JPH08143356A - Magnesia based non-fired brick - Google Patents

Magnesia based non-fired brick

Info

Publication number
JPH08143356A
JPH08143356A JP6308297A JP30829794A JPH08143356A JP H08143356 A JPH08143356 A JP H08143356A JP 6308297 A JP6308297 A JP 6308297A JP 30829794 A JP30829794 A JP 30829794A JP H08143356 A JPH08143356 A JP H08143356A
Authority
JP
Japan
Prior art keywords
slag
alumina
magnesia
spinel
penetration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6308297A
Other languages
Japanese (ja)
Inventor
Akira Watanabe
明 渡辺
Hirokuni Takahashi
宏邦 高橋
Kazuo Nonobe
和男 野々部
Hiroshi Yasui
宏 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Refractories Co Ltd
Original Assignee
Kyushu Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Refractories Co Ltd filed Critical Kyushu Refractories Co Ltd
Priority to JP6308297A priority Critical patent/JPH08143356A/en
Publication of JPH08143356A publication Critical patent/JPH08143356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: To produce a magnesia based non-fired brick excellent in resistance to slag penetration and suitable to a ladle, etc., by compounding in a prescribed amount two kinds of alumina based superfine powders having different grain diameter into a magnesium based refractory material and bonding with a binder. CONSTITUTION: (A) 85-97wt.% magnesium based refractory material (e.g. sintered magnesia), (B) 10-2wt.% alumina based superfine powder having <=10μm grain diameter and (C) 5-1wt.% alumina based superfine powder having <=1μm grain diameter are mixed. Then, the obtained composition is bonded preferably with an inorg. binder (e.g. phosphate) to obtain the magnesia based non-fired brick. In this way, a contact area with the A component is enlarged by adding C component, and a spinel forming reaction is generated at a vicinity of a working surface from more early time, and the penetration of the slag to a deep part due to the modification is suppressed. And, since B component is used jointly, the spinel forming reaction is delayed and continued for a long term, and as such a result, a suppressing function of slag penetration is continued for a long term.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶鋼の各種精錬に使用さ
れる取鍋、RHなどの内張りに適したマグネシア質不焼
成れんがに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnesia non-fired brick suitable for lining ladle, RH, etc. used for various refining of molten steel.

【0002】[0002]

【従来の技術】最近の製鋼において、取鍋に使用される
耐火物を構成する素材としてはマグネシアなどの塩基性
素材やアルミナなどの中性素材、またスピネル等の素材
が多く使用されるようになっている。アルミナ、スピネ
ル等の素材は耐スラグ浸透性に優れ構造スポーリングの
面から見ると優れた素材である。
2. Description of the Related Art In recent steelmaking, basic materials such as magnesia, neutral materials such as alumina, and materials such as spinel are often used as materials for refractory materials used in ladles. Has become. Materials such as alumina and spinel have excellent slag penetration resistance and are excellent materials from the viewpoint of structural spalling.

【0003】しかし、アルミナ質材料やスピネル質材料
は高塩基度スラグや高FeOスラグに対しては耐食性が
低下するという欠点を有している。そこで高塩基度スラ
グや高FeOスラグに強いマグネシアを主成分とした材
料が注目され、スピネルあるいはアルミナの添加により
スラグ浸透の改善が試みられている(例えば耐火物34
巻第7号404頁1982年刊)。
However, the alumina-based material and the spinel-based material have a drawback that the corrosion resistance is deteriorated with respect to the high basicity slag and the high FeO slag. Therefore, a material containing magnesia as a main component, which is strong against high basicity slag and high FeO slag, has attracted attention, and improvement of slag penetration has been attempted by adding spinel or alumina (for example, refractory 34
Volume 7, page 404, published in 1982).

【0004】また、高耐食性の特長を活かしマグネシア
−クロミア質焼成れんがが使用される例も見られる。
In addition, there is also seen an example in which a magnesia-chromia calcined brick is used by taking advantage of its high corrosion resistance.

【0005】[0005]

【発明が解決しようとする課題】マグネシア質れんがへ
のスピネルの添加では満足できるスラグ浸透防止効果が
得られないが、アルミナの添加により二次的にスピネル
を生成させることでスラグ浸透防止効果が得られ、アル
ミナ添加量を増すとその効果は増大する。しかし耐食性
は逆に低下する傾向にある。従って、耐構造スポーリン
グ性を重要視すれば耐食性が犠牲になるという問題が生
じるのである。またアルミナの添加量が多いと高温での
スピネル生成量が増し、膨張過多による物性の低下が懸
念される。マグネシア質れんがの耐スラグ浸透性改善の
ために、耐食性を損なうことなくかつ容積安定性に優れ
るアルミナの添加方法の開発が望まれている。
The addition of spinel to magnesia bricks does not provide a satisfactory slag permeation preventive effect, but the addition of alumina secondarily produces spinel to provide a slag permeation preventive effect. Therefore, the effect increases as the amount of alumina added increases. However, the corrosion resistance tends to decrease. Therefore, if the structure spalling resistance is emphasized, the corrosion resistance is sacrificed. Further, when the amount of alumina added is large, the amount of spinel produced at high temperature increases, and there is concern that the physical properties may deteriorate due to excessive expansion. In order to improve the slag penetration resistance of magnesia bricks, it has been desired to develop a method of adding alumina which does not impair the corrosion resistance and is excellent in volume stability.

【0006】またマグネシア−クロミア質焼成れんがは
耐食性に優れるが、スラグ浸透による構造スポーリング
を起こしやすい欠点は解消されず、またクロム含有材料
ということで公害的観点から使用後れんがの処理が問題
となっており、クロムを含まない高耐用れんがの開発が
望まれている。
Further, although the magnesia-chromia calcined brick has excellent corrosion resistance, the drawback that structural spalling is likely to occur due to slag infiltration cannot be eliminated, and since it is a chromium-containing material, treatment of the post-use brick is problematic from the viewpoint of pollution. Therefore, the development of high durability bricks that do not contain chromium is desired.

【0007】[0007]

【課題を解決するための手段】本発明者らはマグネシア
質れんがへのアルミナの添加について種々検討を重ね、
超微粉での添加により、少量で耐スラグ浸透性の改善に
顕著な効果があることを見いだした。少量の超微粉での
添加であれば生成するスピネルは微細で少量であり生成
時の膨張量は小さく膨張過多が避けられる。逆にスピネ
ル生成により結合組織が強固になるため耐食性の向上効
果も得られるのである。またアルミナを粒径の異なる2
種類の超微粉で添加することにより、耐スラグ浸透性を
大幅に向上させるとともにその効果を長期間にわたり持
続させることを可能とし本発明を完成させたものであ
る。即ち、本発明はマグネシア質耐火材料85〜97重
量%、粒径10μm以下のアルミナ質超微粉2〜10重
量%、粒径1μm以下のアルミナ質超微粉1〜5重量%
にバインダーを添加して混練、成形したマグネシア質不
焼成れんがである。
[Means for Solving the Problems] The present inventors have made various studies on addition of alumina to magnesia bricks,
It was found that the addition of ultrafine powder has a significant effect on improving the slag penetration resistance even in a small amount. If a small amount of ultrafine powder is added, the spinel produced is fine and a small amount, and the amount of expansion at the time of production is small and excessive expansion can be avoided. On the contrary, since the connective structure is strengthened by the generation of spinel, the effect of improving the corrosion resistance can be obtained. In addition, alumina with different particle size 2
The present invention has been completed by making it possible to significantly improve the slag penetration resistance and to maintain its effect for a long period of time by adding it as a kind of ultrafine powder. That is, the present invention is 85 to 97% by weight of magnesia refractory material, 2 to 10% by weight of alumina ultrafine powder having a particle size of 10 μm or less, and 1 to 5% by weight of alumina ultrafine powder having a particle size of 1 μm or less.
This is a magnesia non-fired brick that is prepared by kneading and molding by adding a binder to.

【0008】本発明に用いられるマグネシア質耐火材料
は焼結マグネシアや電融マグネシアなど一般に耐火材料
として使用されるマグネシア質のものである。その使用
量は85〜97重量%であり、この範囲よりはずれると
耐スラグ性や耐スポーリング性が低下する。
The magnesia refractory material used in the present invention is a magnesia material generally used as a refractory material such as sintered magnesia and electrofused magnesia. The amount used is 85 to 97% by weight, and if it deviates from this range, the slag resistance and spalling resistance decrease.

【0009】本発明の特徴である超微粉は2種類のもの
を使用する。いずれもアルミナ質のものであり焼結品、
電融品などの超微粉である。その内の1種は粒径10μ
m以下の超微粉であり、中心粒径が3〜5μmのものが
好ましい。その使用量は2〜10重量%とする。この使
用量が2重量%未満では添加効果が得られず、10重量
%を越えると加熱時の膨張が過多になる。もう1種類の
超微粉は粒径1μm以下のものであってその使用量は1
〜5重量%とする。1重量%未満の使用量では本発明の
骨子であるスラグ浸透抑制に必要なだけのスピネル生成
が得られず、5重量%より多いと成形体の良好な充填性
が得られず物性、耐食性が低下する。
Two types of ultrafine powder, which is a feature of the present invention, are used. All of them are of alumina quality and are sintered products,
It is an ultrafine powder such as an electromelted product. One of them has a particle size of 10μ
It is preferably an ultrafine powder of m or less and having a central particle diameter of 3 to 5 μm. The amount used is 2-10% by weight. If the amount used is less than 2% by weight, the effect of addition cannot be obtained, and if it exceeds 10% by weight, expansion during heating becomes excessive. Another type of ultrafine powder has a particle size of 1 μm or less, and its usage is 1
Up to 5% by weight. If it is used in an amount of less than 1% by weight, spinel formation required for suppressing slag permeation, which is the essence of the present invention, cannot be obtained, and if it is more than 5% by weight, good filling properties of a molded article cannot be obtained and physical properties and corrosion resistance are deteriorated. descend.

【0010】れんがのバインダーとしては無機系ではリ
ン酸塩、ケイ酸塩、アルミナセメント等が、有機系では
フェノール樹脂等が使用できるが、無機系のバインダー
を用いることにより、熱間でセラミック結合が生じやす
く強固な組織が得られるため、スラグと接触した場合の
耐食性が更に向上する。バインダーの添加量は外掛で
0.1〜5重量%とする。0.1重量%未満の量では乾
燥後の強度が低く、5重量%を越えると耐食性が低下す
る。
As the binder of the brick, phosphate, silicate, alumina cement and the like can be used in the inorganic type, and phenol resin and the like can be used in the organic type. However, by using the inorganic type binder, ceramic bonding can be performed hot. Since a strong structure that is likely to occur is obtained, the corrosion resistance when contacting the slag is further improved. The amount of the binder added is 0.1 to 5% by weight on the outside. If the amount is less than 0.1% by weight, the strength after drying is low, and if it exceeds 5% by weight, the corrosion resistance is lowered.

【0011】この他に通常のれんがに使用される各種繊
維、焼結助剤、Al、Si等の金属等を添加することも
可能である。上記の構成材料を混練、成形後乾燥して不
焼成れんがとして使用される。
In addition to the above, it is possible to add various fibers used for ordinary bricks, a sintering aid, a metal such as Al and Si, and the like. The above constituent materials are kneaded, molded, and then dried to be used as an unfired brick.

【0012】[0012]

【作用】耐火物34巻第7号404頁1982年刊には
マグネシア−アルミナ質(組成MgO 61.1%、A
23 34.1%)不定形材を取鍋の内張りに施工し
た使用結果が記載されている。それによると45回使用
され、主損傷要因は構造スポーリングによる剥離損傷で
あった。材質選定の際、耐食性よりも構造スポーリング
を重視しアルミナ量の多い材質としたにもかかわらずス
ラグ浸透層、変質層が厚く形成され剥離損傷が進行し
た。使用後解析結果より、スラグ浸透層、変質層は低気
孔率となり緻密化していたが、その背面側の原質層は物
性が低下しており組織状態が劣化していた。原質層中に
も変質層と同程度のスピネルが生成しており、この組織
劣化はアルミナ添加量が多いことによりスピネル生成時
の膨張が過多であったためと推察される。この劣化した
組織にはスラグが容易に浸透し、スラグ浸透層、変質層
を形成し剥離損耗に至ったものと考えられる。この引用
例の場合アルミナの使用粒度域は不明であるが、スラグ
浸透防止を目的としてマグネシア質材料にアルミナを添
加する場合、その量、粒度域等が適正でなければその効
果が発揮されず耐用低下を招く。本発明者らは、種々検
討を行い、アルミナを粒径の異なる2種の超微粉により
適正量添加することによりこの問題を解決したものであ
る。
Operation: Refractories 34, No. 7, p. 404 Magnesia-alumina (composition MgO 61.1%, A
(1 2 O 3 34.1%) The result of using an irregular shaped material on the lining of a ladle is described. According to it, it was used 45 times, and the main damage factor was peeling damage due to structural spalling. When selecting the material, although the structure spalling was emphasized rather than the corrosion resistance and the material with a large amount of alumina was used, the slag permeation layer and the altered layer were formed thick and the peeling damage progressed. According to the analysis results after use, the slag permeation layer and the altered layer had a low porosity and were densified, but the physical layer on the back side of the slag infiltrated layer and the altered layer had deteriorated physical properties and the tissue state was deteriorated. It is speculated that the same degree of spinel as in the deteriorated layer was formed in the raw material layer, and this structural deterioration was due to excessive expansion during spinel formation due to the large amount of alumina added. It is considered that slag easily penetrated into this deteriorated structure and formed a slag permeation layer and an altered layer, leading to peeling wear. In the case of this reference example, the particle size range of alumina used is unknown, but if alumina is added to the magnesia material for the purpose of preventing slag penetration, the effect will not be exhibited unless the amount and particle size range are appropriate. Cause decline. The present inventors have solved this problem by conducting various studies and adding an appropriate amount of alumina by two kinds of ultrafine powders having different particle sizes.

【0013】マグネシア質耐火材料にアルミナ質超微粉
を添加すると、加熱されてマグネシア−アルミナスピネ
ル(以後スピネルという)を生成する。この反応の初期
以降の進行過程においては、スピネルとMgOの境界で
はMgOの拡散によりほぼMgO・Al23の組成でス
ピネルが成長する。一方スピネルとAl23の境界では
Al23はスピネル中へ固溶しアルミナリッチの組成の
MgO・nAl23の結晶成長が起こる。アルミナ超微
粉はこのアルミナリッチスピネルの二次生成を促進させ
るため、スラグと接触した場合、スラグ中のFeO、M
nO等の成分はスピネル中へ溶け込み易くなり稼働面付
近に止められるため深部への浸透が抑制される。
When the alumina ultrafine powder is added to the magnesia refractory material, it is heated to form magnesia-alumina spinel (hereinafter referred to as spinel). During the progress of the reaction after the initial stage, spinel grows at a composition of MgO.Al 2 O 3 at the boundary between spinel and MgO due to the diffusion of MgO. Whereas Al 2 O 3 is occurs crystal growth of MgO · nAl 2 O 3 in the composition of the alumina-rich solid solution into the spinel at the boundary of the spinel and Al 2 O 3. Since the ultrafine alumina powder promotes the secondary formation of this alumina-rich spinel, when it comes into contact with the slag, FeO, M in the slag
Ingredients such as nO are easily dissolved in the spinel and stopped near the working surface, so that the penetration into the deep part is suppressed.

【0014】また添加されたアルミナ超微粉および生成
した微細なスピネルはスラグとの反応性に富むためスラ
グ中のCaO、SiO2等の成分との反応を稼働面近傍で
促進しCaO−Al23系、CaO−Al23−SiO2
系等の化合物を生成しスラグ成分の深部への浸透が防止
されるのである。
Further, the added alumina ultrafine powder and the fine spinel produced have a high reactivity with the slag, so that the reaction with the components such as CaO and SiO 2 in the slag is promoted in the vicinity of the operating surface, and CaO-Al 2 O is added. 3 system, CaO-Al 2 O 3 -SiO 2
A compound such as a system is formed to prevent the penetration of the slag component into the deep part.

【0015】またスピネルの結晶成長は、それに伴う体
積膨張により、マトリックス中の気孔を閉塞しスラグ浸
透を抑制する作用をも発揮するのである。
Further, the crystal growth of spinel also exhibits the effect of blocking pores in the matrix and suppressing slag penetration due to the volume expansion accompanying it.

【0016】マグネシア質耐火材料にアルミナ質材料を
超微粉で添加することにより、少ない添加量でスピネル
生成を促進する効果があるが、粒径の異なる2種類の超
微粉を使用する点が本発明の特徴である。即ち、粒径1
μm以下の超微粉を適量添加することでマグネシア質材
料との接触面積が拡大し、稼働面近傍でより早い時期か
らスピネル生成反応が起こり、スラグの改質による深部
への浸透抑制に作用するが、粒径のやや大きいアルミナ
超微粉の併用によりスピネル生成反応を遅らせて長期間
持続させることができ、その結果スラグ浸透抑制作用を
も長期間にわたって持続させることが可能となる。
By adding an alumina material in ultrafine powder to the magnesia refractory material, it has the effect of promoting spinel formation with a small addition amount, but the present invention is that two types of ultrafine powder having different particle sizes are used. Is a feature of. That is, particle size 1
By adding an appropriate amount of ultra-fine powder of less than μm, the contact area with magnesia material expands, and the spinel formation reaction occurs earlier in the vicinity of the operating surface, which acts to suppress penetration into the deep part by modifying the slag. The use of ultrafine alumina powder having a slightly larger particle size can delay the spinel formation reaction and maintain it for a long period of time, and as a result, the slag permeation suppression effect can be maintained for a long period of time.

【0017】またスピネルの結晶成長による気孔閉塞作
用は、粒径が10μm以下で中心粒径3〜5μmの超微
粉の使用が最も効果的である。超微粉の中心粒径が小さ
すぎると気孔閉塞が不十分となり、大きすぎるとスピネ
ル生成に伴う体積膨張の絶対値が大きすぎ、亀裂の生成
等組織状態に悪影響を及ぼし好ましくない。
As for the pore blocking effect due to spinel crystal growth, the use of ultrafine powder having a particle size of 10 μm or less and a central particle size of 3 to 5 μm is most effective. If the center particle size of the ultrafine powder is too small, pore closure becomes insufficient, and if it is too large, the absolute value of the volume expansion accompanying spinel formation is too large, which is unfavorable since it adversely affects the texture state such as crack formation.

【0018】さらにスピネルの結晶成長はれんがに残存
膨張性を付与し、過焼結による緻密化を防止するが、ア
ルミナを2種類の粒径の超微粉で適正量使用することに
より、膨張過多となることもなく、この過焼結防止作用
をも長期間にわたり持続させることが可能となり、焼結
バランスがとれるようになり構造安定性の向上に寄与す
るのである。
Further, the crystal growth of spinel gives the brick a residual expansivity and prevents densification due to oversintering. However, by using an appropriate amount of alumina with ultrafine powder of two kinds of particle size, it is considered that the expansion is excessive. However, the effect of preventing oversintering can be maintained for a long period of time, and the sintering balance can be maintained, which contributes to the improvement of structural stability.

【0019】実施例1〜8、比較例1〜7 表1に示す1〜8の配合を混練、プレス成形し110℃
で乾燥後供試試料とした。なお表中のアルミナ超微粉A
は中心粒径3〜5μmのもの、アルミナ超微粉Bは中心
粒径0.3〜0.5μmのものである。また表2に示す
比較例1〜6の配合も同様に混練、成形、乾燥し試料を
作成した。表中の電融アルミナは粒径1mm以下の中
粒、微粒域で添加した。比較例7にはマグネシア−クロ
ミア質焼成れんがを加えた。
Examples 1 to 8 and Comparative Examples 1 to 7 Mixtures 1 to 8 shown in Table 1 were kneaded and press-molded at 110 ° C.
It was dried as a test sample. Alumina ultrafine powder A in the table
Has a center particle size of 3 to 5 μm, and the ultrafine alumina powder B has a center particle size of 0.3 to 0.5 μm. Further, the compounds of Comparative Examples 1 to 6 shown in Table 2 were similarly kneaded, molded and dried to prepare samples. The fused alumina in the table was added in the medium particle and fine particle regions with a particle size of 1 mm or less. In Comparative Example 7, magnesia-chromia fired brick was added.

【0020】試験は回転式スラグ試験機を用いたスラグ
浸食試験により耐食性、耐スラグ浸透性を評価した。試
験は1750℃で4時間行い、使用スラグはCaO 4
5%、MgO 5%、SiO2 10%、Al23
0%の組成のものである。またFeOの影響を加味する
ために、中周波誘導炉を用いて溶鋼上にスラグを浮かべ
る方法による浸食試験を行った。試験は1650℃で3
時間行い、使用したスラグは回転式試験と同一の組成の
ものである。
In the test, corrosion resistance and slag penetration resistance were evaluated by a slag erosion test using a rotary slag tester. The test is performed at 1750 ° C. for 4 hours, and the slag used is CaO 4.
5%, MgO 5%, SiO 2 10%, Al 2 O 3 4
It has a composition of 0%. Further, in order to take into consideration the influence of FeO, an erosion test was performed by a method of floating slag on molten steel using a medium frequency induction furnace. Test at 1650 ° C 3
The slag used for a period of time is of the same composition as the rotary test.

【0021】[0021]

【表1】[Table 1]

【0022】[0022]

【表2】[Table 2]

【0023】表1、表2より明らかなように、粒径の異
なった2種類のアルミナ超微粉を規定量使用し、無機系
のバインダーを用いた実施例1〜7は、超微粉でないア
ルミナを添加した比較例1、2やアルミナ超微粉の量が
適正でない比較例3〜5に比べ耐食性、耐スラグ浸透性
ともに優れている。また比較例7のマグクロれんがに対
しても溶損量は大きいもののスラグ浸透深さは大幅に小
さい。これはスラグ成分に対する両者の固溶能力の差に
よるものである。バインダーにフェノール樹脂を使用し
た場合においても、実施例8と比較例6より2種類の超
微粉使用の効果は明らかであるが、リン酸塩あるいはア
ルミナセメント使用品がフェノール樹脂使用品に対し
て、溶損量およびスラグ浸透深さともに小さい。
As is clear from Tables 1 and 2, Examples 1 to 7 in which the specified amounts of two kinds of alumina ultrafine powders having different particle sizes are used and the inorganic binder is used, The corrosion resistance and the slag penetration resistance are superior to those of Comparative Examples 1 and 2 and Comparative Examples 3 to 5 in which the amount of ultrafine alumina powder added is not appropriate. Further, even with respect to the magro brick of Comparative Example 7, the erosion amount is large, but the slag penetration depth is significantly small. This is due to the difference in solid solution capacity between the two with respect to the slag component. Even when a phenol resin is used as the binder, the effect of using two kinds of ultrafine powders is clear from Example 8 and Comparative Example 6, but the phosphate or alumina cement product is more effective than the phenol resin product. Both erosion amount and slag penetration depth are small.

【0024】FeOの影響を加味した誘導炉による溶鋼
スラグ試験においても、本発明の実施例は比較例に比べ
小さい損耗量を示した。誘導炉試験ではFeOおよび他
のスラグ成分が浸透した層が溶鋼の流動による摩耗を受
けるため、表1、表2の結果は実施例1〜8のスラグ浸
透に対する優位性を示すものである。
Also in the molten steel slag test by the induction furnace considering the influence of FeO, the examples of the present invention showed a smaller amount of wear than the comparative examples. In the induction furnace test, the layers infiltrated with FeO and other slag components are subject to wear due to the flow of molten steel, so the results in Tables 1 and 2 show the superiority of Examples 1 to 8 to slag infiltration.

【0025】[0025]

【発明の効果】本発明で規定する粒径の異なった2種類
のアルミナ質超微粉を用いることにより、スピネル生成
反応が促進され、スラグ成分の稼働面近傍での捕捉およ
び気孔の閉塞の作用による深部へのスラグ浸透抑制効
果、また適度な残存膨張性付与による過焼結防止の効果
が得られた。このマグネシア質不焼成れんがを取鍋等の
容器の内張りに使用した場合、れんがの溶損、構造的ス
ポーリングが少なくなり耐用の向上が期待されるもので
ある。
EFFECTS OF THE INVENTION By using two kinds of ultrafine alumina powders having different particle sizes specified in the present invention, the spinel formation reaction is promoted, and the slag component is trapped in the vicinity of the operating surface and the pores are blocked. The effect of suppressing the penetration of slag into the deep part and the effect of preventing oversintering by imparting an appropriate residual expansion property were obtained. When this magnesia unfired brick is used as an inner lining of a container such as a ladle, it is expected that the melting loss of brick and the structural spalling are reduced and the durability is improved.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 マグネシア質耐火材料85〜97重量
%、粒径10μm以下のアルミナ質超微粉2〜10重量
%、粒径1μm以下のアルミナ質超微粉1〜5重量%よ
りなる組成物をバインダーで結合したものであることを
特徴とするマグネシア質不焼成れんが。
1. A binder comprising a composition comprising 85 to 97% by weight of magnesia refractory material, 2 to 10% by weight of ultrafine alumina powder having a particle size of 10 μm or less, and 1 to 5% by weight of alumina ultrafine powder having a particle size of 1 μm or less. An unfired magnesia brick characterized in that it is bonded together.
【請求項2】 バインダーとして無機系バインダーを用
いた請求項1記載のマグネシア質不焼成れんが。
2. The magnesia non-fired brick according to claim 1, wherein an inorganic binder is used as the binder.
JP6308297A 1994-11-17 1994-11-17 Magnesia based non-fired brick Pending JPH08143356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6308297A JPH08143356A (en) 1994-11-17 1994-11-17 Magnesia based non-fired brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6308297A JPH08143356A (en) 1994-11-17 1994-11-17 Magnesia based non-fired brick

Publications (1)

Publication Number Publication Date
JPH08143356A true JPH08143356A (en) 1996-06-04

Family

ID=17979353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6308297A Pending JPH08143356A (en) 1994-11-17 1994-11-17 Magnesia based non-fired brick

Country Status (1)

Country Link
JP (1) JPH08143356A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296157C (en) * 2001-03-19 2007-01-24 维苏维尤斯·克鲁斯布公司 Refractory plug or brick for injecting gas into molten metal
JP2019123635A (en) * 2018-01-15 2019-07-25 黒崎播磨株式会社 Magnesia alumina carbon brick

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296157C (en) * 2001-03-19 2007-01-24 维苏维尤斯·克鲁斯布公司 Refractory plug or brick for injecting gas into molten metal
JP2019123635A (en) * 2018-01-15 2019-07-25 黒崎播磨株式会社 Magnesia alumina carbon brick

Similar Documents

Publication Publication Date Title
JP2001302364A (en) Alumina-magnesia-based castable refractory containing zirconium oxide and molten metal vessel for metal refining
JP2022161032A (en) Castable refractory and molten steel ladle
JPH08143356A (en) Magnesia based non-fired brick
JPH082975A (en) Refractory for casting application
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
JPH08109062A (en) Nonbaked alumina brick
JP4960541B2 (en) Magnesia-alumina-titania brick
JPH0952755A (en) Magnesia-chrome refractory
JP4203157B2 (en) Magnesia refractory
JP3622545B2 (en) Magnesia-chrome regular refractories
JPH06144939A (en) Basic castable refractory
JP3026640B2 (en) Zirconia material added basic pouring material
JP3157310B2 (en) Refractory
JPH07291716A (en) Basic refractory
JPH06172044A (en) Castable refractory of alumina spinel
JPH06199575A (en) Alumina-spinel castable refractory
JP3177200B2 (en) Method for producing low-permeability magnesia-chromium refractory
JPH0920551A (en) Magnesia refractory mixed with calcia/titania-based compound oxide
JP2023086544A (en) Method for producing magnesia-chrome brick
JPH07242470A (en) Aluminous-magnesian casting material
JPH08198686A (en) Alumina-spinel casting material
JPH0782002A (en) Magnesia refractory composition
JPH09142946A (en) Prepared unshaped flowed-in refractories and their molding
JP3297308B2 (en) Amorphous refractories for scouring
JPH11199330A (en) Construction of castable refractory

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080330

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090330

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100330

LAPS Cancellation because of no payment of annual fees