孔速度及び標準回転圧との相関式を求め、本掘進段階
において、同一仕様の油圧駆動ドリルビットのせん孔速
度及び回転圧を測定し、併せて、そのときのドリルのフ
ィード圧、打撃圧及びビット摩耗度を求め、前記データ
によって当該切羽の岩種と同クラスの上記データベース
の岩種についての各補正係数を特定して、それら各補正
係数を用い前記せん孔速度及び回転圧の測定値を補正す
ることにより、本掘進段階における標準せん孔速度及び
標準回転圧を算出し、その数値を前記相関式に当て嵌め
て得られた値を換算弾性波速度とし、前記換算弾性波速
度により従来の地山分類に基づき評価を行うことを特徴
とするトンネル地山探査システム。
1. A hydraulically driven drill bit is used to drill a standard rock specimen, and the drilling speed and rotation pressure, as well as feed pressure, impact pressure, bit wear and grain size are measured to determine the grain size. Depending on how the grain size for discarding the measured values is determined, it corresponds to the feed pressure with respect to the drilling speed and rotation pressure, the stepwise difference in impact pressure, and the bit wear degree for each rock type of the standard specimen. A database with experimentally determined correction factors was created, and the ground elastic wave velocity measured at the initial stage of excavation of the underground cavity and the drilling speed, rotation pressure, and feed pressure during drilling by the hydraulically driven drill bit with the same specifications Measure the impact pressure and bit wear degree, confirm the grain size of the boring powder, and make it for the rock type in the same class as the relevant rock type for the drilling speed and rotation pressure. Corrected using each of the correction factors based on the database, calculated the standard drilling speed and standard rotating pressure, respectively, to obtain the correlation equation between the natural elastic wave velocity and the standard drilling speed and standard rotating pressure, In the excavation stage, the drilling speed and rotation pressure of the hydraulically driven drill bit of the same specifications are measured, and at the same time, the feed pressure, impact pressure and bit wear of the drill at that time are obtained, and the rock type of the face is determined by the above data. By identifying the correction factors for the rock types in the above database of the same class and using the correction factors to correct the measured values of the drilling speed and the rotating pressure, the standard drilling speed and the standard rotating pressure in the main excavation stage Then, the value obtained by applying the numerical value to the correlation equation is taken as the converted elastic wave velocity, and is evaluated based on the conventional ground classification by the converted elastic wave velocity. Tunnel natural ground survey system, which comprises carrying out.
【請求項2】 換算弾性波速度をコンターなどを用いて
2次元表示し、また、2次元表示を並べることにより連
続した切羽の表示を可能とする請求項1記載のトンネル
地山探査システム。
2. The tunnel rock mass exploration system according to claim 1, wherein the converted elastic wave velocity is two-dimensionally displayed by using a contour or the like, and consecutive facets can be displayed by arranging the two-dimensional displays.
【請求項3】 標準回転圧を連続測定して、その一孔当
たり深度方向の変化率を算出し、その結果により弱層の
位置と深さを推定・検出して弱層の位置及び深さを3次
元表示することにより、岩盤の弱層を検知する請求項1
記載のトンネル地山探査システム。
3. The standard rotational pressure is continuously measured, the rate of change in the depth direction per hole is calculated, and the position and depth of the weak layer are estimated and detected based on the results, and the position and depth of the weak layer are calculated. The weak layer of the bedrock is detected by displaying three-dimensionally.
The described tunnel ground exploration system.
JP30838394A 1994-11-18 1994-11-18 Tunnel ground search system Expired - Fee Related JP3238840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30838394A JP3238840B2 (en) 1994-11-18 1994-11-18 Tunnel ground search system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30838394A JP3238840B2 (en) 1994-11-18 1994-11-18 Tunnel ground search system

Publications (2)

Publication Number Publication Date
JPH08144682A true JPH08144682A (en) 1996-06-04
JP3238840B2 JP3238840B2 (en) 2001-12-17

Family

ID=17980413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30838394A Expired - Fee Related JP3238840B2 (en) 1994-11-18 1994-11-18 Tunnel ground search system

Country Status (1)

Country Link
JP (1) JP3238840B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363996A (en) * 2001-06-12 2002-12-18 Taisei Corp Drilling positioning control method and drilling method for overhead traveling type vertical hole rock drill in pneumatic caisson construction method
JP2008111289A (en) * 2006-10-31 2008-05-15 Kajima Corp Geological evaluation method of natural ground
JP2009161964A (en) * 2007-12-28 2009-07-23 Ohbayashi Corp Drilling speed ratio, method of calculating correlation between natural ground parameters, and method of predicting forward of facing using the method
JP2011102706A (en) * 2009-11-10 2011-05-26 Kajima Corp Method and system for performing survey ahead of working face
JP2015067957A (en) * 2013-09-26 2015-04-13 古河ロックドリル株式会社 Bedrock exploration method and bedrock exploration system as well as drilling data correction device for bedrock exploration
JP2015090032A (en) * 2013-11-06 2015-05-11 清水建設株式会社 Tunnel natural ground search system
JP2015166548A (en) * 2015-04-22 2015-09-24 アトラス コプコ ロツク ドリルスアクチボラグ Rock drill rig control method and device
JP2015229833A (en) * 2014-06-03 2015-12-21 株式会社鴻池組 Bedrock condition determination device
JP2016011499A (en) * 2014-06-27 2016-01-21 大成建設株式会社 Method for determining drilling state, method for calculating drilling length, and geological logging method
JP2017057708A (en) * 2015-09-17 2017-03-23 鹿島建設株式会社 Natural ground evaluation method and system in front of tunnel working face
CN106837324A (en) * 2017-04-06 2017-06-13 山东科技大学 The fast determination method and borehole data acquisition system of rock lithology title and intensity
JP2020020176A (en) * 2018-08-01 2020-02-06 株式会社熊谷組 Anchor selection method, anchor construction method, and anchor layer distribution 3d model at anchor construction site
JP2020063639A (en) * 2018-10-19 2020-04-23 株式会社奥村組 Method for investigating compressive strength of natural ground
CN113310833A (en) * 2021-05-14 2021-08-27 盾构及掘进技术国家重点实验室 Method for estimating tunneling distance of tunnel boring machine hob reaching abrasion limit
JP2021127655A (en) * 2020-02-17 2021-09-02 戸田建設株式会社 Method for evaluating natural ground using drilling energy
CN113338892A (en) * 2021-06-01 2021-09-03 北京市政建设集团有限责任公司 Intelligent shallow-buried underground excavation performance monitoring method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120395A (en) * 1990-09-12 1992-04-21 Shimizu Corp Surveying system for natural ground conduction
JPH04161588A (en) * 1990-10-22 1992-06-04 Kajima Corp Bedrock evaluation using drilling data prepared by hydraulic drill, and forecasting method for soil in front of facing
JPH04353191A (en) * 1991-05-30 1992-12-08 Maeda Corp Geologic survey device
JPH07259469A (en) * 1994-03-25 1995-10-09 Furukawa Co Ltd Data recording device for discrimination of lithology

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120395A (en) * 1990-09-12 1992-04-21 Shimizu Corp Surveying system for natural ground conduction
JPH04161588A (en) * 1990-10-22 1992-06-04 Kajima Corp Bedrock evaluation using drilling data prepared by hydraulic drill, and forecasting method for soil in front of facing
JPH04353191A (en) * 1991-05-30 1992-12-08 Maeda Corp Geologic survey device
JPH07259469A (en) * 1994-03-25 1995-10-09 Furukawa Co Ltd Data recording device for discrimination of lithology

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363996A (en) * 2001-06-12 2002-12-18 Taisei Corp Drilling positioning control method and drilling method for overhead traveling type vertical hole rock drill in pneumatic caisson construction method
JP2008111289A (en) * 2006-10-31 2008-05-15 Kajima Corp Geological evaluation method of natural ground
JP2009161964A (en) * 2007-12-28 2009-07-23 Ohbayashi Corp Drilling speed ratio, method of calculating correlation between natural ground parameters, and method of predicting forward of facing using the method
JP2011102706A (en) * 2009-11-10 2011-05-26 Kajima Corp Method and system for performing survey ahead of working face
JP2015067957A (en) * 2013-09-26 2015-04-13 古河ロックドリル株式会社 Bedrock exploration method and bedrock exploration system as well as drilling data correction device for bedrock exploration
JP2015090032A (en) * 2013-11-06 2015-05-11 清水建設株式会社 Tunnel natural ground search system
JP2015229833A (en) * 2014-06-03 2015-12-21 株式会社鴻池組 Bedrock condition determination device
JP2016011499A (en) * 2014-06-27 2016-01-21 大成建設株式会社 Method for determining drilling state, method for calculating drilling length, and geological logging method
JP2015166548A (en) * 2015-04-22 2015-09-24 アトラス コプコ ロツク ドリルスアクチボラグ Rock drill rig control method and device
JP2017057708A (en) * 2015-09-17 2017-03-23 鹿島建設株式会社 Natural ground evaluation method and system in front of tunnel working face
CN106837324A (en) * 2017-04-06 2017-06-13 山东科技大学 The fast determination method and borehole data acquisition system of rock lithology title and intensity
CN106837324B (en) * 2017-04-06 2023-06-02 山东科技大学 Method for quickly determining lithology name and strength of rock and drilling data acquisition system
JP2020020176A (en) * 2018-08-01 2020-02-06 株式会社熊谷組 Anchor selection method, anchor construction method, and anchor layer distribution 3d model at anchor construction site
JP2020063639A (en) * 2018-10-19 2020-04-23 株式会社奥村組 Method for investigating compressive strength of natural ground
JP2021127655A (en) * 2020-02-17 2021-09-02 戸田建設株式会社 Method for evaluating natural ground using drilling energy
CN113310833A (en) * 2021-05-14 2021-08-27 盾构及掘进技术国家重点实验室 Method for estimating tunneling distance of tunnel boring machine hob reaching abrasion limit
CN113310833B (en) * 2021-05-14 2024-04-05 盾构及掘进技术国家重点实验室 Tunneling distance prediction method for tunnel boring machine hob reaching wear limit
CN113338892A (en) * 2021-06-01 2021-09-03 北京市政建设集团有限责任公司 Intelligent shallow-buried underground excavation performance monitoring method and device

Also Published As

Publication number Publication date
JP3238840B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
Gong et al. Development of a rock mass characteristics model for TBM penetration rate prediction
Balci Correlation of rock cutting tests with field performance of a TBM in a highly fractured rock formation: a case study in Kozyatagi-Kadikoy metro tunnel, Turkey
JP3238840B2 (en) Tunnel ground search system
Yue et al. Automatic monitoring of rotary-percussive drilling for ground characterization—illustrated by a case example in Hong Kong
Rostami et al. Comparison between CSM and NTH hard rock TBM performance prediction models
Kahraman et al. Dominant rock properties affecting the penetration rate of percussive drills
Tumac et al. Estimation of rock cuttability from shore hardness and compressive strength properties
Rai et al. An overview on measurement-while-drilling technique and its scope in excavation industry
Li et al. Survey of measurement-while-drilling technology for small-diameter drilling machines
GB2356877A (en) Method for optimizing drill bit and drilling parameter selection using rock strength measurements made from drill cuttings
JPH04161588A (en) Bedrock evaluation using drilling data prepared by hydraulic drill, and forecasting method for soil in front of facing
JP5715819B2 (en) Method and system for optimizing straw
JP3380795B2 (en) Rock bed exploration method
Abu Bakar et al. Penetration rate and specific energy prediction of rotary–percussive drills using drill cuttings and engineering properties of selected rock units
Tonnizam Mohamad et al. Ripping production prediction in different weathering zones according to field data
JP6018977B2 (en) Evaluation method of bedrock
Khoshouei et al. A new look at hard rock abrasivity evaluation using acoustic emission technique (AET)
JP5258734B2 (en) Tunnel front face exploration method and exploration system
Celada et al. The use of the specific drilling energy for rock mass characterisation and TBM driving during tunnel construction
JP2749561B2 (en) Rock exploration method
Sundin et al. A boreability model for TBM's
JP3856392B2 (en) Evaluation method of natural ground in front of ground excavation part
Peck Performance monitoring of rotary blasthole drills
Thakur et al. An investigation into the effect of rock properties on drill bit life
JPH10252051A (en) Method for determining nature of natural ground

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees