JPH08143864A - Modified cross-section staple fiber for reinforcing soil, reinforced soil using the same staple fiber and execution of reinforced soil - Google Patents

Modified cross-section staple fiber for reinforcing soil, reinforced soil using the same staple fiber and execution of reinforced soil

Info

Publication number
JPH08143864A
JPH08143864A JP31131694A JP31131694A JPH08143864A JP H08143864 A JPH08143864 A JP H08143864A JP 31131694 A JP31131694 A JP 31131694A JP 31131694 A JP31131694 A JP 31131694A JP H08143864 A JPH08143864 A JP H08143864A
Authority
JP
Japan
Prior art keywords
soil
fiber
section
cross
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31131694A
Other languages
Japanese (ja)
Inventor
Hiroshi Miki
博史 三木
Yoshiyuki Hayashi
義之 林
Shinichi Fukuyama
慎一 福山
Haruo Horiuchi
晴生 堀内
Yuji Nagasaka
勇二 長坂
Yasuhiro Okamura
康弘 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOBOKU KENKYU CENTER
MITSUI SEKIKA SANSHI KK
S L S KK
SANSHIN KENSETSU KOGYO KK
Minister for Public Works for State of New South Wales
Mitsubishi Chemical Corp
Teijin Ltd
Toyobo Co Ltd
Kumagai Gumi Co Ltd
Okumura Corp
Konoike Construction Co Ltd
Mitsubishi Construction Co Ltd
Hirose and Co Ltd
National Research and Development Agency Public Works Research Institute
Original Assignee
DOBOKU KENKYU CENTER
MITSUI SEKIKA SANSHI KK
S L S KK
SANSHIN KENSETSU KOGYO KK
Minister for Public Works for State of New South Wales
Mitsubishi Chemical Corp
Teijin Ltd
Toyobo Co Ltd
Public Works Research Institute Ministry of Construction
Kumagai Gumi Co Ltd
Okumura Corp
Konoike Construction Co Ltd
Mitsubishi Construction Co Ltd
Hirose and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOBOKU KENKYU CENTER, MITSUI SEKIKA SANSHI KK, S L S KK, SANSHIN KENSETSU KOGYO KK, Minister for Public Works for State of New South Wales, Mitsubishi Chemical Corp, Teijin Ltd, Toyobo Co Ltd, Public Works Research Institute Ministry of Construction, Kumagai Gumi Co Ltd, Okumura Corp, Konoike Construction Co Ltd, Mitsubishi Construction Co Ltd, Hirose and Co Ltd filed Critical DOBOKU KENKYU CENTER
Priority to JP31131694A priority Critical patent/JPH08143864A/en
Publication of JPH08143864A publication Critical patent/JPH08143864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PURPOSE: To obtain a fiber material, readily and uniformly dispersible in soil, efficiently and economically providing reinforcing effects on soil and useful for reinforcing the soil, reinforced soil using the fiber material and a simple method for executing the reinforced soil. CONSTITUTION: This modified cross-section staple fiber for reinforcing soil is a noncrimped staple fiber having 0.5-150 denier single fiber size, 10-200mm fiber length and 1.2-3.0 modification degree of the cross section of the fiber [with the proviso that the modification degree is a ratio D/d of the diameter D of the circumscribed circle in the fiber cross section to the diameter (d) the solid round fiber of the same size]. Furthermore, the reinforced soil uses the staple fiber and the method for executing the reinforced soil is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、土壌補強用に適した異
形断面短繊維に関し、さらに詳細には土壌に混入して補
強土を製造する際に、土壌中に容易に分散・混合するこ
とができ、降雨などによる土壌の侵食を防ぎ、優れた補
強効果が得られる土壌補強用繊維材料に適した土壌補強
用異形断面短繊維に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a modified cross-section short fiber suitable for soil reinforcement, and more particularly, to easily disperse and mix it in soil when it is mixed with soil to produce reinforced soil. The present invention relates to a soil-reinforcing modified cross-section short fiber suitable for a soil-reinforcing fiber material, which can prevent soil erosion due to rainfall or the like and has an excellent reinforcing effect.

【0002】[0002]

【従来の技術】近年、合成繊維からなる織編布、不織
布、ネットなどのジオテキスタイルと呼ばれる材料で土
壌を補強する方法が開発され、広く適用されている。し
かしながら、これらの方法は、いずれも土壌を骨格構造
により補強しようとするものであり、用いられる補強材
料は、現場施工の手間を多く必要とし、また補強効果も
方向性を有し、位置により強度に差が生ずるという欠点
を有する。
2. Description of the Related Art In recent years, a method for reinforcing soil with a material called geotextile such as woven / knitted cloth, non-woven cloth and net made of synthetic fibers has been developed and widely applied. However, all of these methods attempt to reinforce the soil with a skeletal structure, and the reinforcing material used requires a lot of labor for on-site construction, and the reinforcing effect also has directionality and strength depending on the position. There is a drawback that there is a difference in

【0003】この欠点を改良する方法として、特開昭5
5−167170号公報、特開平2−88812号公報
(第3回ジオテキスタイル会議、E.ルフレーヴ等報告
「連続長繊維による土壌の補強」)などには、例えばポ
リエステル長繊維と土壌とを、施工面上で混合して逐次
締め固めを行い、長繊維を土壌中に三次元的にランダム
混入する方法が開示されている。しかしながら、これら
の方法は、長繊維の供給手段に高圧流体流を用いるた
め、施工装置が大掛かりとなり、エネルギーコストも高
くつくという問題がある。しかも、大量の土壌と長繊維
を効率よく均一に混合することも困難である。
As a method for remedying this drawback, Japanese Patent Laid-Open No. Sho 5 (1993) -58
No. 5-167170, JP-A No. 2-88812 (3rd Geotextile Conference, E. Lefreve et al. Report “Reinforcement of soil with continuous long fibers”), for example, polyester long fibers and soil are used. A method is disclosed in which long fibers are randomly mixed into soil three-dimensionally by mixing the above and sequentially compacting. However, since these methods use a high-pressure fluid flow as a long fiber supply means, there is a problem that the construction apparatus becomes large and the energy cost becomes high. Moreover, it is difficult to efficiently and uniformly mix a large amount of soil and long fibers.

【0004】一方、特開昭57−100212号公報に
は、短線材を土壌中に不定方向に分散・混合する方法が
提案されている。しかしながら、具体的に提案されてい
る短線材は、厚さ0.05mm、巾1.0mmの断面長
方形の合成樹脂フィルム(ポリエチレンテレフタレート
繊維換算で、単繊維繊度が約640デニールに相当す
る)と極めて太いため、土壌中に一定重量混合した場合
の繊維の混合密度(本数)が少なくなって、補強効果が
低下するので、配合比を高くする必要がある。この欠点
を解決するために、短線材の太さを細くしようとすれ
ば、短線材が屈曲し易くなって土壌の補強効果が低下す
るという問題が発生する。
On the other hand, Japanese Patent Application Laid-Open No. 57-100212 proposes a method of dispersing and mixing short wire rods in soil in an indeterminate direction. However, a concretely proposed short wire is a synthetic resin film having a rectangular cross section with a thickness of 0.05 mm and a width of 1.0 mm (equivalent to a single fiber fineness of about 640 denier in terms of polyethylene terephthalate fiber). Since it is thick, the mixing density (number) of fibers when mixed in a constant weight in the soil is small, and the reinforcing effect is reduced, so it is necessary to increase the mixing ratio. If it is attempted to reduce the thickness of the short wire in order to solve this drawback, there arises a problem that the short wire easily bends and the soil reinforcing effect is reduced.

【0005】また、特開平2−55786号公報には、
短繊維材料と土壌とを特殊な混合装置を用いて均一に混
合することが開示されている。この方法によれば、繊維
の均一混合が容易で、かつ補強効果は向上するものの、
単繊維繊度が小さい場合には、前述と同様に屈曲し易
く、土壌の補強効果が低下するといった問題を解決する
ことができない。
Further, Japanese Patent Laid-Open No. 2-55786 discloses that
It is disclosed that the short fiber material and the soil are uniformly mixed using a special mixing device. According to this method, although it is easy to uniformly mix the fibers and the reinforcing effect is improved,
When the monofilament fineness is small, it is easy to bend as described above, and the problem that the reinforcing effect of soil is lowered cannot be solved.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来技
術の課題を背景になされたもので、土壌中に容易に均一
分散することができ、降雨による土壌の侵食を防ぎ、効
率的かつ経済的に土壌の補強効果が得られる土壌補強用
の繊維材料、これを用いた土壌補強土、さらに土壌補強
土の簡便な施工方法に関する。
The present invention has been made against the background of the above-mentioned problems of the prior art, and can be easily and uniformly dispersed in soil to prevent soil erosion due to rainfall, which is efficient and economical. TECHNICAL FIELD The present invention relates to a fiber material for soil reinforcement that can effectively obtain soil reinforcement effect, a soil-reinforced soil using the same, and a simple construction method for the soil-reinforced soil.

【0007】[0007]

【課題を解決するための手段】本発明は、単繊維繊度が
0.5〜150デニール、繊維長が10〜200mmの
無捲縮短繊維であって、かつ該繊維の横断面の異形度
(ただし、異形度は、繊維横断面の最大外接円直径D
と、同一繊度の中実真円繊維の直径dとの比D/dであ
る)が1.2〜3.0であることを特徴とする土壌補強
用異形断面短繊維(以下「短繊維」と略記することがあ
る)である。また、本発明は、前記土壌補強用異形断面
短繊維を0.2〜0.4重量%含有し、土砂類がほぼ残
量であり、かつこれらが主体をなしていることを特徴と
する土壌補強土である。さらに、本発明は、前記土壌補
強用異形断面短繊維を、キャタピラ上の架台に載置した
開繊性シリンダで開繊したのち吹き出して土壌表面に散
布すると同時に、該キャタピラ後方に付設したスタビラ
イザにより土壌を巻き上げ、該短繊維と該土壌を混合す
る一連の操作を、キャタピラを一定方向に移動しながら
連続的に行うことを特徴とする土壌補強土の施工方法で
ある。
SUMMARY OF THE INVENTION The present invention is a non-crimped short fiber having a single fiber fineness of 0.5 to 150 denier and a fiber length of 10 to 200 mm, and the degree of irregularity of the cross section (provided that , Deformation is the maximum circumscribed circle diameter D of the fiber cross section
And the ratio D / d with the diameter d of the solid round fiber having the same fineness) is 1.2 to 3.0, and a modified cross-section short fiber for soil reinforcement (hereinafter referred to as "short fiber"). May be abbreviated). In addition, the present invention comprises the soil-reinforcing modified cross-section short-fibers in an amount of 0.2 to 0.4% by weight, and the amount of earth and sand is almost the remaining amount, and these are the main constituents of the soil. It is reinforced soil. Further, the present invention, the soil reinforcing modified cross-section short fibers, after being opened by a fiber-opening cylinder placed on a frame on a caterpillar and then sprayed on the soil surface, at the same time by a stabilizer attached to the rear of the caterpillar. A method for constructing soil-reinforcing soil, characterized in that a series of operations of rolling up soil and mixing the short fibers and the soil are continuously performed while moving a caterpillar in a certain direction.

【0008】本発明の土壌補強用異形断面短繊維は、土
壌に均一に分散・混合したときの補強効果の点から、そ
の単繊維繊度は0.5〜150デニール、好ましくは5
〜50デニール、さらに好ましくは10〜30デニール
である。単繊維繊度が0.5デニール未満では、短繊維
の力学的特性の絶対値が小さくなって、土壌中に混合し
た際に繊維の折れ曲がりが発生したり、短繊維どうしが
互いに交絡してファイバーボール状となったりして、補
強効果が低下する傾向があり好ましくない。一方、単繊
維繊度が150デニールを超える場合には、土壌中に混
合される繊維の本数が低下するため、土壌補強効果が低
下するという問題があり、これを補うためには、短繊維
の混合割合を増加させる必要があり、コスト高となり好
ましくなく、さらには繊維自重が重くなるため、土壌と
混合するに先立って行われる短繊維の開繊性も低下する
という問題がある。
The deformed short fiber for soil reinforcement of the present invention has a single fiber fineness of 0.5 to 150 denier, preferably 5 from the viewpoint of a reinforcing effect when uniformly dispersed and mixed in soil.
-50 denier, more preferably 10-30 denier. If the single fiber fineness is less than 0.5 denier, the absolute value of the mechanical properties of the short fibers becomes small, and when the fibers are mixed in the soil, the fibers may bend or the short fibers may be entangled with each other to form a fiber ball. And the reinforcing effect tends to decrease, which is not preferable. On the other hand, when the single fiber fineness exceeds 150 denier, the number of fibers mixed in the soil decreases, so that there is a problem that the soil reinforcing effect decreases, and in order to compensate for this, mixing short fibers is necessary. It is necessary to increase the proportion, which is costly and not preferable, and further, the weight of the fiber itself becomes heavy, so that there is a problem that the openability of the short fibers performed before mixing with the soil is also deteriorated.

【0009】また、この土壌補強用異形断面短繊維の繊
維長は、土壌中への混合・分散性の点からは短い方が好
ましく、一方土壌補強効果の点からは長い方が好まし
い。従って、これらのバランスを取る必要があり、かか
る短繊維の繊維長は、10〜200mm、好ましくは2
0〜100mm、さらに好ましくは30〜50mmであ
る。この繊維長が、10mm未満では土壌補強効果が不
充分となり、一方200mmを超えると土壌中への均一
分散が極めて困難となるので好ましくない。なお、単繊
維繊度が、上記範囲の低い方にある場合、単繊維として
の力学的特性の絶対値、特に曲げ弾性率が小さくなっ
て、短繊維どうしが交絡し易くなるので繊維長は上記範
囲で短い方の範囲とすることが望ましい。
The fiber length of the modified cross-section short fiber for soil reinforcement is preferably short from the viewpoint of mixing / dispersing properties in soil, while it is preferably long from the viewpoint of soil reinforcement effect. Therefore, it is necessary to balance these, and the fiber length of such short fibers is 10 to 200 mm, preferably 2
It is 0 to 100 mm, more preferably 30 to 50 mm. If the fiber length is less than 10 mm, the soil reinforcing effect will be insufficient, while if it exceeds 200 mm, uniform dispersion in the soil will be extremely difficult, which is not preferable. Incidentally, when the single fiber fineness is in the lower part of the above range, the absolute value of the mechanical properties of the single fiber, especially the bending elastic modulus becomes small, and the short fibers are easily entangled, so the fiber length is in the above range. It is desirable to set the shorter range.

【0010】さらに、本発明の土壌補強用異形断面短繊
維は、捲縮を実質的に有していない無捲縮短繊維である
ことが必要である。実質的な捲縮を有する短繊維では、
繊維の開繊性が低下するため、土壌中に混合する際の混
合・分散性が低下して、充分な補強効果が得られなくな
る。なお、ここでいう捲縮を実質的に有していない「無
捲縮短繊維」とは、繊維を土壌中に分散・混合させる際
に開繊機により繊維の開繊が行える範囲内で捲縮を有し
ていてもよいことを意味し、繊維を構成する重合体の種
類、繊度によっても変わるが、通常は、3ケ/25mm
以下の捲縮を有していても構わない。
Furthermore, the modified cross-section short fiber for soil reinforcement of the present invention is required to be a non-crimped short fiber having substantially no crimp. With staple fibers having a substantial crimp,
Since the fiber openability decreases, the mixing / dispersing property when mixing in the soil decreases, and a sufficient reinforcing effect cannot be obtained. The term "crimpless short fibers" which does not substantially have crimps as used herein means crimps within a range in which the fibers can be opened by a fiber opening machine when the fibers are dispersed and mixed in soil. It means that it may be present, and it usually depends on the type and fineness of the polymer constituting the fiber, but usually 3 pieces / 25 mm
It may have the following crimps.

【0011】本発明においては、上記特性に加えて、繊
維横断面の異形度が1.2〜3.0、好ましくは1.5
〜2.5の範囲にあることが必要である。異形度が1.
2未満の場合には、土壌と短繊維との間に充分な摩擦抵
抗が発現し難くなるため、繊維の土壌中への分散性が低
下し、また曲げ弾性も低下して、土壌中で屈曲し易くな
り、補強効果が不充分となる。一方、異形度が3.0を
超えると、繊維横断面において厚さが薄くなり過ぎ、繊
維の曲げ弾性が低下して繊維が絡み易くなり、土壌中へ
の分散性が低下するため好ましくない。ここで、異形度
とは、繊維横断面の最大外接円直径Dと、該繊維と同一
繊度の中実真円繊維の直径dとの比D/dであり、この
値を上記範囲にするとき、単繊維繊度が150デニール
以下と細繊度であっても、繊維と土壌との摩擦が充分大
きいので、土壌中への繊維分散が均一になって、充分な
補強効果が得られるのである。
In the present invention, in addition to the above characteristics, the degree of irregularity of the cross section of the fiber is 1.2 to 3.0, preferably 1.5.
It must be in the range of ~ 2.5. The degree of irregularity is 1.
When it is less than 2, it is difficult to develop sufficient frictional resistance between the soil and the short fibers, so that the dispersibility of the fibers in the soil is lowered and the flexural elasticity is also lowered, so that the fibers bend in the soil. And the reinforcing effect is insufficient. On the other hand, if the degree of irregularity exceeds 3.0, the thickness becomes too thin in the cross section of the fiber, the flexural elasticity of the fiber is reduced, the fiber is easily entangled, and the dispersibility in soil is reduced, which is not preferable. Here, the degree of irregularity is the ratio D / d of the maximum circumscribed circle diameter D of the fiber cross section and the diameter d of the solid true circular fiber of the same fineness as the fiber, and when this value is in the above range Even if the single fiber fineness is as fine as 150 denier or less, the friction between the fiber and the soil is sufficiently large so that the fibers are uniformly dispersed in the soil and a sufficient reinforcing effect is obtained.

【0012】繊維の横断面形状は、異形度が上記範囲に
あれば、特に限定されるものではなく、H型、串団子
型、十字型、Y型、馬蹄型、多角形型、偏平型、偏平4
ツダンゴ型、中空型などの様々な形状から選ぶことがで
きる。なかでも、繊維横断面形状が、H型や串団子型、
十字型を有する短繊維は、繊維軸方向に連続した凹凸部
を有するため、繊維軸に垂直方向に作用する力に容易に
反応し、繊維を開繊する際の空気の作用を受けやすく、
開繊性が促進される。さらに、これらの断面形状を有す
る短繊維は、同一繊度の丸断面繊維と比較して、曲げ弾
性率が大きいので、土壌中での繊維の屈曲も少なくなっ
ており、これらの効果とあいまって土壌の補強効果が一
層向上する。
The cross-sectional shape of the fiber is not particularly limited as long as the degree of irregularity is within the above range, and is H-shaped, skewer dumpling-shaped, cross-shaped, Y-shaped, horseshoe-shaped, polygonal-shaped, flat-shaped, Flat 4
It is possible to select from various shapes such as a Tsudango type and a hollow type. Among them, the cross-sectional shape of the fiber is H-shaped, skewered dumpling-shaped,
Since the short fibers having a cross shape have a concavo-convex portion continuous in the fiber axis direction, they easily react to a force acting in the direction perpendicular to the fiber axis and are easily affected by air when opening the fiber,
Spreadability is promoted. Furthermore, since the short fibers having these cross-sectional shapes have a higher bending elastic modulus than the round cross-section fibers having the same fineness, the bending of the fibers in the soil is also small, and in combination with these effects, the soil is The reinforcing effect of is further improved.

【0013】本発明の短繊維を構成する重合体として
は、繊維形成能のある重合体であれば特に限定されるも
のではなく、例えばポリエチレンテレフタレート、ポリ
ブチレンテレフタレートなどのポリエステル、ポリカプ
ロラクタム、ポリヘキサメチレンアジパミドなどのポリ
アミド、ポリエチレン、ポリプロピレンなどのポリオレ
フィン、そのほかポリアクリルアミド、ポリ塩化ビニ
ル、アセチルセルロース、ビニロンなどが挙げられる。
なかでも、溶融紡糸可能な熱可塑性重合体は、上記異形
度の異形断面繊維を容易に得ることができるので特に好
ましい。
The polymer constituting the short fibers of the present invention is not particularly limited as long as it is a polymer capable of forming fibers, and examples thereof include polyesters such as polyethylene terephthalate and polybutylene terephthalate, polycaprolactam and polyhexa. Examples thereof include polyamides such as methylene adipamide, polyolefins such as polyethylene and polypropylene, and polyacrylamide, polyvinyl chloride, acetyl cellulose, vinylon and the like.
Among them, the melt-spinnable thermoplastic polymer is particularly preferable because the modified cross-section fibers having the above-mentioned degree of irregularity can be easily obtained.

【0014】土壌補強土を施工する操作は、任意の方法
を採用することができ、使用形態に応じて合理的な方法
を選択すればよい。例えば、開繊した短繊維をシャワ
ー状に散布すると同時に、土壌を開繊された短繊維に衝
突させて混合する方法、あるいは開繊した短繊維を施
工場所に散布したのち、土壌と攪拌混合する方法などが
挙げられる。また、請求項3記載の土壌補強土をあらか
じめ作成し、これを施工する方法もある。土壌補強土の
作成は、通常の混合機で使用して行うことができる。混
合機としては、特に制限されないが、例えば、繊維混合
セメントの場合に用いられるオムニミキサー、コンクリ
ートミキサー専用の混合機、複合リボンミキサーを使用
した混合機を用いることができる。得られる混合土(土
壌補強土)は、通常の土壌と同様に取り扱うことがで
き、またそのまま施工することができるので、施工作業
も、法面形成機械を用いて転圧被覆したり、ローラコン
パクダーなどで転圧したりするなど、通常の方法で行う
ことができる。
As an operation for constructing the soil-reinforcing soil, any method can be adopted, and a rational method may be selected according to the usage form. For example, a method of spraying the opened short fibers in a shower shape and at the same time mixing the soil by colliding it with the opened short fibers, or after spraying the opened short fibers to the construction site, stirring and mixing with the soil Method etc. are mentioned. Further, there is also a method of preparing the soil-reinforcing soil according to claim 3 in advance and constructing it. The soil-reinforced soil can be prepared by using an ordinary mixer. The mixer is not particularly limited, but for example, an omni mixer used in the case of fiber-mixed cement, a mixer dedicated to a concrete mixer, or a mixer using a composite ribbon mixer can be used. The obtained mixed soil (soil reinforced soil) can be handled in the same way as ordinary soil and can be applied as it is, so construction work can also be performed by roll compaction using a slope forming machine or roller compaction. It can be carried out by an ordinary method such as rolling with a dipper.

【0015】短繊維の土壌への混合比率は、目的に応じ
て適宜変更すればよいが、通常は土壌に対して0.01
〜1.0重量%、好ましくは0.1〜0.5重量%、最
も好ましくは0.2〜0.4重量%の範囲である。0.
2〜0.4重量%とすることにより、施工した際、降雨
による土壌の流出を防ぐ効果に優れたものとなる。ま
た、この混合比率が0.01重量%未満の場合には、補
強効果が不充分であり、一方1.0重量%を超えると、
補強効果は充分であるものの、短繊維の均等分散が困難
となり、また経済的にも不利なものとなるので好ましく
ない。なお、本発明の短繊維が混合される対象となる土
壌としては、特に制限されるものではないが、日本統一
土壌分類によるGF(礫質土)、S(砂)、SF(砂質
土)、SM(砂質土)などが最適である。
The mixing ratio of the short fibers to the soil may be appropriately changed according to the purpose, but usually 0.01 to the soil.
˜1.0 wt%, preferably 0.1 to 0.5 wt%, most preferably 0.2 to 0.4 wt%. 0.
When the content is 2 to 0.4% by weight, the effect of preventing the soil from flowing out due to rainfall becomes excellent at the time of construction. If the mixing ratio is less than 0.01% by weight, the reinforcing effect is insufficient, while if it exceeds 1.0% by weight,
Although the reinforcing effect is sufficient, it is not preferable because it is difficult to uniformly disperse the short fibers and it is economically disadvantageous. The soil to which the short fibers of the present invention are mixed is not particularly limited, but GF (gravel soil), S (sand), SF (sandy soil) according to the Japan Unified Soil Classification. , SM (sandy soil), etc. are most suitable.

【0016】次に、本発明の土壌補強土の施工方法を説
明する。図1は、本発明の短繊維と土壌とを分散・混合
する施工装置の概略図であり、キャタピラK上に図示し
ない架台を介してホッパ11、スパイクラチス12、ベ
ルトコンベア13、開繊性シリンダ14が載置されると
ともに、キャタピラKの後方にスタビライザ15が付設
されている。本発明の短繊維Fは、ホッパ11にあらか
じめ一定量貯留され、この短繊維Fはスパクラチス12
により一定量供給されて、ベルトコンベア13を経て開
繊性シリンダ14に供給され、該開繊性シリンダ14で
開繊されるとともに、回転する開繊性シリンダ14の空
気流により吹き出されて、シャワー状に土壌表面(地
面)に散布され、同時にスタビライザ15により巻き上
げられた土壌Sと混合されて、補強土FSが形成され、
補強土の施工が行われる。施工にともない、キャタピラ
Kは前方へ移動することにより、連続的に土壌の補強が
行われる。なお、図1は、スタビライザ15を図示しな
い土壌表面に設置した状態で、土壌Sに短繊維Fを同時
に分散・混合する事例であるが、スタビライザ15を土
壌表面よりも上に回動しておいて、まず短繊維Fのみを
土壌表面に散布するようにしてもよい。この場合には、
開繊性シリンダ14の空気流によって、まず短繊維Fの
みを開繊した状態で土壌表面にシャワー状に散布してお
き、次いで短繊維Fの散布を停止して、スタビライザ1
5を下方に回動して、土壌表面と接地させ、このスタビ
ライザ15により土壌表面に散布された短繊維Fと土壌
Sの混合を行って、補強土FSを形成させてもよい。
Next, a method of constructing the soil reinforced soil of the present invention will be described. FIG. 1 is a schematic view of a construction device for dispersing and mixing short fibers and soil according to the present invention, in which a hopper 11, a spike lattice 12, a belt conveyor 13 and a fiber-splitting cylinder are mounted on a caterpillar K via a mount (not shown). 14 is placed, and a stabilizer 15 is attached to the rear of the caterpillar K. A certain amount of the short fibers F of the present invention are stored in advance in the hopper 11, and the short fibers F are used in the spacratis 12.
Is supplied to the opening fiber cylinder 14 via the belt conveyor 13 and is opened by the opening fiber cylinder 14 and is blown out by the air flow of the rotating opening fiber cylinder 14 to make a shower. In the shape of the soil (ground) and at the same time mixed with the soil S rolled up by the stabilizer 15 to form the reinforced soil FS,
Reinforced soil is constructed. With the construction, the caterpillar K moves forward to continuously reinforce the soil. It should be noted that FIG. 1 shows an example in which the short fibers F are simultaneously dispersed and mixed in the soil S in a state where the stabilizer 15 is installed on the soil surface not shown, but the stabilizer 15 is rotated above the soil surface. Alternatively, first, only the short fibers F may be sprinkled on the soil surface. In this case,
By the air flow of the fiber-opening cylinder 14, first, only the short fibers F are spread in a shower state on the soil surface in a state where the short fibers F are opened, and then the short fibers F are stopped and the stabilizer 1
The reinforcing soil FS may be formed by rotating 5 downwardly to bring it into contact with the soil surface, and mixing the short fibers F and soil S scattered on the soil surface by the stabilizer 15.

【0017】[0017]

【作用】本発明は、土壌中に繊維を三次元的に均一に混
合・分散させるためには、繊維自体の開繊性を高めると
ともに、土壌と繊維との間の摩擦を高めることが有効で
あるという知見に基づいてなされたものであり、単繊維
繊度、繊維長、繊維横断面の異形度が特定範囲内にある
無捲縮短繊維を採用することにより、開繊性、分散性お
よび土壌の補強効果を向上させた。また、土壌に短繊維
を混合することにより形成された土壌補強土は、短繊維
の混合割合を特定範囲内とすることにより、土壌補強効
果を向上させた。さらに、短繊維の開繊性、分散性の向
上に着目して、開繊性シリンダによる短繊維の散布と、
スタビライザによる土壌の巻き上げを組み合わせること
により、土壌補強土の作成と施工を同時に行い、作業の
効率化を図った。
In the present invention, in order to uniformly mix and disperse the fibers in the soil three-dimensionally, it is effective to improve the openability of the fibers themselves and also to increase the friction between the soil and the fibers. It was made based on the finding that there is a single fiber fineness, fiber length, and the degree of irregularity of the fiber cross-section is within a specific range. Improved the reinforcing effect. In addition, the soil-reinforcing soil formed by mixing short fibers into the soil improved the soil-reinforcing effect by setting the mixing ratio of the short fibers within the specific range. Furthermore, paying attention to the improvement of the openability and dispersibility of the short fibers, the spreading of the short fibers by the openable cylinder,
By combining the winding of soil with a stabilizer, we created and constructed soil-reinforcing soil at the same time to improve work efficiency.

【0018】[0018]

【実施例】以下、実施例を挙げて本発明をさらに詳細に
説明する。実施例1 図1に示す施工装置を用い、表1〜2記載の断面形状、
異形度、繊度、繊維長および捲縮数を有するポリエチレ
ンテレフタレート短繊維Fをホッパ11に投入し、スパ
イクラチス12により供給速度を調整しながらベルトコ
ンベア13により搬送させて、開繊性シリンダ14にて
該短繊維Fを開繊したのち、上方に回動させて土壌表面
に接地させない状態で回転する開繊性シリンダ14の風
力により、該短繊維Fを土壌表面に散布し、次いでスタ
ビライザ15を下方に回動して土壌表面に接地させ、散
布された短繊維Fと土壌とを混合して混合土を作製し
た。なお、使用した土壌は、日本統一土質分類のSM
(砂質土)で、繊維混合比率は土壌に対して0.2重量
%とした。結果を表1〜2に示す。
EXAMPLES The present invention will be described in more detail with reference to examples. Example 1 Using the construction apparatus shown in FIG. 1, the cross-sectional shape described in Tables 1 and 2,
Polyethylene terephthalate short fibers F having irregularity, fineness, fiber length and number of crimps are put into a hopper 11, and are conveyed by a belt conveyor 13 while adjusting a supply speed by a spike lattice 12, and a spreadable cylinder 14 is used. After opening the short fibers F, the short fibers F are sprinkled on the soil surface by the wind force of the openable cylinder 14 which is rotated upward and is rotated without contacting the soil surface, and then the stabilizer 15 is moved downward. The soil was spun on the soil surface, and the short fibers F scattered were mixed with the soil to prepare a mixed soil. The soil used is SM of Japan's unified soil classification.
(Sandy soil), and the fiber mixing ratio was 0.2% by weight with respect to the soil. The results are shown in Tables 1-2.

【0019】ここで、実施例中の各評価項目は、下記の
方法に従って測定したものである。 土壌表面での繊維の開繊性 図1に示す施工装置を用いて、土壌表面に短繊維を散布
し目視により評価した。 ◎;極めて良好(土壌表面に単糸状に開繊され、均一に
散布されている。) ○;良好(土壌表面に単糸状に開繊されているものの、
若干の散布ムラがみられる。) △;やや不良(土壌表面に均一散布されてはいるが、局
部的に開繊不良がみられる。) ×;不良(土壌表面に開繊不良および散布ムラが局部的
にみられる。)
Here, each evaluation item in the examples is measured according to the following method. Fiber openability on soil surface Using the construction device shown in FIG. 1, short fibers were sprayed on the soil surface and evaluated visually. ⊚: Very good (single filaments are spread on the soil surface and evenly distributed.) ○: Good (although the filaments are spread on the soil surface,
Some dispersion unevenness is seen. ) Δ: Slightly poor (although evenly spread on the soil surface, defective opening is locally observed) ×: Poor (defective opening and uneven spraying are locally observed on the soil surface)

【0020】土壌中での繊維の分散性 作製した混合土(補強土)から、テストピースをサンプ
リングし、テストピース中の繊維の分散性を目視により
定性評価した。 ◎;極めて良好(短繊維が土壌中に均一に分散・混合さ
れている。) ○;良好(短繊維が土壌中に均一に分散されているもの
の、若干の混合ムラがみられる。) △;やや不良(短繊維が土壌中に局部的に開繊不良を生
じ、また若干の混合ムラがみられる。) ×;不良(短繊維が土壌中に開繊不良および混合ムラが
多い状態で混合されている。) なお、前記開繊性および分散性において、開繊不良
とは、短繊維が10本程度まとまって存在している状態
をいう。
Dispersibility of Fibers in Soil A test piece was sampled from the prepared mixed soil (reinforcement soil), and the dispersibility of fibers in the test piece was qualitatively evaluated visually. ⊚: Very good (short fibers are uniformly dispersed and mixed in the soil) ○: Good (although short fibers are uniformly dispersed in the soil, some mixing unevenness is observed) Δ: Slightly poor (short fibers locally cause poor opening in the soil and some uneven mixing is observed.) ×; Bad (short fibers are mixed in the soil with poor opening and uneven mixing) In addition, in the above-mentioned openability and dispersibility, defective opening means a state in which about 10 short fibers are present together.

【0021】 最大主応力差 作製した混合土から、三軸圧縮試験用テストピース(直
径10cm、高さ20cmの円柱体)をサンプリング
し、側圧1kg重/cm2 で3軸圧縮試験を実施し、応
力・歪み曲線を求め、最大主応力差を評価した。なお、
最大主応力差は、主応力差(σ1 −σ3 )・歪み曲線の
降伏点から求められる主応力差であり、繊維と土壌との
間に発生する摩擦力に対応し、補強効果を表す。 エローション抵抗性 作製した混合土を40cm×100cm×20cm(深
さ)の排水性のある木箱に詰め、締固めを行い表面を平
滑に成形した。これを図3に示すように、45°の勾配
をつけて設置し、上方約4m高の散水ノズルから降水強
度100mm/hrの人工降雨を約4時間与え、流出土
量を測定し、評価を行った。 ◎;極めて良好(流出土量;0〜10g/hr) ○;良好( 〃 ;11〜20g/hr) △;やや不良( 〃 ;21〜30g/hr) ×;不良( 〃 ;31g/hr以上)
Maximum Principal Stress Difference A test piece for a triaxial compression test (a cylindrical body having a diameter of 10 cm and a height of 20 cm) was sampled from the prepared mixed soil, and a triaxial compression test was performed at a lateral pressure of 1 kgf / cm 2 . The stress-strain curve was obtained and the maximum principal stress difference was evaluated. In addition,
The maximum principal stress difference is the principal stress difference obtained from the principal stress difference (σ 1 −σ 3 ) / yield point of the strain curve, which corresponds to the frictional force generated between the fiber and soil and represents the reinforcing effect. . Erosion resistance The prepared mixed soil was packed in a 40 cm × 100 cm × 20 cm (depth) draining wooden box and compacted to form a smooth surface. As shown in Fig. 3, this was installed with a slope of 45 °, and artificial rain with a precipitation intensity of 100 mm / hr was applied for about 4 hours from a sprinkling nozzle with a height of about 4 m above, and the runoff volume was measured and evaluated. went. ⊚: Very good (outflowing soil amount: 0 to 10 g / hr) ○: Good (〃; 11 to 20 g / hr) △: Slightly poor (〃; 21 to 30 g / hr) ×: Poor (〃; 31 g / hr or more )

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】注)表1〜2中、*印は比較例を示す。表
1〜2から明らかなように、本発明の範囲内の短繊維
(実験No. 1〜5、8〜13、16〜20、23〜2
4)は、いずれも開繊性、分散性に優れ、最大主応力差
が大きく、エロージョン抵抗性も良好であったことか
ら、補強効果および耐降雨性に優れていることが分か
る。これに対し、実験No. 6は、異形度が高すぎるた
め、繊維横断面において厚さが薄すぎて、繊維の曲げ弾
性率が低下し、繊維が絡み易くなるため、開繊性、分散
性が劣り、最大主応力差も低く、エロージョン抵抗性も
良くない。実験No. 7は、単繊維繊度が小さすぎるた
め、繊維の力学的絶対値が小さくなり、開繊性、分散性
が劣り、最大主応力差も低く、エロージョン抵抗性も良
くない。実験No.14は、単繊維繊度が大きすぎて、繊
維の自重が重くなり、また土壌に混合する繊維本数も少
なくなるため、開繊性が非常に悪く、分散性にも劣り、
最大主応力差も低く、エロージョン抵抗性も良くない。
実験No. 15は、繊維長が短すぎるため、開繊性、分散
性は良好ではあるが、最大主応力差が低いことから明ら
かなように補強効果が不充分である。実験No. 21は、
繊維長が長すぎて、開繊性に劣り、分散性が非常に悪
く、最大主応力差も低いうえ、エロージョン抵抗性も良
くない。実験No. 22および実験No. 25は、短繊維に
実質的に捲縮がかかっているため、開繊性に劣り、分散
性が悪く、最大主応力差も低く、エロージョン抵抗性も
良くない。実験No. 26は、断面形状が真円であり、異
形度が低いため、曲げ弾性率が低く、かつ土壌と短繊維
との間に充分な摩擦抵抗が発現し難いので、分散性に劣
り、最大主応力差も低く、エロージョン抵抗性も良くな
い。実験No. 27は、断面形状が偏平すぎて異形度が高
く、かつ単繊維繊度も大きいため、最大主応力差が低
く、補強効果が不充分である。
Note) In Tables 1 and 2, * indicates a comparative example. As is clear from Tables 1 and 2, short fibers within the scope of the present invention (Experiment Nos. 1 to 5, 8 to 13, 16 to 20, 23 to 2)
Since all of 4) were excellent in openability and dispersibility, had a large maximum principal stress difference, and had good erosion resistance, it was found that the reinforcing effect and the rainfall resistance were excellent. On the other hand, in Experiment No. 6, since the degree of irregularity is too high, the thickness in the cross section of the fiber is too thin, the flexural modulus of the fiber is lowered, and the fiber is easily entangled. Is poor, the maximum principal stress difference is low, and the erosion resistance is not good. In Experiment No. 7, since the single fiber fineness is too small, the mechanical absolute value of the fiber becomes small, the openability and dispersibility are poor, the maximum principal stress difference is low, and the erosion resistance is not good. In Experiment No. 14, the monofilament fineness is too large, the weight of the fibers becomes heavy, and the number of fibers mixed in the soil also becomes small, so the openability is very poor and the dispersibility is also poor.
The maximum principal stress difference is also low and the erosion resistance is not good.
In Experiment No. 15, since the fiber length is too short, the openability and dispersibility are good, but the reinforcing effect is insufficient as apparent from the fact that the maximum principal stress difference is low. Experiment No. 21
The fiber length is too long, the openability is poor, the dispersibility is very poor, the maximum principal stress difference is low, and the erosion resistance is not good. In Experiment No. 22 and Experiment No. 25, the short fibers were substantially crimped, so that the openability was poor, the dispersibility was poor, the maximum principal stress difference was low, and the erosion resistance was also poor. In Experiment No. 26, the cross-sectional shape was a perfect circle and the degree of irregularity was low, so the flexural modulus was low, and sufficient frictional resistance between soil and short fibers was difficult to develop, resulting in poor dispersibility. The maximum principal stress difference is also low and the erosion resistance is not good. In Experiment No. 27, the cross-sectional shape is too flat and the degree of irregularity is high, and the fineness of single fibers is also large, so the maximum principal stress difference is low and the reinforcing effect is insufficient.

【0025】実施例2 本発明の短繊維を土壌と混合して得た混合土を、図2に
おいてその断面を示す堤防21の片側斜面22に施工し
た。原料土は、次の土を用い、短繊維の種類および混合
の割合は、表3に示すとおりである。なお、短繊維は異
形度が1.2〜3.0の範囲内のものを使用した。 原料土1;含水比Wn(%)18.3、土粒子の密度ρ
s(g/cm3 ) 2.689 、レキ分(%)15.
3、砂分(%)67.0、シルト分(%)10.8 、
粘土分(%)6.9、統一分類(%)SFg、最適含水
比率Wopt(%)19.0、最大乾燥密度ρdmax
(g/cm3 ) 1.668 原料土1;含水比Wn(%)27.1、土粒子の密度ρ
s(g/cm3 ) 2.664 、レキ分(%)14.
6、砂分(%)54.8、シルト分(%)19.6 、
粘土分(%)11.0統一分類(%)SFg、最適含水
比率Wopt(%)22.6、最大乾燥密度ρdmax
(g/cm3 ) 1.571
Example 2 The mixed soil obtained by mixing the short fibers of the present invention with soil was applied to the slope 22 on one side of the embankment 21 whose cross section is shown in FIG. As the raw material soil, the following soil was used, and the types of short fibers and the mixing ratio are as shown in Table 3. The short fibers used had a degree of irregularity within the range of 1.2 to 3.0. Raw soil 1; water content Wn (%) 18.3, density of soil particles ρ
s (g / cm 3 ) 2.689, scribe (%) 15.
3, sand content (%) 67.0, silt content (%) 10.8,
Clay content (%) 6.9, unified classification (%) SFg, optimum water content Wopt (%) 19.0, maximum dry density ρdmax
(G / cm 3 ) 1.668 Raw material soil 1; Water content ratio Wn (%) 27.1, density of soil particles ρ
s (g / cm 3 ) 2.664, scribe (%) 14.
6, sand content (%) 54.8, silt content (%) 19.6,
Clay content (%) 11.0 unified classification (%) SFg, optimum water content Wopt (%) 22.6, maximum dry density ρdmax
(G / cm 3 ) 1.571

【0026】混合土の作成は、発泡ビーズ混合用に開発
された容量約1.0m3 の複合リボンミキサーを容量約
1.2m3 のバックホウのバケット部に装着した、油圧
モーターにより駆動する混合機を用いて行った。その
際、繊維は充分にほぐした状態(見掛け密度0.01g
/cm3 )で、混合機に投入した。また、繊維をほぐさ
ずに加圧パック状態(見掛け密度0.1g/cm3 )で
も混合機に投入し、ほぐした場合と比較した。その後、
混合土を、ゴムクローラ型キャリア(4トン級)により
施工場所に運搬し、法面成形機械により転圧被覆した。
施工後の短繊維と土壌との混合状況を把握するため、繊
維の洗い出し計量を行い、短繊維の混入量を測定した。
1バッチにつき3個、実験No.1は5バッチ、実験No.
2〜5は9バッチの混合量の平均値を求めた。その結果
は表3に示したとおりであり、均質に混合していること
がわかった。また、混合機へ投入する際、繊維をほぐさ
ずに加圧パック状態でも、充分に混合できることがわか
った。さらに、繊維の混合によって容積が約5〜7%増
加していた。なお、本実施は、秋田県仙北郡神岡町地先
無番地の国有地において、平成3年10月〜11月の約
1か月の間行われたが、この場所は、守秘義務を有する
関係者のみ立入ることができる場所にある。
The mixed soil is prepared by a hydraulic motor driven mixer equipped with a composite ribbon mixer with a capacity of about 1.0 m 3 developed for mixing foam beads in a bucket part of a backhoe with a capacity of about 1.2 m 3. Was performed using. At that time, the fibers are sufficiently loosened (apparent density 0.01 g
/ Cm 3 ) and charged into the mixer. Further, the fiber was not loosened, and it was put into the mixer even in a pressure packed state (apparent density 0.1 g / cm 3 ) and compared with the case where it was loosened. afterwards,
The mixed soil was transported to a construction site by a rubber crawler type carrier (4 ton class) and roll-rolled by a slope forming machine.
In order to understand the mixing status of short fibers and soil after construction, the fibers were washed out and weighed, and the amount of short fibers mixed was measured.
3 per batch, Experiment No. 1 is 5 batches, Experiment No.
For 2 to 5, the average value of the mixed amount of 9 batches was obtained. The results are shown in Table 3, and it was found that they were homogeneously mixed. It was also found that the fibers can be sufficiently mixed even in a pressure packed state without loosening the fibers when they are put into the mixer. In addition, the mixing of the fibers increased the volume by about 5-7%. In addition, this implementation was carried out for about one month from October to November 1991 in the state-owned land in Kamioka-cho, Senboku-gun, Akita Prefecture, where there is a duty of confidentiality. It is in a place where only persons can enter.

【0027】[0027]

【表3】 [Table 3]

【0027】施工完了後、6ヵ月経過した短繊維混合土
の法面と、短繊維を混合せず原料土のみの法面を比較観
察した。当該実施場所は、冬期には1〜2mの積雪があ
るため、春期の融雪によって、凍結、融解のサイクルを
受けた。原料土のみの法面は、融雪水や雨水の流水によ
るリル侵食やガリ侵食の流水溝が発達しているのに対し
て、短繊維混合土の法面はいずれの箇所においてもわず
かなリルも生じていなかった。その後、種子吹付けを行
ったが、その際、原料土のみの法面は、原料土を追加し
法面成形機で再転圧作業を行う必要があったが、短繊維
混合土の法面には、その作業は不要であった。このこと
により、凍結、融解の繰り返しという悪条件の下でも、
短繊維の混合土は、優れた法面保護効果および耐降雨性
を示すことがわかる。
Six months after the completion of construction, the slope of the short fiber mixed soil and the slope of the raw soil without mixing the short fibers were compared and observed. Since the execution site had 1-2 m of snow in winter, it was frozen and thawed by spring snowmelt. On the slope of raw soil only, the ditch of rill erosion or gully erosion due to running water of snowmelt or rainwater has developed, whereas the slope of short fiber mixed soil has a slight rill at any place. It didn't happen. After that, seed spraying was performed, but at that time, the slope of the raw material soil only had to be added to the raw material soil and recompressed with a slope forming machine, but on the slope of the short fiber mixed soil. Did not need that work. As a result, even under adverse conditions of repeated freezing and thawing,
It can be seen that the mixed soil of short fibers has an excellent slope protection effect and rainfall resistance.

【0028】[0028]

【発明の効果】本発明の請求項1記載の土壌補強用異形
断面短繊維は、単繊維繊度が0.5〜150デニール、
繊維長が10〜200mmの無捲縮短繊維であって、か
つ異形度が1.2〜3.0であるため、土壌と該短繊維
との間に充分な摩擦抵抗を発現することができ、また土
壌と短繊維とを混合する際の混合・分散性が著しく向上
する。このため、土壌中で短繊維が三次元的にランダム
方向に配向され、土壌の力学的特性が向上するうえ、降
雨による土壌流出の防止効果にも優れる。特に、繊維横
断面形状が、H型や串団子型を有する請求項2記載の短
繊維は、繊維軸方向に連続した凹凸部を有するため、繊
維を開繊する際の空気の作用を受けやすく、開繊性が促
進される。さらに、これらの断面形状を有する短繊維
は、同一繊度の丸断面繊維と比較して、曲げ弾性率が大
きいので、土壌中での繊維の屈曲も少なくなっており、
これらの効果とあいまって土壌の補強効果が一層向上す
る。
EFFECTS OF THE INVENTION The irregular reinforcing cross-section fiber for soil reinforcement according to claim 1 of the present invention has a single fiber fineness of 0.5 to 150 denier,
Since it is a non-crimped short fiber having a fiber length of 10 to 200 mm and a degree of irregularity of 1.2 to 3.0, sufficient friction resistance can be expressed between soil and the short fiber, In addition, the mixing and dispersibility of mixing the soil and the short fibers is significantly improved. Therefore, short fibers are three-dimensionally oriented in random directions in the soil, the mechanical properties of the soil are improved, and the effect of preventing soil runoff due to rainfall is excellent. In particular, the short fiber according to claim 2 having a fiber cross-sectional shape of H type or skewered dumpling type has a concavo-convex portion that is continuous in the fiber axis direction, and thus is susceptible to the action of air when opening the fiber. , Openability is promoted. Furthermore, the short fibers having these cross-sectional shapes have a large bending elastic modulus as compared with round cross-section fibers having the same fineness, so that the bending of the fibers in the soil is also reduced,
Together with these effects, the soil reinforcement effect is further improved.

【0029】また、請求項3記載の土壌補強土は、短繊
維があらかじめ最適な割合で混入されているため、その
まま施工するだけで土壌の侵食を防止し、さらに、優れ
た土壌補強効果を発揮するので、施工現場の土壌の性質
に関わらず土壌を補強することができる。また、通常の
土壌と同様に扱うことができ、混合場所と施工現場とは
離れていてもよいため、運搬、施工などの利便性がよ
い。さらに、原料土選択の自由度が大きいため、施工の
し易さ、運搬上の便利性、経済性などの観点から適宜決
定すればよく、施工コストを低減することが可能であ
る。さらに、請求項4記載の施工方法により、広範な法
面に効率良く土壌補強を行うことができ、しかも、均質
に混合し施工することができる。
In the soil-reinforcing soil according to claim 3, short fibers are mixed in an optimum ratio in advance, so that the soil erosion can be prevented by just applying it, and further, an excellent soil-reinforcing effect is exhibited. Therefore, the soil can be reinforced regardless of the nature of the soil at the construction site. In addition, since it can be handled in the same manner as ordinary soil and the mixing place and the construction site may be separated from each other, it is convenient for transportation and construction. Furthermore, since the degree of freedom in selecting the raw material soil is large, it can be appropriately determined from the viewpoints of ease of construction, convenience of transportation, economy, etc., and construction costs can be reduced. Furthermore, according to the construction method of claim 4, it is possible to efficiently reinforce the soil over a wide range of slopes, and further, to uniformly mix and construct the soil.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の土壌補強用異形断面短繊維を土壌に混
合・分散させるための施工装置の概略図である。
FIG. 1 is a schematic view of a construction device for mixing and dispersing soil-reinforcing modified cross-section short fibers of the present invention in soil.

【図2】本発明の土壌補強土を施工した堤体の断面図で
ある。
FIG. 2 is a cross-sectional view of a bank body constructed with the soil-reinforced soil of the present invention.

【図3】実施例1のエロージョン抵抗性の試験装置の概
略図である。
FIG. 3 is a schematic diagram of an erosion resistance test apparatus of Example 1.

【符号の説明】[Explanation of symbols]

K キャタピラ F 土壌補強用異形断面短繊維 11 ホッパ 12 スパイクラチス 14 開繊性シリンダ 15 スタビライザ S 土壌 21 堤防 22 堤防の片側斜面 K Caterpillar F Soil reinforcement irregular cross-section short fiber 11 Hopper 12 Spike lattice 14 Opening cylinder 15 Stabilizer S Soil 21 Levee 22 One side slope of levee

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C09K 103:00 (71)出願人 000140292 株式会社奥村組 大阪府大阪市阿倍野区松崎町2丁目2番2 号 (71)出願人 000001317 株式会社熊谷組 福井県福井市中央2丁目6番8号 (71)出願人 390036515 株式会社鴻池組 大阪府大阪市此花区伝法4丁目3番55号 (71)出願人 391019740 三信建設工業株式会社 東京都文京区後楽1丁目2番7号 (71)出願人 000003160 東洋紡績株式会社 大阪府大阪市北区堂島浜2丁目2番8号 (71)出願人 000112093 ヒロセ株式会社 大阪府大阪市西淀川区中島2丁目3番87号 (71)出願人 000175021 三井石化産資株式会社 東京都文京区湯島3丁目39番10号 (71)出願人 000005968 三菱化学株式会社 東京都千代田区丸の内二丁目5番2号 (71)出願人 000176785 三菱建設株式会社 東京都中央区日本橋本町3丁目3番6号 (71)出願人 000003001 帝人株式会社 大阪府大阪市中央区南本町1丁目6番7号 (72)発明者 三木 博史 茨城県つくば市大字旭1番地 建設省土木 研究所内 (72)発明者 林 義之 茨城県つくば市大字旭1番地 建設省土木 研究所内 (72)発明者 福山 慎一 東京都台東区台東1丁目7番2号 財団法 人土木研究センター内 (72)発明者 堀内 晴生 東京都新宿区津久戸町2番1号 株式会社 熊谷組東京本社内 (72)発明者 長坂 勇二 東京都台東区上野3丁目10番10号 株式会 社エスエルエス内 (72)発明者 岡村 康弘 大阪府大阪市中央区南本町1丁目6番7号 帝人株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location // C09K 103: 00 (71) Applicant 000140292 Okumura Gumi Co., Ltd. 2, Matsuzaki-cho, Abeno-ku, Osaka-shi, Osaka No. 2-2 (71) Applicant 000001317 Kumagai Gumi Co., Ltd. 2-6-8 Chuo, Fukui City, Fukui Prefecture (71) Applicant 390036515 No. 3 Konohana-ku Osaka Prefecture Osaka City 3-55 (71) Applicant 391019740 Sanshin Construction Co., Ltd. 1-7-2 Koraku, Bunkyo-ku, Tokyo (71) Applicant 000003160 Toyobo Co., Ltd. 2-28 Dojimahama, Kita-ku, Osaka-shi, Osaka (71) Applicant 000112093 Hirose shares Company 2-33 Nakashima, Nishiyodogawa-ku, Osaka-shi, Osaka (71) Applicant 000175021 Mitsui Chemicals Co., Ltd. 3-3-10 Yushima, Bunkyo-ku, Tokyo (71) Person 000005968 Mitsubishi Chemical Co., Ltd. 2-5-2 Marunouchi, Chiyoda-ku, Tokyo (71) Applicant 000176785 Mitsubishi Construction Co., Ltd. 3-3-6 Nihonbashihonmachi, Chuo-ku, Tokyo (71) Applicant 000003001 Teijin Limited Osaka 1-6-7 Minamihonmachi, Chuo-ku, Osaka (72) Inventor Hiroshi Miki 1 Asahi, Tsukuba, Ibaraki Prefectural Civil Engineering Research Institute (72) Yoshiyuki Hayashi 1 Asahi, Tsukuba, Ibaraki Civil Engineering, Ministry of Construction (72) Inventor Shinichi Fukuyama 1-7-2 Taito, Taito-ku, Tokyo Inside Foundation Civil Engineering Research Center (72) Inventor Haruo Horiuchi 2-1, Tsukudo-cho, Shinjuku-ku, Tokyo Kumagaya Gumi Tokyo Book Co., Ltd. In-house (72) Inventor Yuji Nagasaka 3-10-10 Ueno, Taito-ku, Tokyo Within SLS Co., Ltd. (72) Inventor Yasuhiro Okamura 1-6-7 Minamihonmachi, Chuo-ku, Osaka-shi, Osaka Within Teijin Limited

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 単繊維繊度が0.5〜150デニール、
繊維長が10〜200mmの無捲縮短繊維であって、か
つ該繊維の横断面の異形度(ただし、異形度は、繊維横
断面の最大外接円直径Dと、同一繊度の中実真円繊維の
直径dとの比D/dである)が1.2〜3.0であるこ
とを特徴とする土壌補強用異形断面短繊維。
1. A single fiber fineness of 0.5 to 150 denier,
A non-crimped short fiber having a fiber length of 10 to 200 mm, and a degree of irregularity in the cross section of the fiber (however, the degree of variation is the maximum circumscribed circle diameter D of the fiber cross section and a solid true circular fiber of the same fineness. The ratio of the diameter D to the ratio d / d) is 1.2 to 3.0.
【請求項2】 繊維横断面の形状が、H型あるいは串団
子型である請求項1記載の土壌補強用異形断面短繊維。
2. The modified cross-section short fiber for soil reinforcement according to claim 1, wherein the cross-section of the fiber is H-shaped or skewered dumpling-shaped.
【請求項3】 請求項1記載の土壌補強用異形断面短繊
維を0.2〜0.4重量%含有し、土砂類がほぼ残量で
あり、かつこれらが主体をなしていることを特徴とする
土壌補強土。
3. The soil-reinforcing modified cross-section short fibers according to claim 1 are contained in an amount of 0.2 to 0.4% by weight, and the amount of earth and sand is almost remaining, and these are the main constituents. And soil reinforcement soil.
【請求項4】 請求項1記載の土壌補強用異形断面短繊
維を、キャタピラ上の架台に載置した開繊性シリンダで
開繊したのち吹き出して土壌表面に散布すると同時に、
該キャタピラ後方に付設したスタビライザにより土壌を
巻き上げ、該短繊維と該土壌を混合する一連の操作を、
キャタピラを一定方向に移動しながら連続的に行うこと
を特徴とする土壌補強土の施工方法。
4. The irregular reinforcing cross-section short fibers for soil reinforcement according to claim 1 are opened by a fiber-opening cylinder placed on a rack on a caterpillar, and then blown and sprayed onto the soil surface,
A series of operations for winding up the soil by the stabilizer attached to the rear of the caterpillar and mixing the short fibers and the soil,
A method for constructing soil-reinforcing soil, which is characterized in that the caterpillar is continuously moved while moving in a certain direction.
JP31131694A 1994-11-22 1994-11-22 Modified cross-section staple fiber for reinforcing soil, reinforced soil using the same staple fiber and execution of reinforced soil Pending JPH08143864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31131694A JPH08143864A (en) 1994-11-22 1994-11-22 Modified cross-section staple fiber for reinforcing soil, reinforced soil using the same staple fiber and execution of reinforced soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31131694A JPH08143864A (en) 1994-11-22 1994-11-22 Modified cross-section staple fiber for reinforcing soil, reinforced soil using the same staple fiber and execution of reinforced soil

Publications (1)

Publication Number Publication Date
JPH08143864A true JPH08143864A (en) 1996-06-04

Family

ID=18015673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31131694A Pending JPH08143864A (en) 1994-11-22 1994-11-22 Modified cross-section staple fiber for reinforcing soil, reinforced soil using the same staple fiber and execution of reinforced soil

Country Status (1)

Country Link
JP (1) JPH08143864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6206358B1 (en) 1997-08-04 2001-03-27 Horizon International Inc. Book binding system
JP2012120956A (en) * 2010-12-07 2012-06-28 Jdc Corp Method and apparatus for treating treating-object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6206358B1 (en) 1997-08-04 2001-03-27 Horizon International Inc. Book binding system
JP2012120956A (en) * 2010-12-07 2012-06-28 Jdc Corp Method and apparatus for treating treating-object

Similar Documents

Publication Publication Date Title
AU586766B2 (en) Reinforced soil and method
CA1141979A (en) Building material, its application for embankment, surfacing, or as foundation mass over a loose ground, and method and installation for the production of said material
US6793858B2 (en) Method and apparatus for forming a flexible mat defined by interconnected concrete panels
EP0191793B1 (en) Support band against the stone slide of the filling of a bank
JPH0149661B2 (en)
JPH08143864A (en) Modified cross-section staple fiber for reinforcing soil, reinforced soil using the same staple fiber and execution of reinforced soil
JP3431783B2 (en) Protection structure for slopes and walls
Carroll Jr et al. Geosynthetics in erosion control—The principles
KR101035264B1 (en) The method using soil mixture layers reinforced by fibrillated fibers for the creation of shore protection for vegetation
CN200955114Y (en) Tricot high-strength synthesized fiber earth-working grid
JP2768954B2 (en) Method for mixing soil and fiber material, method for improving soil quality, and fiber material used for these
JP3423390B2 (en) Materials for civil engineering
JP3061475B2 (en) Ground reinforcement
JP3091995B2 (en) Waste treatment plant
JPS58189425A (en) Soil board
JPH0921123A (en) Material for preventing scouring of underwater structure
CN217811103U (en) Highway, railway or mountain slope protection flexible net spout concrete and fixed protective structure of stock
WO2000071638A1 (en) Composition of soil having fibers and binding substance
JPH08199548A (en) Drainage material for work
JPH0978585A (en) Formation of vegetation base on slope face
Chamberlin Local Road Research Board
KR100382272B1 (en) Installation method of sand blanket mat for improving hyper-soft ground of dredged reclaimed land by spraying and spreading of sand
KR20050030428A (en) The net for slope protection, and it's construction method
JPH05112941A (en) Mixing method of earth and fiber material, device thereof and method of reinforcing earthwork using it
Theisen The expanding role of geosynthetics in erosion and sediment control

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031104