JPH08140262A - Tide computer - Google Patents

Tide computer

Info

Publication number
JPH08140262A
JPH08140262A JP27738394A JP27738394A JPH08140262A JP H08140262 A JPH08140262 A JP H08140262A JP 27738394 A JP27738394 A JP 27738394A JP 27738394 A JP27738394 A JP 27738394A JP H08140262 A JPH08140262 A JP H08140262A
Authority
JP
Japan
Prior art keywords
power flow
constraint condition
inequality constraint
flow calculation
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27738394A
Other languages
Japanese (ja)
Inventor
Takaharu Ishida
隆張 石田
Chihiro Fukui
千尋 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27738394A priority Critical patent/JPH08140262A/en
Publication of JPH08140262A publication Critical patent/JPH08140262A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E40/76
    • Y04S10/545

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PURPOSE: To get optimum tidal flow solution meeting the conditions on actual operation by selecting proper restrictive conditions on an inequality suiting the purpose of the computation of an optimum tidal flow, based on the voltage sensitivity of each facility, out of the restrictive conditions on an inequality classified according to every property in advance. CONSTITUTION: An optimum tide computation method and its device consist of a system constant data base 101, a generator output data base 102, a load data base 103, a data base of restrictive conditions on an inequality 104, a data reader 105, a voltage sensitivity computer 106, an inequality restrictive condition selector, an optimum tidal flow computer, and an output device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電力系統での電力潮流を
求める方法及び装置に関する。
FIELD OF THE INVENTION The present invention relates to a method and apparatus for determining power flow in a power system.

【0002】[0002]

【従来の技術】[Prior art]

(1)D. I. Sun, T-I. Hi, G. C. Lin, C. Chen, Experi
ences withImplementing Optimal Power Flow for Reac
tive Scheduling in the TaiwanPower System. IEEE T
rns. PWRS, 3(1988), 1193−1200. (2) 佐々木,久保川,藤井,川原,餘利野,オンライン
最適潮流計算法支援エキスパートシステムの構築.電気
学会論文誌,110(1990),294−301. 電力系統の最適潮流計算を実行する際の、制約条件の選
択方法についての公知例には上記(1),(2)がある。公知
例(1)では最適計算実行中の制約条件の選択を、各設備
ごとに、繰り返し計算の際に修正される電気量と、各設
備の制約違反量との比率を算出し、この値が非零になる
ものを不等式制約条件として選択している。この選択方
法は収束計算実行ごとに変化することが特徴である。
(1) DI Sun, TI. Hi, GC Lin, C. Chen, Experi
ences with Implementing Optimal Power Flow for Reac
tive Scheduling in the TaiwanPower System. IEEE T
rns. PWRS, 3 (1988), 1193-1200. (2) Sasaki, Kubogawa, Fujii, Kawahara, Durian, construction of online optimal power flow calculation method expert system. The Institute of Electrical Engineers of Japan, 110 (1990), 294-301. The above-mentioned (1) and (2) are known examples of the method of selecting the constraint condition when executing the optimum power flow calculation of the power system. In the known example (1), the selection of the constraint conditions during the optimal calculation is performed by calculating the ratio between the electricity amount corrected in the iterative calculation and the constraint violation amount of each facility for each facility, and this value is The non-zero one is selected as the inequality constraint condition. This selection method is characterized in that it changes with each execution of the convergence calculation.

【0003】また公知例(2)では、不等式制約違反を回
避するためのエキスパートの知識を予めルールベース化
し、対話的に最適潮流計算が対象とする系統のタイプご
と、あるいは特性ごとに不等式制約を変更している。こ
の方法では、不等式制約の個数はある時間断面の潮流状
態を計算する際には不変である。
Further, in the known example (2), the knowledge of the expert for avoiding the inequality constraint violation is converted into a rule base in advance, and the inequality constraint is interactively set for each type of system or each characteristic of the optimum power flow calculation. Have changed. In this method, the number of inequality constraints does not change when calculating the power flow state in a certain time section.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術(1)では
最適潮流計算実行時の各繰り返し計算実行時の不等式制
約条件の対象は、条件を逸脱した不等式制約条件であ
る。また、この方法は、繰り返し計算ごとに、不等式制
約条件の設定個数あるいは種類が変化する特徴がある。
これは、制約条件の設定に一貫性がなくなることを意味
する。したがって求まる解は、対象とする電力系統、あ
るいは負荷の条件によって実運用からかけ離れたものに
なる恐れがある。また、最適潮流計算には2種類の不等
式制約条件がある。一つは目的関数に対して有効である
制約条件であり、他方はそれほど有効でない制約条件で
ある。たとえば、これらの制約条件としては目的関数に
発電コストを用いて、対象とする電力系統の電源線の容
量が大きい場合、実行する最適潮流計算には発電機の有
効電力出力制約条件は有効であるが、送電線の過負荷発
生の制約条件はさほど有効ではない。従来技術ではすべ
ての不等式制約条件に同等の重みづけを行い、単に不等
式制約条件を制約違反の有無だけによって不等式制約条
件の選択を行っている。このために、最適潮流計算の目
的関数に適した不等式制約条件の選択が行われていると
は限らない。
In the above prior art (1), the subject of the inequality constraint condition at the time of executing each iterative calculation at the time of executing the optimum power flow calculation is the inequality constraint condition deviating from the condition. Further, this method is characterized in that the number of inequality constraint conditions set or the type of inequality constraint conditions change with each iteration.
This means that the setting of constraints is inconsistent. Therefore, the obtained solution may be far from actual operation depending on the target power system or load conditions. Also, there are two types of inequality constraint conditions in the optimum power flow calculation. One is a constraint that is effective for the objective function, and the other is a constraint that is not so effective. For example, if the power generation cost is used as the objective function for these constraints and the capacity of the power supply line of the target power system is large, the active power output constraint of the generator is effective for the optimum power flow calculation to be performed. However, the constraints on the occurrence of overload on the transmission line are not so effective. In the prior art, all inequality constraints are weighted equally, and the inequality constraints are selected simply based on the presence or absence of constraint violation. Therefore, the inequality constraint condition suitable for the objective function of the optimum power flow calculation is not always selected.

【0005】また、公知例(2)では不等式制約違反を回
避するための知識を得るために、あらかじめ膨大なシミ
ュレーションを実施する必要があるという問題点、ま
た、対象とする電力系統は負荷の状態、系統構成などの
要因を考えると必ずしも過去に一致する系統状態が存在
するとは限らず、そのために、ルールベース中の事例と
異なる系統状態が現われた場合への対処策を考える必要
がある。
Further, in the known example (2), it is necessary to carry out a huge amount of simulation in advance in order to obtain the knowledge for avoiding the inequality constraint violation, and the target power system is in the state of load. In consideration of factors such as system configuration, there is not always a system state that matches the past, and therefore it is necessary to consider measures to deal with the case where a system state different from the case in the rule base appears.

【0006】本発明では、最適潮流計算を実行するにあ
たり、前記の不等式制約条件を適正にかつ効率良く選択
する技術を提供することを目的とする。
An object of the present invention is to provide a technique for properly and efficiently selecting the above inequality constraint condition when executing the optimum power flow calculation.

【0007】[0007]

【課題を解決するための手段】前記問題点を解決するた
めに、本発明ではあらかじめ不等式制約条件をたとえば
有効電力制約用,無効電力制約用などに分類する。最適
潮流計算を実行する際は、最小化する目的関数に応じて
分類を行った不等式制約条件の中から、適切なグループ
の不等式制約条件を選択する。
In order to solve the above problems, the present invention classifies inequality constraint conditions into active power constraint, reactive power constraint, etc. in advance. When executing the optimum power flow calculation, an inequality constraint condition of an appropriate group is selected from the inequality constraint conditions classified according to the objective function to be minimized.

【0008】さらに、最適潮流計算実行時に設定する不
等式制約条件の選択方法として、各設備における電力情
報を使用し、例えば運用上下限量と現状の実行値を比率
で表わした制約違反余裕度と、予め対象系統中の設備に
対して計算しておく電圧感応度を用いて、最適潮流計算
実行時に考えられる不等式制約条件に優先順位をつけ
る。この優先順位をもとに、用いる不等式制約条件を選
択する。
Further, as a method of selecting the inequality constraint condition set at the time of executing the optimum power flow calculation, the power information of each facility is used, for example, the constraint violation margin degree in which the upper and lower limit amount of operation and the current execution value are expressed as a ratio, and Using the voltage sensitivities calculated for the equipment in the target system, we prioritize the inequality constraints that can be considered when executing the optimum power flow calculation. Based on this priority, the inequality constraint condition to be used is selected.

【0009】本発明の目的は、前記の方法により選択し
た不等式制約条件を用い、より実際の運用に近い結果を
得ることが可能な、最適潮流計算装置を提供することに
ある。
It is an object of the present invention to provide an optimum power flow calculation device which can obtain a result closer to actual operation by using the inequality constraint condition selected by the above method.

【0010】[0010]

【作用】最適潮流計算を実行するにあたり適切な不等式
制約条件を各潮流状態に応じて選択する。そのために、
各設備ごとに電力潮流量,電力注入量を計算し、さら
に、電圧の大きさ,位相角の大きさの微小変化に対する
潮流量,注入量の変化を求める。さらに、各設備ごとに
運用上限値,下限値との余裕量を求め、その後に制約条
件選択指標を求め制約条件の優先順位を計算する。ここ
で求めた優先順位をもとに適切な不等式制約条件を選択
する。目的関数に応じて適切な不等式制約条件を選択す
ることにより、最適潮流計算の目的関数最小化問題に貢
献しない不等式制約条件を確実に排除できるので、実際
の運用状況に近い潮流解を得ることが可能になる。
In operation, the appropriate inequality constraint condition for executing the optimum power flow calculation is selected according to each power flow state. for that reason,
The power flow rate and the power injection amount are calculated for each equipment, and the change in the tidal flow amount and the injection amount with respect to the minute changes in the voltage magnitude and the phase angle magnitude are calculated. Further, the margins with the operation upper limit value and the lower limit value are calculated for each facility, and then the constraint condition selection index is calculated and the priority order of the constraint conditions is calculated. An appropriate inequality constraint condition is selected based on the priority obtained here. By selecting appropriate inequality constraints according to the objective function, it is possible to reliably eliminate inequality constraints that do not contribute to the objective function minimization problem of optimal power flow calculation, so it is possible to obtain a power flow solution close to the actual operating conditions. It will be possible.

【0011】また選択した種類の制約条件にさらに電圧
感応度による優先順位をつける。これにより、適切な制
約条件の候補を絞る効果がある。したがって選択する不
等式制約条件数が減少し、計算効率が良くなる効果があ
る。
Further, the selected kind of constraint condition is further prioritized by the voltage sensitivity. This has the effect of narrowing down the candidates for appropriate constraint conditions. Therefore, the number of inequality constraint conditions to be selected is reduced, and the calculation efficiency is improved.

【0012】[0012]

【実施例】以下、本発明の実施例を詳細に説明する。図
1は本発明の最適潮流計算方法及び装置の構成の一例で
ある。
EXAMPLES Examples of the present invention will be described in detail below. FIG. 1 shows an example of the configuration of the optimum power flow calculation method and apparatus of the present invention.

【0013】本発明は、対象となる電力系統101,該
電力系統より設備データを読み込むデータ読み込み装置
102,装置102で読み込んだデータをもとに該電力
系統の最適潮流計算を実行するために必要な不等式制約
条件を選択する不等式制約条件選択装置103,不等式
制約を選択するために参考とする、電力系統中の送電
線,変圧器バンク潮流,変圧器タップ比,発電機有効電
力出力上下限値,調相設備上下限値,発電機無効出力制
約曲線,母線電圧上下限値の情報からなる不等式制約条
件データベース104,装置103,104の情報より
最適潮流計算を実行する最適潮流計算装置105,装置
105での計算結果を出力する最適潮流計算結果出力装
置106からなる。
The present invention is necessary for executing the optimum power flow calculation of the target power system 101, the data reading device 102 for reading equipment data from the power system, and the data read by the device 102. Inequality constraint condition selection device 103 for selecting an inequality constraint condition, a transmission line in a power system, a transformer bank power flow, a transformer tap ratio, a generator active power output upper and lower limit value, which is used as a reference for selecting an inequality constraint. , Inequality constraint upper / lower limit value, generator invalid output constraint curve, bus voltage upper / lower limit value information inequality constraint database 104, optimal power flow calculation device 105 for performing optimal power flow calculation from information of devices 103, 104, device It comprises an optimum power flow calculation result output device 106 for outputting the calculation result in 105.

【0014】次に本発明の最適潮流計算装置におけるデ
ータの流れを説明する。最適潮流計算のために必要な該
電力系統101の設備データ、たとえば送電線の抵抗
分,誘導分,容量分の定数,発電機の有効電力出力,負
荷母線の有効電力負荷,無効電力負荷,調相設備の使用
量,変圧器のタップ比は通信線151を通じてデータ読
み込み装置102に送られる。装置102で読み込んだ
データは通信線152を通じて装置103の不等式制約
条件選択装置に送られる。また、電力系統の状態を示す
データとして例えば、該電力系統中の送電線,変圧器バ
ンク潮流,変圧器タップ比,発電機有効電力出力上下限
値,調相設備上下限値,発電機無効出力制約曲線,母線
電圧上下限値の情報が通信線154を通じて装置104
から装置103に送られる。装置103にて選択した、
最適潮流計算を行う上で必要な不等式制約条件を通信線
153を通じて装置105にて最適潮流計算を実行す
る。装置105での実行結果は、通信線155を通じて
最適潮流計算結果出力装置106に送られる。
Next, the data flow in the optimum power flow calculation apparatus of the present invention will be described. Equipment data of the electric power system 101 necessary for the optimum power flow calculation, for example, resistance, inductive, and capacity constants of a transmission line, generator active power output, load bus active power load, reactive power load, adjustment The usage amount of the phase equipment and the tap ratio of the transformer are sent to the data reading device 102 through the communication line 151. The data read by the device 102 is sent to the inequality constraint condition selection device of the device 103 through the communication line 152. Further, as data indicating the state of the electric power system, for example, transmission lines in the electric power system, transformer bank power flow, transformer tap ratio, generator active power output upper and lower limit values, phase adjusting equipment upper and lower limit values, generator invalid output. Information on the constraint curve and the upper and lower limit values of the bus voltage is transmitted to the device 104 through the communication line 154.
From the device 103 to the device 103. Selected on device 103,
The device 105 executes the optimum power flow calculation through the communication line 153 for the inequality constraint condition necessary for performing the optimum power flow calculation. The execution result in the device 105 is sent to the optimum power flow calculation result output device 106 through the communication line 155.

【0015】尚、電力系統の状態を示すデータとしては
実時間の系統状態を示すデータ以外にも、仮想的な実際
の系統状態を反映させた系統状態データのシュミレーシ
ョンデータも使用することができる。
As the data indicating the state of the power system, in addition to the data indicating the system state in real time, simulation data of system state data reflecting a virtual actual system state can also be used.

【0016】次に図1の実施例の詳細について図2を用
いて説明する。
Details of the embodiment shown in FIG. 1 will be described with reference to FIG.

【0017】本実施例では、対象とする電力系統の送電
線の抵抗分,誘導分,容量分,変圧器の誘導分,タップ
比,各調相設備の利用状況そして、該時間断面での系統
接続状態の情報からなる系統定数データベース201,
最適な潮流値を求める任意時間断面における火力,原子
力,水力,揚水,ガスタービン,地熱等の発電機の出力
値からなる、発電機出力データベース202,該任意時
間断面における各変電所負荷、あるいは、発電所の所内
負荷の情報からなる負荷データベース203,各送電線
の潮流運用上下限値,各発電機の出力上下限値,各変電
所母線の電圧上下限値,各変圧器バンク潮流の上下限
値,スタティック・コンデンサ,シャント・リアクトル
などの各調相設備の運用上下限値情報を記憶した不等式
制約条件データベース204,計算を実行するために該
データベースより必要なデータを読み込むデータ読み込
み装置205,送電線潮流,変圧器バンク潮流,変電所
負荷と電圧値の微小変化の関係を求める電圧感応度計算
装置206,最適潮流計算を実施するための不等式制約
条件を決定する不等式制約条件選択装置207,前記潮
流条件より、最適な潮流量を求める最適潮流計算装置2
08,装置208での計算によって求めた最適な潮流値
の結果を表示する出力装置209からなる。
In the present embodiment, the resistance component, the induction component, the capacitance component of the transmission line of the target power system, the induction component of the transformer, the tap ratio, the utilization status of each phase adjusting equipment, and the system in the time section. System constant database 201 consisting of connection status information,
Generator output database 202 consisting of output values of thermal power, nuclear power, hydraulic power, pumping, gas turbine, geothermal, etc. generators at arbitrary time cross sections for obtaining the optimum power flow value, each substation load at the arbitrary time cross sections, or A load database 203 including information on the in-house load of the power station, power flow operation upper and lower limits of each transmission line, output upper and lower limits of each generator, voltage upper and lower limits of each substation bus, and upper and lower limits of each transformer bank power flow. Value, static capacitor, shunt reactor, etc., inequality constraint condition database 204 storing upper and lower limit value information of each phase adjusting equipment, data reading device 205 for reading necessary data from the database for executing calculation, transmission Voltage sensitivity calculator 206 for obtaining the relationship between electric power flow, transformer bank power flow, substation load and small change in voltage value, optimum tide Inequality constraint selector 207 to determine the inequality constraints for implementing calculate, from the tidal conditions, optimal power flow computing device 2 to determine the optimal power flow amount
08, an output device 209 that displays the result of the optimum power flow value calculated by the device 208.

【0018】次に、図2におけるデータの流れを説明す
る。
Next, the data flow in FIG. 2 will be described.

【0019】求めようとする任意の時間断面の系統構成
情報,各送電線,変圧器の抵抗分,容量分,誘導分の情
報と、該時間断面での稼働中の発電機の出力データ,各
変電所の負荷、あるいは稼働中の発電所の所内負荷のデ
ータ、更に、該時間断面における送電線の上下限,変圧
器のバンク潮流の上下限,各発電所の出力上下限,使用
可能調相設備の出力上下限の制約を設定した情報はそれ
ぞれ装置201,202,203,204より連結線25
1,252,253、254を通じてデータ読み込み装
置205に送られる。データ読み込み装置205では、
208の最適潮流計算実行装置の入力データとして計算
に適合するように系統定数データベース,発電機出力デ
ータ,負荷データ,不等式制約条件データを加工する。
ここで加工されたデータは通信線255を通じて、電圧
感応度計算装置206に送られる。ここでは、前記電力
系統中の各設備、例えば上記に示した送電線,変圧器,
調相設備,発電所等における電圧値の微小変化による潮
流量の変化を求める。
System configuration information of an arbitrary time section to be obtained, information on resistance, capacity and induction of each transmission line, transformer, output data of the generator in operation at the time section, each Data on the load of the substation or on-site load of the operating power station, and the upper and lower limits of the transmission line at the time section, the upper and lower limits of the bank flow of the transformer, the upper and lower limits of the output of each power station, and usable phase adjustment The information that sets the upper and lower limits of the output of the equipment is connected from the devices 201, 202, 203, and 204 to the connecting line 25.
It is sent to the data reading device 205 through 1, 252, 253 and 254. In the data reading device 205,
The system constant database, the generator output data, the load data, and the inequality constraint condition data are processed as the input data of the optimum power flow calculation execution unit 208 so as to be suitable for the calculation.
The data processed here is sent to the voltage sensitivity calculation device 206 through the communication line 255. Here, each facility in the power system, such as the above-mentioned transmission line, transformer,
Obtain the change in tidal flow rate due to a slight change in voltage value at the phase modifying equipment, power plant, etc.

【0020】装置206にて求めた各設備毎の電圧感応
度と装置205にて設定された入力データは通信線25
6を通じて不等式制約条件選択装置207に送られる。
ここでは送電線の潮流量の上限,変圧器に流れる潮流量
の上限,調相設備投入量の上下限,発電機の出力上下限
などの不等式制約条件を、対象電力系統中に対応した条
件より選択して設定する。データ読み込み装置205,
電圧感応度計算装置206,不等式制約条件設定装置で
作成したデータは、通信線257を通じて最適潮流計算
装置208に送られる。最適潮流計算装置208ではNe
wton Raphson法、あるいは線形計画法を用いて通信線2
57を通じて最適潮流計算装置に入力された潮流条件に
合う潮流計算を実行する。計算が収束した場合は、その
結果を通信線259を通じて出力装置209に送り結果
を出力する。計算が収束しなかった場合は最適潮流計算
に用いたデータを通信線258を通じて不等式制約条件
選択装置207に送り、繰り返し計算の過程の潮流状態
に対する適切な不等式制約条件を選択した後に、通信線
257を通じて不等式制約条件,系統の負荷条件,発電
機の出力条件を送り、装置208で再び繰り返し計算を
実行する。
The voltage sensitivity of each equipment obtained by the device 206 and the input data set by the device 205 are the communication line 25.
6 to the inequality constraint condition selection device 207.
Here, the inequality constraint conditions such as the upper limit of the tidal flow rate of the transmission line, the upper limit of the tidal flow rate of the transformer, the upper and lower limits of the input of the phase-modulating equipment, the upper and lower limits of the output of the generator, etc. Select and set. Data reading device 205,
The data created by the voltage sensitivity calculation device 206 and the inequality constraint condition setting device is sent to the optimum power flow calculation device 208 through the communication line 257. The optimum power flow calculator 208 is Ne
Communication line 2 using wton Raphson method or linear programming
Through 57, the power flow calculation that meets the power flow conditions input to the optimum power flow calculation device is executed. When the calculation converges, the result is sent to the output device 209 through the communication line 259 and the result is output. If the calculation has not converged, the data used for the optimum power flow calculation is sent to the inequality constraint condition selection device 207 through the communication line 258, and after selecting an appropriate inequality constraint condition for the power flow state in the process of iterative calculation, the communication line 257 is selected. The inequality constraint condition, the load condition of the system, and the output condition of the generator are sent through, and the device 208 repeats the calculation again.

【0021】次に各装置の詳細について説明する。系統
定数データベース201,発電機出力データベース20
2,負荷データベース203、不等式制約条件データベ
ース204それぞれのデータベースは、たとえば図3中
のデータ301,302,303に示す形で、各設備ご
とにデータをそれぞれ保持しておく装置である。データ
読み込み装置205は系統定数データベース201,発
電機出力データ202,負荷データ203,不等式制約条件
入力装置204からの任意の時間断面の系統状態のデー
タを、図3に例示するような形に加工する手段である。
加工されたデータは301に示すような系統の構成情報
を表示する部分と、系統の負荷,発電機情報テーブル3
02、さらに前記電力系統中の各設備ごとに設定されて
いる不等式制約条件テーブル303からなる。
Next, the details of each device will be described. System constant database 201, generator output database 20
2. The load database 203 and the inequality constraint condition database 204 are devices that hold data for each facility in the form of data 301, 302, and 303 shown in FIG. 3, for example. The data reading device 205 processes the data of the system state of an arbitrary time section from the system constant database 201, the generator output data 202, the load data 203, and the inequality constraint condition input device 204 into the form illustrated in FIG. It is a means.
The processed data is a portion for displaying system configuration information as shown in 301, system load, and generator information table 3
02, and an inequality constraint condition table 303 set for each facility in the power system.

【0022】電圧感応度計算装置206は本発明の主要
点の一つである。ここでは最適潮流計算に設定する目的
関数を、たとえば有効電力潮流に関する不等式制約,無
効電力潮流に関する不等式制約,電圧に関する不等式制
約,タップ比に関する不等式制約に分類し、それぞれの
種類ごとにまずグループ化する。
The voltage sensitivity calculation device 206 is one of the main points of the present invention. Here, the objective functions to be set for the optimum power flow calculation are classified into, for example, inequality constraints on active power flow, inequality constraints on reactive power flow, inequality constraints on voltage, and inequality constraints on tap ratio, and each type is first grouped. .

【0023】そしてこの装置ではさらに、電圧の変化と
潮流の変化の関係を求める。すなわち、潮流計算におけ
る電圧の定式化を極座標形式で行った場合は、電圧の大
きさ,位相角の大きさの微小変化による送電線潮流,変
圧器バンク潮流の変化を、潮流計算の定式化における電
圧の定式化を直角座標で行った場合は、電圧の実数成
分,虚数成分の微小変化による送電線潮流,変圧器バン
ク潮流の変化を求める。具体的計算を以下に示す。ま
ず、ブランチの場合について示す。電力系統を縮約表現
で表した場合の変電所(ノード)間をつなぐ送電線(ブ
ランチ)の接続関係を示すアドミタンス行列の要素を
Further, in this apparatus, the relationship between the voltage change and the tidal current change is obtained. In other words, when the voltage formulation in the power flow calculation is performed in polar coordinates, changes in the transmission line power flow and the transformer bank power flow due to small changes in the voltage magnitude and phase angle magnitude are calculated in the power flow formulation. When the voltage formulation is performed in Cartesian coordinates, changes in the transmission line power flow and transformer bank power flow due to small changes in the real and imaginary components of the voltage are obtained. The specific calculation is shown below. First, the case of a branch will be described. The elements of the admittance matrix showing the connection relationship of the transmission lines (branches) that connect the substations (nodes) when the power system is expressed in the contracted representation

【0024】[0024]

【数1】 [Equation 1]

【0025】と定義し(k,m:ノード番号)、送電線
の有効潮流,無効潮流を表わすと(数2),(数3)の
ようになる(極座標表示の場合)。
When the effective power flow and the invalid power flow of the power transmission line are expressed as (k, m: node number) and expressed as (Expression 2) and (Expression 3) (in the case of polar coordinate display).

【0026】[0026]

【数2】 [Equation 2]

【0027】[0027]

【数3】 (Equation 3)

【0028】ただし Pkm:ノード番号がk,mである2つのノード間を流れ
る送電線潮流の有効電力 Qkm:ノード番号がk,mである2つのノード間を流れ
る送電線潮流の無効電力 Vk :ノード番号kの電圧の大きさ Vm :ノード番号mの電圧の大きさ θk :ノード番号kの位相角の大きさ θm :ノード番号mの位相角の大きさ (数2),(数3)に関する各電圧の大きさ,位相角の大
きさの微小変動に対する変化量は式(数2),(数3)を
それぞれの変数(Vk,Vk,θk,θk)で一階偏微分し
た以下の式を用いて求める。
Where P km is the active power of the power flow of the transmission line flowing between the two nodes having node numbers k and m Q km is the reactive power of the power flow of the transmission line flowing between the two nodes having node numbers k and m V k : magnitude of voltage of node number k V m : magnitude of voltage of node number m θ k : magnitude of phase angle of node number k θ m : magnitude of phase angle of node number m (Equation 2) , (Equation 3), the amount of change in the magnitude of each voltage and the magnitude of the phase angle with respect to a minute change is expressed by the equations (Equation 2) and (Equation 3) using the respective variables (V k , V k , θ k , θ k ) Is obtained by using the following formula that is first-order partial differentiated.

【0029】[0029]

【数4】 [Equation 4]

【0030】[0030]

【数5】 (Equation 5)

【0031】[0031]

【数6】 (Equation 6)

【0032】[0032]

【数7】 (Equation 7)

【0033】[0033]

【数8】 (Equation 8)

【0034】[0034]

【数9】 [Equation 9]

【0035】[0035]

【数10】 [Equation 10]

【0036】[0036]

【数11】 [Equation 11]

【0037】これらは各電圧の大きさ、ならびに位相角
の大きさがVk,Vm,θk,θmにおける各変数に対する
傾きを示している。
These show the slopes of the magnitudes of the voltages and the phase angles with respect to the variables at V k , V m , θ k , and θ m .

【0038】以上の(数4)〜(数11)を用いて本発明
では、最適潮計算に対する電圧感応度を定義する。各送
電線潮流、あるいは変圧器バンク潮流設備での電圧感応
度は、最適潮流計算実行時の繰り返し計算の過程での電
圧の大きさ,位相角の大きさの修正量に対し、有効電力
に関しては(数4)〜(数7)中で絶対値最大の値を、無
効電力に関しては(数8)〜(数11)中で絶対値最大の
値とする。本実施例ではそれぞれ(数4)〜(数7),(数
8)〜(数11)中で絶対値最大の値を電圧感応度と定義
したが、それぞれの平均値などの演算を採用してもよ
い。
In the present invention, the voltage sensitivity for the optimum tide calculation is defined by using the above (Equation 4) to (Equation 11). The voltage sensitivity of each transmission line power flow or the transformer bank power flow facility is calculated by adjusting the magnitude of the voltage and the amount of correction of the phase angle in the process of iterative calculation during the optimum power flow calculation, and The maximum absolute value in (Equation 4) to (Equation 7) is set to the maximum absolute value in (Equation 8) to (Equation 11). In this embodiment, the maximum absolute value is defined as the voltage sensitivity in (Equation 4) to (Equation 7) and (Equation 8) to (Equation 11), but the calculation of each average value is adopted. May be.

【0039】各変電所の注入電力量についても同様に考
えることができる。ノード番号kでの注入電力量Pi
iは(数12),(数13)で示される。
The amount of electric power injected into each substation can be similarly considered. Injection power amount P i at node number k,
Q i is represented by (Equation 12) and (Equation 13).

【0040】[0040]

【数12】 (Equation 12)

【0041】[0041]

【数13】 (Equation 13)

【0042】(数12),(数13)を一階偏微分して
(数14)〜(数17)を得る。
(Equation 12) and (Equation 13) are partially differentiated to obtain (Equation 14) to (Equation 17).

【0043】[0043]

【数14】 [Equation 14]

【0044】[0044]

【数15】 (Equation 15)

【0045】[0045]

【数16】 [Equation 16]

【0046】[0046]

【数17】 [Equation 17]

【0047】ブランチの場合と同様に有効注入量の場合
は(数14)〜(数15),無効注入量の場合は(数1
6)〜(数17)のうち、それぞれ最大の値を各ノードに
関する電圧感応度と定義する。ここで求めた電圧感応度
は潮流状態の微小変化、すなわち電力系統中での電圧の
大きさ,位相角の大きさの微小変化に対する感度の意味
をもち、潮流状態の変化に対する制約条件逸脱の度合を
あらかじめ見当づけることが可能となる。
As in the case of the branch, in the case of the effective injection amount (Equation 14) to (Equation 15), in the case of the invalid injection amount (Equation 1)
Among 6) to (Equation 17), the maximum value is defined as the voltage sensitivity for each node. The voltage sensitivity obtained here has the meaning of sensitivity to minute changes in the power flow state, that is, small changes in the magnitude of the voltage and phase angle in the power system. Can be estimated in advance.

【0048】次に不等式制約条件選択装置207につい
て説明する。不等式制約条件選択装置では先に述べた電
圧感応度計算装置で求めた各設備の電力状態、例えば設
備ごとの電圧感応度と、最適潮流計算での繰り返し計算
過程での設備に対する潮流量,各設備の運用上下限量を
もとに、不等式制約条件選択指標を作成し、系統条件、
あるいは最適潮流計算の目的関数に適する不等式制約条
件を選択する。
Next, the inequality constraint condition selection device 207 will be described. In the inequality constraint condition selection device, the power state of each equipment obtained by the voltage sensitivity calculation device described above, for example, the voltage sensitivity for each equipment, the tidal flow rate to the equipment in the iterative calculation process in the optimum power flow calculation, each equipment The inequality constraint condition selection index is created based on the operation upper and lower limits of
Alternatively, the inequality constraint condition suitable for the objective function of the optimum power flow calculation is selected.

【0049】この作成方法を図4を用いて説明する。最
適潮流計算の繰り返し計算の過程で求めた電圧ベクト
ル、さらに図3中の表301,302,303の形に加
工された最適潮流計算に必要なデータ、図2装置206
で求めた電圧感応度は通信線451を通じて手段401
に送られる。ここで通信線451を通じて得た前記情報
をもとに、各設備ごとの電力潮流量,電力注入量を求め
る。手段401で求めた潮流量,注入量は通信線452
を通じて通信線451を通じて得た前記情報とともに手
段402に送られる。手段402では手段401で求め
た電力潮流量,注入量と、表303の不等式制約条件デ
ータを比較することにより運用上下限への余裕量を計算
する。この余裕量の一例を以下の(数18)を用いて計
算する。
This creating method will be described with reference to FIG. The voltage vector obtained in the process of iterative calculation of the optimum power flow calculation, and the data necessary for the optimum power flow calculation processed into the tables 301, 302, and 303 in FIG.
The voltage sensitivity obtained in step 401 is transmitted through the communication line 451 to the means 401.
Sent to Here, based on the information obtained through the communication line 451, the power flow rate and the power injection amount for each facility are obtained. The tide flow rate and the injection rate obtained by the means 401 are the communication line 452.
Through the communication line 451 together with the above information to the means 402. The means 402 compares the power flow rate and injection amount obtained by the means 401 with the inequality constraint condition data in the table 303 to calculate the margin amount to the upper and lower limits of operation. An example of this margin is calculated using the following (Equation 18).

【0050】[0050]

【数18】 (Equation 18)

【0051】各設備ごとに求めた余裕量と、図2装置2
06で作成された電圧感応度は通信線453を通じて手
段403の不等式制約条件選択指標計算手段に送られ
る。ここでは手段402で求めた各設備に対する余裕量
を用い、以下の(数19)より前記電力系統中の各設備
ごとの不等式制約条件選択指標を計算する。
The margin amount obtained for each equipment and the device 2 in FIG.
The voltage sensitivity created in 06 is sent to the inequality constraint condition selection index calculation means of the means 403 through the communication line 453. Here, the margin amount for each facility obtained by the means 402 is used to calculate the inequality constraint condition selection index for each facility in the power system from the following (Equation 19).

【0052】[0052]

【数19】 [Formula 19]

【0053】(数19)で求めた不等式制約条件選択指
標は必要があれば最大の指標値で正規化してもよい。ま
た、最適潮流計算に設定する目的関数によって、設備を
たとえば有効電力潮流に関する不等式制約,無効電力潮
流に関する不等式制約,電圧に関する不等式制約,タッ
プ比に関する不等式制約に分類し、それぞれの種類ごと
にグループ化して前記指標を正規化することも可能であ
る。
The inequality constraint condition selection index obtained in (Equation 19) may be normalized by the maximum index value if necessary. In addition, the equipment is classified into, for example, inequality constraints on active power flow, inequality constraints on reactive power flow, inequality constraints on voltage, and inequality constraints on tap ratio, according to the objective function set for optimal power flow calculation, and grouped by each type. It is also possible to normalize the index.

【0054】手段403で求めた不等式制約条件選択指
標は、通信線454を通じて優先順位計算手段404に
送られる。ここでは手段403で求めた各設備ごとの不
等式制約条件選択指標の大きな順番に並べ変え、その順
番を優先順位と定義する。
The inequality constraint condition selection index obtained by the means 403 is sent to the priority calculation means 404 through the communication line 454. Here, the inequality constraint condition selection indexes for each facility obtained by the means 403 are rearranged in the descending order, and the order is defined as the priority order.

【0055】手段404の詳細を図5のフローチャート
を用いて説明する。手段501では最適潮流計算の目的
関数を認識する。この結果を通信線551を通じて不等
式制約条件選択指標計算手段502に送る。ここでは前
記した電圧感応度を用いて計算する。この結果を通信線
556を通じて手段503に送る。手段503では選択
する不等式制約条件をその種類ごとに分類する手段であ
る。この目的は電力系統の運用目的、たとえば発電機有
効電力出力に関する制約に大きな重みをつける場合、そ
の制約条件に高い優先順位をつけるためである。不等式
制約条件種類分類の処理が終わった後にその結果を通信
線553を通じて分類した不等式制約条件の種類ごとに
指標の最大値を求める。この結果を通信線554を通じ
て手段504に送り、前記した指標の正規化を実行す
る。
Details of the means 404 will be described with reference to the flowchart of FIG. The means 501 recognizes the objective function of the optimum power flow calculation. This result is sent to the inequality constraint condition selection index calculation means 502 through the communication line 551. Here, calculation is performed using the voltage sensitivity described above. The result is sent to the means 503 via the communication line 556. The means 503 is means for classifying the inequality constraint conditions to be selected according to their types. This purpose is to give a high priority to the constraint condition when the constraint on the power system operation purpose, for example, the generator active power output is to be heavily weighted. After the processing of the inequality constraint condition type classification is completed, the result is classified through the communication line 553, and the maximum value of the index is obtained for each type of the inequality constraint condition. The result is sent to the means 504 through the communication line 554, and the index normalization described above is executed.

【0056】ここまでの結果である、各設備ごとに求め
た優先順位は図6表601に示す形で記憶装置に格納さ
れる。
The priorities obtained for each equipment, which are the results so far, are stored in the storage device in the form shown in Table 601 in FIG.

【0057】表601中に含まれる項目は、設備名65
1,設備の運用下限への余裕度652,設備の運用上限への
余裕度653,電圧感応度654,不等式制約条件選択
指標655,優先順位656からなる。この結果は通信
線455を通じて不等式制約条件選択手段405に送ら
れる。ここではあらかじめ最適潮流計算の目的に適した
不等式制約条件を選択する。たとえば最適潮流計算の目
的関数が発電コストで、かつ送電線、あるいは変圧器バ
ンク潮流に過負荷が発生しないような最適解を求める場
合には、有効電力潮流に関する不等式制約条件を優先的
に選択する。あるいは単に対象とする電力系統で制約違
反が起こらないような最適解を求める場合には、優先順
位の高いものを上位から任意の数だけ選択する。このよ
うに不等式制約条件選択装置により、対象とする電力系
統の実運用条件にあった不等式制約条件を選択すること
が可能となる。
Items included in the table 601 are equipment names 65.
1, a margin 652 to the operation lower limit of the equipment, a margin 653 to the operation upper limit of the equipment 653, a voltage sensitivity 654, an inequality constraint condition selection index 655, and a priority 656. This result is sent to the inequality constraint condition selection means 405 via the communication line 455. Here, inequality constraint conditions suitable for the purpose of optimal power flow calculation are selected in advance. For example, when the objective function of the optimum power flow calculation is the power generation cost and an optimum solution that does not cause overload on the transmission line or the transformer bank power flow is to be obtained, the inequality constraint condition regarding the active power flow is preferentially selected. . Alternatively, when simply obtaining an optimum solution that does not cause a constraint violation in the target power system, an arbitrary number of high priority ones are selected from the top. In this way, the inequality constraint condition selection device makes it possible to select an inequality constraint condition that matches the actual operating conditions of the target power system.

【0058】次に最適潮流計算装置208について説明
する。最適潮流計算方法はさまざまな公知例があるが、
本実施例では不等式制約条件選択が終った後の主計算部
分に、以下に示す公知例中の計算方法を用いる。
Next, the optimum power flow calculation device 208 will be described. There are various publicly known examples of the optimum power flow calculation method,
In this embodiment, the calculation method in the following known example is used for the main calculation part after the selection of the inequality constraint condition is completed.

【0059】D. I. Sun,B. Ashley,B. Brewer,A. Hu
ghes,W. F. Tinney,Optimal Power Flow by Newton A
pproach. IEEE Trns. PAS,103(1984),2864−2880.こ
の方法に、前記の不等式制約選択方法を組み合わせるこ
とにより、最適潮流計算の目的に応じた適切な不等式制
約条件を選択し、実運用条件にあった最適潮流解を得る
ことが可能になる。
DI Sun, B. Ashley, B. Brewer, A. Hu
ghes, WF Tinney, Optimal Power Flow by Newton A
pproach. IEEE Trns. PAS, 103 (1984), 2864-2880. By combining this method with the above inequality constraint selection method, an appropriate inequality constraint condition is selected according to the purpose of the optimum power flow calculation, and the actual operation is performed. It is possible to obtain the optimum power flow solution that meets the conditions.

【0060】最適潮流計算の収束計算途中で、制約条件
を逸脱した場合は通常の運用状態とはかけ離れた潮流状
態になっていることが多い。このため、制約条件を逸脱
する設備があった場合は不等式制約条件を再設定する。
When the constraint condition is deviated during the convergence calculation of the optimum power flow calculation, the power flow state is often far from the normal operation state. Therefore, if there is equipment that deviates from the constraint conditions, the inequality constraint conditions are reset.

【0061】この詳細を図7を用いて説明する。逸脱情
報を図7情報を通信線258を通じて不等式制約条件選
択装置207に送る。装置207にて再び不等式制約条
件を再設定し、通信線257を通じて、新たに設定した
不等式制約条件をもとに、最適潮流計算の収束計算を実
行する。
The details will be described with reference to FIG. The deviation information in FIG. 7 is sent to the inequality constraint condition selection device 207 through the communication line 258. The device 207 resets the inequality constraint condition again, and executes the convergence calculation of the optimum power flow calculation based on the newly set inequality constraint condition through the communication line 257.

【0062】尚、上述した実施例では、それぞれの信号
処理装置を通信線で結んだ構成を示したが、これらの信
号処理機能を一箇所に集めることも可能である。例えば
中央給電所の電子計算機の中にこれらの信号処理機能を
ソフトウェアで実現させて複数の機能を組み合わせるこ
とによっても同様の機能,効果を得られる。
In the above embodiment, the signal processing devices are connected by the communication line, but these signal processing functions can be integrated in one place. For example, similar functions and effects can be obtained by implementing these signal processing functions by software in an electronic computer of a central power station and combining a plurality of functions.

【0063】[0063]

【発明の効果】以上に説明したように、本発明によれば
以下の効果がある。
As described above, the present invention has the following effects.

【0064】電力系統最適潮流計算方法および装置にお
いて、あらかじめ性質ごとに分類した不等式制約条件
を、さらに各設備の電圧感応度に基づいて、最適潮流計
算の目的に応じた適切な不等式制約条件を選択すること
により、実運用条件にあった最適潮流解を最も効率良
く、最短の時間で求めることが可能になる。
In the power system optimum power flow calculation method and apparatus, the inequality constraint conditions classified in advance for each property are selected, and based on the voltage sensitivity of each facility, an appropriate inequality constraint condition is selected according to the purpose of the optimum power flow calculation. By doing so, it becomes possible to find the optimum power flow solution that matches the actual operating conditions most efficiently and in the shortest time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の最適潮流計算装置の一実施例を示す
図。
FIG. 1 is a diagram showing an embodiment of an optimum power flow calculation device of the present invention.

【図2】本発明の最適潮流計算装置の一実施例を示す
図。
FIG. 2 is a diagram showing an embodiment of the optimum power flow calculation apparatus of the present invention.

【図3】最適潮流計算実行時に用いるデータのイメージ
図。
FIG. 3 is an image diagram of data used when executing the optimum power flow calculation.

【図4】本発明の最適潮流計算装置の不等式制約条件選
択方法の実施例の流れ図。
FIG. 4 is a flowchart of an embodiment of an inequality constraint condition selection method of the optimum power flow calculation apparatus of the present invention.

【図5】不等式制約条件指標正規化の手続きを示す流れ
図。
FIG. 5 is a flowchart showing a procedure for inequality constraint index normalization.

【図6】本発明の最適潮流計算装置の不等式制約条件に
際して作成する電力系統中の各設備に対する優先順位
表。
FIG. 6 is a priority table for each facility in the power system created under the inequality constraint condition of the optimum power flow calculation apparatus of the present invention.

【図7】不等式制約条件再設定の手続きを示す流れ図。FIG. 7 is a flowchart showing a procedure for resetting an inequality constraint condition.

【符号の説明】[Explanation of symbols]

201…系統定数データベース、202…発電機出力デ
ータベース、203…負荷データベース、204…不等
式制約条件データベース、205…データ読み込み装
置、206…電圧感応度計算装置、207…不等式制約
条件選択装置、208…最適潮流計算装置、209…出
力装置、251,252,253,254,255,2
56,257,258,259…通信線、301…系統
定数データベースの加工例、302…発電機出力,母線
負荷データベースの加工例、303…不等式制約条件デ
ータの加工例、401…各設備の電力潮流量・電力注入
量計算手段、402…各設備に対する運用上下限への余
裕量計算手段、403…不等式制約条件選択指標計算手
段、404…優先順位計算手段、405…不等式制約条
件選択手段、451…電圧感応度計算装置と不等式制約
条件選択装置を連結する通信線、452…電力潮流量・
電力注入量計算手段と運用上下限への余裕量計算手段と
を連結する通信線、453…運用上下限への余裕量計算
手段と不等式制約条件選択指標計算手段を連結する通信
線、454…不等式制約条件選択指標計算手段と優先順
位計算手段とを連結する通信線、455…優先順位計算
手段と不等式制約条件選択手段とを連結する通信線、4
56…不等式制約条件選択手段と最適潮流計算装置を連
結する通信線、501…実行する最適潮流計算の目的関
数の種類を認識する手段、502…不等式制約条件選択
指標計算手段、503…不等式制約条件種類分類手段、
504…不等式制約条件の種類ごとに指標最大値を求め
る手段、505…正規化条件実行手段、551…手段5
01と502を連結する通信線、552…手段502と
503を連結する通信線、553…手段503と504
を連結する通信線、554…手段504と505を連結
する通信線、601…電力系統中の各設備に対する優先
順位表、651…設備名を記入する欄、652…各設備
に対する運用下限への余裕度を記入する欄、653…各
設備に対する運用上限への余裕度を記入する欄、654
…各設備に対する電圧感応度を記入する欄、655…各
設備に対する不等式制約条件選択指標を記入する欄、6
56…不等式制約条件の優先順位を記入する欄。
201 ... System constant database, 202 ... Generator output database, 203 ... Load database, 204 ... Inequality constraint condition database, 205 ... Data reading device, 206 ... Voltage sensitivity calculation device, 207 ... Inequality constraint condition selection device, 208 ... Optimal Power flow calculator, 209 ... Output device, 251, 252, 253, 254, 255, 2
56, 257, 258, 259 ... Communication line, 301 ... Processing example of system constant database, 302 ... Processing example of generator output and bus load database, 303 ... Processing example of inequality constraint condition data, 401 ... Power flow of each facility Quantity / power injection amount calculation means, 402 ... Margin calculation means for operation upper and lower limits for each facility, 403 ... Inequality constraint condition selection index calculation means, 404 ... Priority calculation means, 405 ... Inequality constraint condition selection means, 451 ... Communication line connecting the voltage sensitivity calculation device and the inequality constraint condition selection device, 452 ... Power flow rate
Communication line connecting power injection amount calculating means and margin calculating means to upper and lower limit, 453 ... Communication line connecting margin calculating means to upper and lower limit of operation and inequality constraint condition selection index calculating means, 454 ... Inequality Communication line connecting the constraint condition selection index calculation means and the priority order calculation device, 455 ... Communication line connecting the priority order calculation device and the inequality constraint condition selection means, 4
56 ... A communication line connecting the inequality constraint condition selection means and the optimum power flow calculation device, 501 ... A means for recognizing the type of the objective function of the optimum power flow calculation to be executed, 502 ... An inequality constraint condition selection index calculation means, 503 ... An inequality constraint condition Type classification means,
504 ... Means for obtaining an index maximum value for each type of inequality constraint condition, 505 ... Normalization condition executing means, 551 ... Means 5
Communication line connecting 01 and 502, 552 ... communication line connecting means 502 and 503, 553 ... means 503 and 504
A communication line for connecting the devices, 554 ... a communication line for connecting the means 504 and 505, 601 ... a priority order table for each facility in the power system, 651 ... a column for entering a facility name, 652 ... a margin to an operation lower limit for each facility Column for inputting the degree, 653 ... A column for inputting the degree of margin to the operational upper limit for each facility, 654
… Column for entering voltage sensitivity for each facility, 655… Column for entering inequality constraint condition selection index for each facility, 6
56 ... A field for entering the priority of the inequality constraint condition.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】電力系統の潮流状態を不等式制約条件を用
いた潮流計算手段によって算出する潮流計算装置におい
て、 前記電力系統の系統状態を設定する系統状態設定手段
と、 前記潮流計算の目的関数に応じて、使用する不等式制約
条件を求める不等式制約条件選択手段と、 該不等式制約条件選択手段により求められた不等式制約
条件を用いて前記潮流計算手段は電力系統の潮流計算を
行うことを特徴とする潮流計算装置。
1. A power flow calculation device for calculating a power flow state of a power system by a power flow calculation means using an inequality constraint condition, wherein: a power system state setting means for setting a power system state of the power system; and an objective function of the power flow calculation. Accordingly, the inequality constraint condition selecting means for obtaining the inequality constraint condition to be used, and the power flow calculating means for calculating the power flow of the power system by using the inequality constraint condition obtained by the inequality constraint condition selecting means. Power flow calculator.
【請求項2】請求項第1項の潮流計算装置において、 前記潮流計算手段に用いられる不等式制約条件に対し、
前記電力系統を構成する系統設備に対応する不等式制約
条件指標を算定する不等式制約条件指標算定手段を備
え、該不等式制約条件指標を用いて前記不等式制約条件
選択手段は使用する不等式制約条件を求めることを特徴
とする潮流計算装置。
2. The power flow calculation device according to claim 1, wherein the inequality constraint condition used in the power flow calculation means is:
The inequality constraint condition index calculating means for calculating the inequality constraint condition index corresponding to the system equipment constituting the power system is provided, and the inequality constraint condition selecting means obtains the inequality constraint condition to be used by using the inequality constraint condition index. Power flow calculator characterized by.
【請求項3】請求項第2項の潮流計算装置において、 前記不等式制約条件指標算定手段は前記電力系統を構成
する系統設備の電力状態情報を用いることを特徴とする
潮流計算装置。
3. The power flow calculation device according to claim 2, wherein the inequality constraint condition index calculation means uses power state information of grid equipment that constitutes the power grid.
【請求項4】請求項第3項の潮流計算装置において、 前記電力状態情報として系統設備における運用上下限値
と,初期状態の運用値あるいは現在の運用値との比率
と,系統設備における電圧の変化に対する電圧感応度を
用いることを特徴とする潮流計算装置。
4. The power flow calculation device according to claim 3, wherein the power state information includes a ratio between an operation upper and lower limit value in the system equipment and an operation value in the initial state or a current operation value, and a voltage of the system equipment. A power flow calculation device characterized by using voltage sensitivity to changes.
【請求項5】請求項第1項の潮流計算装置において、 前記潮流計算手段は潮流計算結果に応じて、異なる不等
式制約条件を用いることを特徴とする潮流計算装置。
5. The power flow calculation apparatus according to claim 1, wherein the power flow calculation means uses different inequality constraint conditions according to the power flow calculation result.
【請求項6】請求項第1項の潮流計算装置において、 前記電力系統の系統状態は仮想的な電力系統の系統状態
情報であることを特徴とする潮流計算装置。
6. The power flow calculation device according to claim 1, wherein the grid status of the power system is system status information of a virtual power system.
【請求項7】請求項第1項の潮流計算装置において、 前記電力系統の系統状態は現実の電力系統の任意の時間
断面における電力系統の系統状態情報であることを特徴
とする潮流計算装置。
7. The power flow calculation device according to claim 1, wherein the system status of the power system is system status information of the power system at an arbitrary time section of the actual power system.
【請求項8】任意の時間断面における電力系統の負荷量
ならびに発電量,該時間断面での系統定数,該時間断面
での電力系統中の設備運用の不等式制約条件,前記必要
データを読み込むデータ読み込み装置,前記運用の不等
式制約条件中,適切な不等式制約条件を選択する不等式
制約条件選択装置,前記必要データを基に最適潮流計算
を実行する実行装置、ならびに出力装置からなる、任意
の時間断面の最適な電気量を求める最適潮流計算装置。
8. A load amount and power generation amount of a power system in an arbitrary time section, a system constant in the time section, an inequality constraint condition of equipment operation in the power system in the time section, and data reading for reading the necessary data. A device, an inequality constraint condition selection device that selects an appropriate inequality constraint condition among the inequality constraint conditions of the operation, an execution device that executes an optimum power flow calculation based on the necessary data, and an output device, and Optimal power flow calculator that finds the optimal amount of electricity.
【請求項9】請求項8の構成を持つ最適潮流計算装置中
の不等式制約条件選択装置において、該不等式制約条件
を、電力系統中の各設備の特性、あるいは種類ごとに分
類することを特徴とする最適潮流計算装置。
9. The inequality constraint condition selection device in the optimum power flow calculation device having the structure of claim 8, wherein the inequality constraint condition is classified according to the characteristics or types of each facility in the power system. Optimal power flow calculation device.
【請求項10】請求項8の構成を持つ最適潮流計算装置
中の不等式制約条件選択装置において、該不等式制約条
件を、電力系統中の各設備について、各設備における運
用上下限値と、初期状態の運用値あるいは現在の運用値
との比率と、各設備における電圧の変化に対する電圧感
応度をもとに全設備に対する不等式制約条件の優先順位
を決定することを特徴とする最適潮流計算装置。
10. An inequality constraint condition selection device in an optimum power flow calculation device having the structure of claim 8, wherein the inequality constraint condition is set for each facility in the power system and the upper and lower limit values of each facility and the initial state. An optimum power flow calculation device characterized by determining the priority of the inequality constraint condition for all equipment based on the ratio between the operating value or the current operating value and the voltage sensitivity of each equipment to the voltage change.
【請求項11】請求項8の構成を持つ最適潮流計算装置
中の不等式制約条件選択装置において、該不等式制約条
件を、請求項3の特徴に基づいて該優先順位の上位より
任意の個数を選択し、任意の時間断面の最適な電気量を
求めることを特徴とする最適潮流計算装置。
11. An inequality constraint condition selection device in an optimum power flow calculation device having the structure of claim 8, wherein the inequality constraint condition is selected from an arbitrary number from the top of the priority order based on the feature of claim 3. Then, an optimum power flow calculation device characterized by obtaining an optimum amount of electricity in an arbitrary time section.
【請求項12】請求項8の構成を持つ最適潮流計算装置
中の不等式制約条件選択装置において、該不等式制約条
件を、請求項3の特徴に基づいて各特性あるいは種類ご
とに該優先順位の上位より任意の個数を選択し、任意の
時間断面の最適な電気量を求めることを特徴とする最適
潮流計算装置。
12. An inequality constraint condition selecting device in an optimum power flow calculation device having the structure of claim 8, wherein the inequality constraint condition is set to a higher priority order for each characteristic or type based on the feature of claim 3. An optimum power flow calculating device characterized by selecting an arbitrary number and obtaining an optimum amount of electricity in an arbitrary time section.
【請求項13】請求項8の構成を持つ最適潮流計算装置
中の不等式制約条件選択装置において、該すべての考え
られる不等式制約条件を必要な個数だけ任意に選択する
ことを特徴とする最適潮流計算装置。
13. An optimum power flow calculation, characterized in that, in the inequality constraint condition selection device in the optimum power flow calculation device having the structure of claim 8, all the possible inequality constraint conditions are arbitrarily selected. apparatus.
JP27738394A 1994-11-11 1994-11-11 Tide computer Pending JPH08140262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27738394A JPH08140262A (en) 1994-11-11 1994-11-11 Tide computer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27738394A JPH08140262A (en) 1994-11-11 1994-11-11 Tide computer

Publications (1)

Publication Number Publication Date
JPH08140262A true JPH08140262A (en) 1996-05-31

Family

ID=17582768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27738394A Pending JPH08140262A (en) 1994-11-11 1994-11-11 Tide computer

Country Status (1)

Country Link
JP (1) JPH08140262A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001016775A (en) * 1999-06-24 2001-01-19 Takeo Kawamura Optimum power flow calculating system based on nonlinear programming method
JP2010011735A (en) * 2004-12-14 2010-01-14 Tokyo Electric Power Co Inc:The Optimum tidal current calculation method and optimum tidal current calculation device
JP2010044551A (en) * 2008-08-12 2010-02-25 Chugoku Electric Power Co Inc:The Device and program for calculating water type power generation output
CN101958546A (en) * 2010-10-15 2011-01-26 上海申瑞电力科技股份有限公司 Power network partition method based on voltage sensitivity
CN104332991A (en) * 2014-10-29 2015-02-04 华东电网有限公司 Power grid power flow blocking dispatching method and power grid current margin assessment method
CN108270248A (en) * 2018-01-19 2018-07-10 中国南方电网有限责任公司 A kind of strategy for security correction control method based on new sensitivity analysis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001016775A (en) * 1999-06-24 2001-01-19 Takeo Kawamura Optimum power flow calculating system based on nonlinear programming method
JP2010011735A (en) * 2004-12-14 2010-01-14 Tokyo Electric Power Co Inc:The Optimum tidal current calculation method and optimum tidal current calculation device
JP2010044551A (en) * 2008-08-12 2010-02-25 Chugoku Electric Power Co Inc:The Device and program for calculating water type power generation output
CN101958546A (en) * 2010-10-15 2011-01-26 上海申瑞电力科技股份有限公司 Power network partition method based on voltage sensitivity
CN104332991A (en) * 2014-10-29 2015-02-04 华东电网有限公司 Power grid power flow blocking dispatching method and power grid current margin assessment method
CN108270248A (en) * 2018-01-19 2018-07-10 中国南方电网有限责任公司 A kind of strategy for security correction control method based on new sensitivity analysis

Similar Documents

Publication Publication Date Title
Eidiani A reliable and efficient holomorphic approach to evaluate dynamic available transfer capability
Duan et al. Distributionally robust chance-constrained approximate AC-OPF with Wasserstein metric
Preece et al. Efficient estimation of the probability of small-disturbance instability of large uncertain power systems
Gallego et al. A fast-specialized point estimate method for the probabilistic optimal power flow in distribution systems with renewable distributed generation
Amjady et al. Application of a new sensitivity analysis framework for voltage contingency ranking
US9964980B2 (en) Method and apparatus for optimal power flow with voltage stability for large-scale electric power systems
US20170184640A1 (en) Systems, Methods, and Software for Planning, Simulating, and Operating Electrical Power Systems
Purba et al. Dynamic aggregation of grid-tied three-phase inverters
CN110429648B (en) Small interference stability margin probability evaluation method considering wind speed random fluctuation
Gbadamosi et al. Harmonic and power loss minimization in power systems incorporating renewable energy sources and locational marginal pricing
Pijnenburg et al. Testing the performance of bus-split aggregation method for residential loads
Stott et al. Power system security control calculations using linear programming, Part II
Ramasubramanian et al. Optimal location of FACTS devices by evolutionary programming based OPF in deregulated power systems
La Gatta et al. Tools for handling steady‐state under‐frequency regulation in isolated microgrids
Saleh et al. Survivability analysis of impacts of load-side activities on power systems
Peralta et al. Unbalanced multiphase load-flow using a positive-sequence load-flow program
Kim et al. Application of ESGA hybrid approach for voltage profile improvement by capacitor placement
Ashfaq et al. Regionalisation of islanded microgrid considering planning and operation stages
Suresh et al. Injected current sensitivity based load flow algorithm for multi-phase distribution system in the presence of distributed energy resources
Guzmán-Feria et al. Security constrained OPF for AC/DC systems with power rescheduling by power plants and VSC stations
JPH08140262A (en) Tide computer
CN113852120A (en) Method and system for determining maximum grid-connected capacity of new energy power generation
Hong et al. Optimal power dispatch under load uncertainty using a stochastic approximation method
Chaitra et al. Dispersed generations (DG) for improvement of power performance using UPQC based on a machine learning
Austria et al. Integrated approach to transfer limit calculations