JPH08139395A - Semiconductor laser and light quantity detection circuit - Google Patents

Semiconductor laser and light quantity detection circuit

Info

Publication number
JPH08139395A
JPH08139395A JP30262394A JP30262394A JPH08139395A JP H08139395 A JPH08139395 A JP H08139395A JP 30262394 A JP30262394 A JP 30262394A JP 30262394 A JP30262394 A JP 30262394A JP H08139395 A JPH08139395 A JP H08139395A
Authority
JP
Japan
Prior art keywords
laser
temperature
light
semiconductor laser
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30262394A
Other languages
Japanese (ja)
Inventor
Tomohiro Nakamori
知宏 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP30262394A priority Critical patent/JPH08139395A/en
Publication of JPH08139395A publication Critical patent/JPH08139395A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To perform temperature correction of a detection value by providing a temperature detection means to allow a photodetector to correctly perform detection of a laser light quantity inspite of an influence of self-heating of a semiconductor laser and an influence of an ambient temperature. CONSTITUTION: In a semiconductor laser 1 comprising a laser chip 4 (laser photodetector) and a photodiode 3 (photodetector) photodetecting a part of a laser light emitted from this laser chip 4 and controlling a laser luminous quantity by using a light quantity detection value of the photodiode 3, a chip thermistor (a temperature detection means) is provided on a photodiode 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザと、半導体
レーザの光量を検出してレーザの光量を制御する光量検
出回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser and a light amount detecting circuit for detecting the light amount of the semiconductor laser and controlling the light amount of the laser.

【0002】[0002]

【従来の技術】従来の半導体レーザ101は図6示すよ
うに、基板102の上に、レーザチップ104とレーザ
チップ104の照射レーザ光の一部(A102)を受光
する受光素子103とを備え、キャップ106で覆った
ものである。105はレーザチップ104のヒートシン
クを兼ねたステム、107はレーザ光A101を外部へ
透過させる透明板である。
2. Description of the Related Art As shown in FIG. 6, a conventional semiconductor laser 101 comprises a substrate 102, a laser chip 104, and a light receiving element 103 for receiving a part (A102) of laser light emitted from the laser chip 104. It is covered with a cap 106. Reference numeral 105 is a stem that also serves as a heat sink of the laser chip 104, and 107 is a transparent plate that transmits the laser light A101 to the outside.

【0003】このような従来の半導体レーザは、レーザ
光量の制御のためにレーザ光の一部を受光素子103で
受光してレーザチップ104の発光量を検出し、その検
出値に基づいてレーザ光量の制御を行っているものであ
る。
In such a conventional semiconductor laser, in order to control the laser light amount, a part of the laser light is received by the light receiving element 103, the light emission amount of the laser chip 104 is detected, and the laser light amount is based on the detected value. Is being controlled.

【0004】そして、この半導体レーザ101にはレー
ザチップ104の発光量を検出用する受光素子の温度を
検出する検出手段は設けられてなく、また、光量検出回
路にも受光素子の温度に応じて検出値に補正を加えるよ
うなことは行われていなかった。
The semiconductor laser 101 is not provided with detecting means for detecting the temperature of the light receiving element for detecting the amount of light emitted from the laser chip 104, and the light amount detecting circuit also depends on the temperature of the light receiving element. No correction was made to the detected value.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
例では、受光素子の温度特性による検出値の補正を行っ
ていなかったために、半導体レーザの自己発熱や周囲温
度の影響によりレーザ光量の検出値が変動してしまい、
レーザ光量の制御を精度良く行うことができなかった。
However, in the above-mentioned conventional example, since the detection value is not corrected by the temperature characteristic of the light receiving element, the detection value of the laser light amount fluctuates due to the self-heating of the semiconductor laser and the influence of the ambient temperature. And then
The amount of laser light could not be controlled accurately.

【0006】本発明は上記従来技術の問題を解決するた
めになされたもので、その目的とするところは、半導体
レーザの自己発熱や周囲温度の影響にかかわらず、受光
素子が正確にレーザ光量の検出を行えるように、温度検
出手段を設けて検出値の温度補正を行うことを目的とす
る。
The present invention has been made to solve the above-mentioned problems of the prior art. The object of the present invention is to make sure that the light receiving element accurately controls the laser light quantity regardless of the self-heating of the semiconductor laser and the influence of the ambient temperature. An object of the present invention is to provide a temperature detecting means to perform temperature correction of a detected value so that detection can be performed.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明にあっては、レーザ発光素子とこのレーザ
発光素子から発光されたレーザ光の一部を受光する受光
素子とを備え、レーザ発光量を前記受光素子の光量検出
値を用いて制御する半導体レーザにおいて、前記受光素
子に温度を検出する温度検出手段を設けたことを特徴と
する。
In order to achieve the above object, the present invention comprises a laser light emitting element and a light receiving element for receiving a part of laser light emitted from the laser light emitting element. In a semiconductor laser for controlling a laser emission amount using a light amount detection value of the light receiving element, a temperature detecting means for detecting a temperature is provided in the light receiving element.

【0008】また、光量検出回路は、温度検出手段を設
けた受光素子の光量検出値に、この温度検出手段の検出
温度に応じて前記光量検出値に補正を加えることを特徴
とする。
Further, the light quantity detection circuit is characterized in that the light quantity detection value of the light receiving element provided with the temperature detection means is corrected according to the temperature detected by the temperature detection means.

【0009】さらに、レーザ発光素子とこのレーザ発光
素子から発光されたレーザ光の一部を受光する受光素子
とを備え、レーザ発光量を前記受光素子の受光量を用い
て制御する半導体レーザにおいて、前記受光素子の温度
を検出する温度検出手段を設け、この温度検出手段の検
出温度に応じて光量検出値に補正を加える光量検出回路
によりレーザ発光量を制御することを特徴とする。
Further, in a semiconductor laser having a laser light emitting element and a light receiving element for receiving a part of the laser light emitted from the laser light emitting element, and controlling the laser light emission amount using the light receiving amount of the light receiving element, It is characterized in that temperature detecting means for detecting the temperature of the light receiving element is provided, and the laser light emission amount is controlled by a light amount detecting circuit for correcting the light amount detection value according to the temperature detected by the temperature detecting means.

【0010】[0010]

【作用】上記のように構成された本発明においては、受
光素子に設けた温度検出手段が受光素子の温度を検出
し、この検出温度に応じて光量検出値に補正を加える。
また、光量検出回路は温度検出手段の検出温度に応じて
受光素子の光量検出値に補正を行う。
In the present invention constructed as described above, the temperature detecting means provided in the light receiving element detects the temperature of the light receiving element, and the light amount detection value is corrected according to the detected temperature.
Further, the light amount detection circuit corrects the light amount detection value of the light receiving element according to the temperature detected by the temperature detecting means.

【0011】[0011]

【実施例】【Example】

(第1実施例)以下に、本発明を図示の実施例に基づい
て説明する。図1は本実施例の半導体レーザ1の構成図
である。図1において4はレーザ発光素子としてのレー
ザチップ、5はレーザチップ4のヒートシンクを兼ねた
ステム、11はレーザチップへの端子、3はレーザチッ
プ4のレーザ光量を検出するための受光素子としてのフ
ォトダイオード、10はフォトダイオード3への端子、
2がフォトダイオード3の温度検出手段としてのフォト
ダイオード3の固定部材3aに設けられたチップ型のサ
ーミスタ、8,9はサーミスタ2への端子、6はキャッ
プ、7は透明板、12は各端子と端子間を接続するため
のボンディングワイヤである。
(First Embodiment) The present invention will be described below based on the illustrated embodiment. FIG. 1 is a configuration diagram of a semiconductor laser 1 of this embodiment. In FIG. 1, 4 is a laser chip as a laser light emitting element, 5 is a stem that also serves as a heat sink of the laser chip 4, 11 is a terminal to the laser chip, and 3 is a light receiving element for detecting the laser light amount of the laser chip 4. The photodiode 10 is a terminal to the photodiode 3,
2 is a chip-type thermistor provided on the fixing member 3a of the photodiode 3 as a temperature detecting means for the photodiode 3, 8 and 9 are terminals to the thermistor 2, 6 is a cap, 7 is a transparent plate, and 12 is each terminal. And a bonding wire for connecting between the terminal and the terminal.

【0012】図2は本半導体レーザ1の光量を検出する
ための光量検出回路を含めたレーザ光量制御回路13で
ある。図中14,15は半導体レーザ1内部のチップ型
NTCサーミスタ2と共にレーザチップ4の光量に応じ
たフォトダイオード3からの電流を電圧に変換するため
のオペアンプと抵抗、16はオペアンプ14の出力電圧
をもとにレーザチップ4への駆動電流を制御するための
レーザドライブ回路である。
FIG. 2 shows a laser light amount control circuit 13 including a light amount detection circuit for detecting the light amount of the semiconductor laser 1. In the figure, 14 and 15 are operational amplifiers and resistors for converting the current from the photodiode 3 according to the light quantity of the laser chip 4 into a voltage together with the chip type NTC thermistor 2 inside the semiconductor laser 1, and 16 is the output voltage of the operational amplifier 14. Originally, it is a laser drive circuit for controlling the drive current to the laser chip 4.

【0013】図3,図4はフォトダイオード3の温度特
性を示した図である。
3 and 4 are diagrams showing the temperature characteristics of the photodiode 3.

【0014】図3に示すようにレーザ光量一定の場合に
おいて、フォトダイオード電流の単位温度変化率αは使
用温度範囲内(25℃−T≦t≦25℃+T)において
一定である。
As shown in FIG. 3, when the laser light amount is constant, the unit temperature change rate α of the photodiode current is constant within the operating temperature range (25 ° C.−T ≦ t ≦ 25 ° C. + T).

【0015】また、図4に示すようにこの変化率αがレ
ーザ光量にもよらず一定である場合、前記オペアンプ1
4の出力電圧(Vout)は以下の数式1,2及び3の
ように表わされる。
Further, as shown in FIG. 4, when the change rate α is constant regardless of the laser light amount, the operational amplifier 1
The output voltage (Vout) of No. 4 is expressed by the following equations 1, 2 and 3.

【0016】[0016]

【数1】 Vout=Vr−(id+Δid)×(R+r+Δr)## EQU1 ## Vout = Vr- (id + Δid) × (R + r + Δr)

【0017】[0017]

【数2】Δid=id×α(t−25)## EQU2 ## Δid = id × α (t-25)

【0018】[0018]

【数3】Δr=r×β(t−25) ここで、Vrはオペアンプ+入力に入力されている基準
電圧,idはフォトダイオード温度25℃でのフォトダ
イオード電流,αはフォトダイオード電流の単位温度変
化率,tはフォトダイオード温度,Rは抵抗15の抵抗
値,rは25℃でのチップ型NTCサーミスタの抵抗
値,βはチップ型NTCサーミスタ抵抗値の単位温度変
化率である。
## EQU3 ## Δr = r × β (t-25) where Vr is the reference voltage input to the operational amplifier + input, id is the photodiode current at the photodiode temperature of 25 ° C., and α is the unit of the photodiode current. Temperature change rate, t is the photodiode temperature, R is the resistance value of the resistor 15, r is the resistance value of the chip type NTC thermistor at 25 ° C., and β is the unit temperature change rate of the chip type NTC thermistor resistance value.

【0019】次に、Δid×Δr=0として数式1を展
開するとすると、数式4となる。
Next, when Formula 1 is expanded with Δid × Δr = 0, Formula 4 is obtained.

【0020】[0020]

【数4】Vout=Vr−id×(R+r)−Δid×
(R+r)−id×Δr また、フォトダイオード3の温度によらず出力電圧Vo
utを一定にするためには上の数式4より、数式5が得
られる。
## EQU00004 ## Vout = Vr-id.times. (R + r)-. DELTA.id.times.
(R + r) −id × Δr Further, the output voltage Vo does not depend on the temperature of the photodiode 3.
In order to keep ut constant, Equation 5 is obtained from Equation 4 above.

【0021】[0021]

【数5】−Δid×(R+r)−id×Δr=0 さらに数式5,数式2,数式3より、数式6となるよう
にチップ型NTCサーミスタ2の抵抗値と単位温度変化
率と抵抗15の抵抗値を設定すればよい。
## EQU00005 ## -.DELTA.id.times. (R + r) -id.times..DELTA.r = 0 Further, from the formula 5, the formula 2, and the formula 3, the resistance value of the chip-type NTC thermistor 2, the unit temperature change rate, and the resistance 15 The resistance value may be set.

【0022】[0022]

【数6】β=−α×(1+R/r) この様に半導体レーザ1内のフォトダイオード3にチッ
プ型NTCサーミスタ2を設け、フォトダイオード電流
を電圧に変換する抵抗15と前記チップ型NTCサーミ
スタ2を直列に接続し、フォトダイオード3の温度に応
じて電流−電圧変換効率を変えることにより半導体レー
ザ1の自己発熱や周囲温度の影響によるレーザ光量検出
値の変動を減少させ、精度の良いレーザ光量制御を可能
にする。 (実施例2)本発明の第2の実施例を図面に基づいて説
明する。図5は半導体レーザ1の光量検出するための検
出回路を含めた光量制御回路13であり、フォトダイオ
ード3からの電流をフォトダイオード3に設けられたチ
ップ型サーミスタ2と抵抗15によって電圧変換し、変
換された電圧をオペアンプ14を介してレーザドライブ
回路16に検出光量値として送られる。
[Equation 6] β = −α × (1 + R / r) Thus, the chip NTC thermistor 2 is provided in the photodiode 3 in the semiconductor laser 1, and the resistor 15 for converting the photodiode current into a voltage and the chip NTC thermistor. 2 are connected in series, and the current-voltage conversion efficiency is changed according to the temperature of the photodiode 3 to reduce the fluctuation of the laser light amount detection value due to the self-heating of the semiconductor laser 1 and the influence of the ambient temperature, and the laser with high accuracy can be obtained. Enables light intensity control. (Embodiment 2) A second embodiment of the present invention will be described with reference to the drawings. FIG. 5 shows a light amount control circuit 13 including a detection circuit for detecting the light amount of the semiconductor laser 1. The current from the photodiode 3 is converted into a voltage by a chip type thermistor 2 and a resistor 15 provided in the photodiode 3, The converted voltage is sent as a detected light amount value to the laser drive circuit 16 via the operational amplifier 14.

【0023】ここで、前記オペアンプ14の出力電圧
(Vout)は以下の数式7,8,9の様に表わされ
る。
Here, the output voltage (Vout) of the operational amplifier 14 is expressed by the following equations 7, 8 and 9.

【0024】[0024]

【数7】 Vout=(id+Δid)×(R+r+Δr)(7) Vout = (id + Δid) × (R + r + Δr)

【0025】[0025]

【数8】Δid=id×α(t−25)## EQU8 ## Δid = id × α (t-25)

【0026】[0026]

【数9】Δr=r×β(t−25) ここで、Δid×Δr=0として数式7を展開すると、
数式10となる。
## EQU9 ## Δr = r × β (t-25) Here, when Formula 7 is expanded with Δid × Δr = 0,
Equation 10 is obtained.

【0027】[0027]

【数10】Vout=id×(R+r)+Δid×(R
+r)+id×Δr また、フォトダイオード3の温度によらず出力電圧Vo
utを一定にするためには上の数式7より、数式11を
得て、
[Equation 10] Vout = id × (R + r) + Δid × (R
+ R) + id × Δr Further, the output voltage Vo does not depend on the temperature of the photodiode 3.
In order to make ut constant, Equation 11 is obtained from Equation 7 above,

【0028】[0028]

【数11】Δid×(R+r)+id×Δr=0 さらに数式7,8,9より、数式12となるようにチッ
プ型NTCサーミスタ2の抵抗値と単位温度変化率と抵
抗15の抵抗値を設定すればよい。
[Expression 11] Δid × (R + r) + id × Δr = 0 Further, from Expressions 7, 8, and 9, the resistance value of the chip-type NTC thermistor 2, the unit temperature change rate, and the resistance value of the resistance 15 are set so as to be Expression 12. do it.

【0029】[0029]

【数12】β=−α×(1+R/r) この様に半導体レーザ1内のフォトダイオード3にチッ
プ型NTCサーミスタ2を設け、フォトダイオード電流
を電圧に変換する抵抗15と前記チップ型NTCサーミ
スタ2を直列に接続し、フォトダイオード3の温度に応
じて電流−電圧変換効率を変えることにより半導体レー
ザの自己発熱や周囲温度の影響によるレーザ光量検出値
の変動を減少させ、精度の良いレーザ光量制御を可能に
する。
[Equation 12] β = −α × (1 + R / r) As described above, the chip NTC thermistor 2 is provided in the photodiode 3 in the semiconductor laser 1, and the resistor 15 for converting the photodiode current into a voltage and the chip NTC thermistor. 2 are connected in series, and the current-voltage conversion efficiency is changed according to the temperature of the photodiode 3 to reduce the fluctuation of the laser light amount detection value due to the self-heating of the semiconductor laser and the influence of the ambient temperature, and the accurate laser light amount. Allow control.

【0030】[0030]

【発明の効果】本発明は以上の構成及び作用を有するも
ので、レーザ光量を検出する受光素子に温度検出手段を
設け、受光素子の温度に応じて光量検出値に補正を加え
ることにより半導体レーザの自己発熱や周囲温度の影響
によるレーザ光量検出値の変動を減少させ、精度の良い
レーザ光量の制御を可能とする。
According to the present invention having the above-mentioned structure and operation, a semiconductor laser is provided by providing a temperature detecting means in a light receiving element for detecting the amount of laser light, and correcting the light amount detection value according to the temperature of the light receiving element. It is possible to reduce the fluctuation of the laser light amount detection value due to the self-heating of the device and the influence of the ambient temperature, and to control the laser light amount with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は第1実施例の半導体レーザの構成図。FIG. 1 is a configuration diagram of a semiconductor laser according to a first embodiment.

【図2】図2は第1実施例の制御回路図。FIG. 2 is a control circuit diagram of the first embodiment.

【図3】図3はフォトダイオード温度特性図。FIG. 3 is a photodiode temperature characteristic diagram.

【図4】図4はフォトダイオード温度特性図。FIG. 4 is a photodiode temperature characteristic diagram.

【図5】図5は第2実施例制御回路図。FIG. 5 is a control circuit diagram of a second embodiment.

【図6】図6は従来の半導体レーザの構成図。FIG. 6 is a block diagram of a conventional semiconductor laser.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 サーミスタ(温度検出手段) 3 フォトダイオード(受光素子) 4 レーザチップ(レーザ発光素子) 13 レーザ光量制御回路 DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Thermistor (temperature detection means) 3 Photodiode (light receiving element) 4 Laser chip (laser light emitting element) 13 Laser light amount control circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザ発光素子とこのレーザ発光素子か
ら発光されたレーザ光の一部を受光する受光素子とを備
え、レーザ発光量を前記受光素子の光量検出値を用いて
制御する半導体レーザにおいて、 前記受光素子に温度を検出する温度検出手段を設けたこ
とを特徴とする半導体レーザ。
1. A semiconductor laser comprising a laser light emitting element and a light receiving element for receiving a part of laser light emitted from the laser light emitting element, and controlling the laser light emission amount by using a light amount detection value of the light receiving element. A semiconductor laser, wherein the light receiving element is provided with a temperature detecting means for detecting a temperature.
【請求項2】 温度検出手段を設けた受光素子の光量検
出値に、この温度検出手段の検出温度に応じて前記光量
検出値に補正を加えることを特徴とする光量検出回路。
2. A light amount detection circuit for correcting the light amount detection value of a light receiving element provided with temperature detection means, according to the temperature detected by the temperature detection means.
【請求項3】 レーザ発光素子とこのレーザ発光素子か
ら発光されたレーザ光の一部を受光する受光素子とを備
え、レーザ発光量を前記受光素子の受光量を用いて制御
する半導体レーザにおいて、 前記受光素子の温度を検出する温度検出手段を設け、こ
の温度検出手段の検出温度に応じて光量検出値に補正を
加える光量検出回路によりレーザ発光量を制御すること
を特徴とする半導体レーザ。
3. A semiconductor laser comprising a laser light emitting element and a light receiving element for receiving a part of laser light emitted from the laser light emitting element, wherein the laser light emission amount is controlled by using the light receiving amount of the light receiving element. A semiconductor laser characterized in that temperature detection means for detecting the temperature of the light receiving element is provided, and the laser emission amount is controlled by a light amount detection circuit for correcting the light amount detection value according to the temperature detected by the temperature detection means.
JP30262394A 1994-11-14 1994-11-14 Semiconductor laser and light quantity detection circuit Withdrawn JPH08139395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30262394A JPH08139395A (en) 1994-11-14 1994-11-14 Semiconductor laser and light quantity detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30262394A JPH08139395A (en) 1994-11-14 1994-11-14 Semiconductor laser and light quantity detection circuit

Publications (1)

Publication Number Publication Date
JPH08139395A true JPH08139395A (en) 1996-05-31

Family

ID=17911221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30262394A Withdrawn JPH08139395A (en) 1994-11-14 1994-11-14 Semiconductor laser and light quantity detection circuit

Country Status (1)

Country Link
JP (1) JPH08139395A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7907650B2 (en) 2005-03-31 2011-03-15 Eudyna Devices Inc. Laser module, control method of the same, control data of the same, and control data generation method
US11067139B2 (en) 2017-06-30 2021-07-20 Honda Motor Co., Ltd Vehicle transmission system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7907650B2 (en) 2005-03-31 2011-03-15 Eudyna Devices Inc. Laser module, control method of the same, control data of the same, and control data generation method
US11067139B2 (en) 2017-06-30 2021-07-20 Honda Motor Co., Ltd Vehicle transmission system

Similar Documents

Publication Publication Date Title
US6466595B2 (en) Laser diode driving method and circuit which provides an automatic power control capable of shortening the start-up period
US6977949B2 (en) Control circuit for constantly setting optical output of semiconductor laser
CA1085462A (en) Automatic bias control circuit for injection lasers
US3992622A (en) Logarithmic amplifier with temperature compensation means
US5955726A (en) System for automatically sensing light in a predetermined range and correcting a meter luminance
TWI735399B (en) Photosensor device with dark current cancellation
JP3320900B2 (en) Automatic temperature control circuit for laser diode and electric / optical signal conversion unit using the same
JP2000171295A (en) Apd bias circuit
JPH08139395A (en) Semiconductor laser and light quantity detection circuit
US20040047397A1 (en) Temperature controller in optical communication device and method for same
JP4665741B2 (en) Optical transmitter
US7834602B2 (en) Feedback power control system for an electrical component
EP1458068A2 (en) Driving circuit for semiconductor laser
JPH06326384A (en) Semiconductor laser element drive circuit
JPH0532917B2 (en)
JPH02205380A (en) Light emitting element driving circuit
JPH06113542A (en) Switching power supply circuit
JPH05180695A (en) Light measurement circuit and output voltage range setting method
JPH0573167B2 (en)
JPS58208621A (en) Voltage to current conversion circuit
JPH0856031A (en) Light emission drive circuit of laser diode
JP2669973B2 (en) Optical coupling device
JPH05129706A (en) Semiconductor laser driving control circuit
JPS62151041A (en) Light quantity compensation circuit
GB2218566A (en) Light emitting package

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115