JPH0813259B2 - Heat treatment system - Google Patents

Heat treatment system

Info

Publication number
JPH0813259B2
JPH0813259B2 JP63295116A JP29511688A JPH0813259B2 JP H0813259 B2 JPH0813259 B2 JP H0813259B2 JP 63295116 A JP63295116 A JP 63295116A JP 29511688 A JP29511688 A JP 29511688A JP H0813259 B2 JPH0813259 B2 JP H0813259B2
Authority
JP
Japan
Prior art keywords
raw material
heat treatment
pump
flow rate
treatment system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63295116A
Other languages
Japanese (ja)
Other versions
JPH02142458A (en
Inventor
良郎 山中
太 小塚
正典 寺山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikkoman Corp
Original Assignee
Kikkoman Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikkoman Corp filed Critical Kikkoman Corp
Priority to JP63295116A priority Critical patent/JPH0813259B2/en
Publication of JPH02142458A publication Critical patent/JPH02142458A/en
Publication of JPH0813259B2 publication Critical patent/JPH0813259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は醸造業或いは食品加工業等における熱処理シ
ステムの内、コロイド状(粒径1〜100mμ)或いは懸濁
状(粒径100mμ以上)の分散系を成し、時として粘質を
呈することの多い有機組成の液状原料を対象とするシス
テム、特に、滅菌、変性等の加熱プロセスを受持つもの
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is a colloidal (particle size 1 to 100 mμ) or suspension (particle size 100 mμ or more) heat treatment system in the brewing industry or food processing industry. The present invention relates to a system for a liquid raw material having an organic composition which forms a dispersion system and often exhibits stickiness, and particularly to a system which is responsible for a heating process such as sterilization and denaturation.

(従来の技術) 斯かる技術分野の熱処理システムは、例えば、特開昭
61−228250号公報等に見る如く、原料を送給するポンプ
と、ポンプから供給された原料に熱処理を施す流体回路
とを備えて構成され、通常であれば、処理系つまり流体
回路中での最適原料流量が分っており、当然ながら、こ
れを維持することに異存はないが、その際、システムを
余りいじると、当業界の場合、最終製品への影響、特
に、味覚や香りの微妙な変化を予測し難く、一段落する
まで長期間の試行錯誤を要することから、好結果を期待
できない。
(Prior Art) A heat treatment system in this technical field is disclosed in, for example,
As disclosed in Japanese Patent Publication No. 61-228250, it is configured to include a pump for feeding a raw material and a fluid circuit for heat-treating the raw material supplied from the pump. We know the optimal raw material flow rate and, of course, we are willing to maintain it, but at this time, if we mess with the system too much, in the case of our industry, the influence on the final product, especially the subtlety of taste and aroma is subtle. It is difficult to predict such changes, and it takes a long time for trial and error to settle down, so good results cannot be expected.

そこで、従来は、性能の比較的安定したポンプを選定
して、吐出量の最適値を経験的に割出し、この値に設定
した状態で連続運転を行なうに留めていた。
Therefore, conventionally, a pump having a relatively stable performance is selected, the optimum value of the discharge amount is empirically calculated, and the continuous operation is performed with the value set to this value.

(発明が解決しようとする課題) 然るに、こうしたポンプは、一般に熱処理前後におい
て原料の粘度が一定である事を前提として性能の安定性
が論じられており、熱処理により原料の粘度が大きく変
化する場合、ポンプ自体としては与えられた条件内で正
常に機能していても、システム全体から見れば、吐出量
が設定値を踏み外す結果となることを否めず、まして処
理系内の原料に最適流量の維持を期すことは難しく、処
理温度のバラつきから収量の低下につながらざるを得な
い。
(Problems to be Solved by the Invention) However, the stability of the performance of such pumps is generally discussed on the assumption that the viscosity of the raw material is constant before and after the heat treatment. However, even if the pump itself is functioning normally within the given conditions, from the perspective of the entire system, it is unavoidable that the discharge amount will fall outside the set value, let alone the optimum flow rate for the raw material in the processing system. It is difficult to maintain the product, and variations in processing temperature lead to a decrease in yield.

この点、当分野の熱処理システムは、例えば、デンプ
ン質の糊化に見る如く、対象となる原料に比較的大幅な
粘度変化を招来し得る条件で熱処理を施す場合が少なく
ない。
In this respect, the heat treatment system in the art often performs heat treatment under conditions that can cause a relatively large change in viscosity of the target raw material, as in gelatinization of starch.

これは、処理系の外に視点を置いてみたとき、流体回
路が圧力的に能動なメカニズムを発動し得るに等しく、
そうした場合、従来方式の侭では、粘度変化の小康を座
して待つよりは無いことを意味している。
This is equivalent to a fluid circuit being able to activate a pressure-active mechanism when looking out of the processing system,
In such a case, it means that the conventional method does not wait for the change in viscosity to stand by.

本発明は斯かる従来の熱処理システムにおける問題点
を有効に解決すべく為されたもので、その目的とする処
は、従来よりの構成を余りいじることなく、処理系の能
動的メカニズムに好便に対処し得る熱処理システムを提
供するにある。
The present invention has been made to effectively solve the problems in the conventional heat treatment system, and the object of the present invention is to favor the active mechanism of the processing system without messing with the conventional structure. The present invention is to provide a heat treatment system capable of coping with.

(課題を解決するための手段) 上記目的を達成すべく本発明は、有機組成の原料を送
給するポンプをモーノポンプとし、流体回路を流れる原
料の流量を検出し、検出流量に応じた信号でポンプの回
転数を制御することにより、熱処理系の最適流量を維持
するようにした。
(Means for Solving the Problems) In order to achieve the above object, the present invention uses a mono pump as a pump for feeding a raw material having an organic composition, detects the flow rate of the raw material flowing through a fluid circuit, and outputs a signal according to the detected flow rate. The optimum flow rate of the heat treatment system was maintained by controlling the rotation speed of the pump.

(作用) 上記手段によれば、実質的に、ポンプへフィードバッ
ク制御を掛けるに等しく、従って、吐出量の強制的安定
化が可能となり、しかも設備構成上必要な措置を、フィ
ードバックラインの付設程度に留め得る。
(Operation) According to the above means, it is substantially equivalent to applying feedback control to the pump. Therefore, the discharge amount can be compulsorily stabilized, and the measures necessary for the equipment configuration are reduced to the extent that a feedback line is attached. You can stop.

(実施例) 以下、本発明を、熱源と被処理物間に熱媒を介在させ
て加熱を行なう間接加熱型の熱処理システムに適用した
実施例に付き、添付図面に基いて詳細な説明を行なう。
(Example) Hereinafter, a detailed description will be given based on the accompanying drawings with reference to an example in which the present invention is applied to an indirect heating type heat treatment system in which a heating medium is interposed between a heat source and an object to be heated. .

先ず、第1図及び第2図を参照して、熱媒を被処理物
と接触させない非接触式システムの例を示す。
First, with reference to FIG. 1 and FIG. 2, an example of a non-contact system in which a heat medium is not brought into contact with an object to be treated is shown.

第1図は非接触式熱処理システムの流れ概要図、第2
図は同システムの流体回路を構成する熱交換ユニットの
縦断面図である。
Fig. 1 is a schematic flow chart of the non-contact heat treatment system.
The figure is a vertical cross-sectional view of a heat exchange unit constituting a fluid circuit of the system.

図中、S1は非接触式熱処理システムの全体を表し、同
システムS1は、液状原料Mlを非接触熱媒としての熱湯Wh
で比較的緩やかに加熱して変性処理を行なう為のもの
で、システム的には、原料Mlを所要量送給する供給系Sf
と、供給された原料Mlに熱処理を施す処理系Sp1とを備
えて成り、設備として捉えれば、ホッパー10に貯溜した
原料Mlをフィードポンプ11に通し加圧給球するフィード
ラインLfと、熱湯Whを熱媒とする熱交換器20に原料Mlを
通して加熱処理し処理済原料Mpを排出するプロセスライ
ンLp1とで構成されている。
In the figure, S1 represents the whole of the non-contact heat treatment system, and the system S1 uses the liquid raw material Ml as hot water Wh as a non-contact heat medium.
It is intended to perform a denaturing treatment by heating it relatively slowly with the system.
And a treatment system Sp1 for heat-treating the supplied raw material Ml. If it is regarded as a facility, a feed line Lf for feeding the raw material Ml stored in the hopper 10 through a feed pump 11 to supply pressure, and hot water Wh And a process line Lp1 for heat-treating the raw material Ml and discharging the treated raw material Mp to the heat exchanger 20 using as a heat medium.

ポンプ11は、脈動の少ないモーノポンプとするのが好
ましい。モーノポンプは、一重ねじのロータが二重ねじ
のステータ内を、偏心運動をしながら回転するポンプで
あり、構造が簡単で、固形粒子を含んだ粘性の液体も差
支えなく、自吸能力があるなどの特長をもつ。ポンプ11
は、これを駆動する電動モータ12を備え、モータ12は、
リード線13を介してコントローラ14から送られた制御信
号Scに応じ作動する。
The pump 11 is preferably a Mohno pump with less pulsation. A mono pump is a pump in which a single-screw rotor rotates in a double-screw stator while performing eccentric movement. It has a simple structure, and viscous liquids containing solid particles can be supported, and it has a self-priming ability. With the features of. Pump 11
Includes an electric motor 12 for driving the
It operates according to a control signal Sc sent from the controller 14 via the lead wire 13.

モータ12は信号Scの大小に応じて回転数を増減し、信
号Sc一定の場合、回転数が負荷に略反比例するものと
し、一方、コントローラ14は、単独でモータ12を制御す
る場合、ポンプ11に、その二次圧が正常であれば、最適
流量を吐出させ得るように設定されているものとする。
従って、原料Ml又はMpの粘度が上がり、ポンプ11の二次
圧が大きくなって、負荷が増大したような場合、(単独
制御であれば)信号Scの大きさが当初の設定値に保たれ
た侭変化しないことから、漏れ等によりポンプ11の吐出
量が低下して、最適流量を維持できなくなる。
The motor 12 increases / decreases the rotation speed according to the magnitude of the signal Sc, and when the signal Sc is constant, the rotation speed is assumed to be substantially inversely proportional to the load, while the controller 14 controls the pump 11 when controlling the motor 12 independently. In addition, if the secondary pressure is normal, it is set so that the optimum flow rate can be discharged.
Therefore, when the viscosity of the raw material Ml or Mp increases, the secondary pressure of the pump 11 increases, and the load increases, the magnitude of the signal Sc is kept at the initial set value (in the case of independent control). Since it does not change, the discharge amount of the pump 11 decreases due to leakage or the like, making it impossible to maintain the optimum flow rate.

熱交換器20は横置のユニット21を複数段積上げ直例に
接続したもので、各ユニット21は、第2図に示すよう
に、ストレートな原料導通用内管22と、これを同軸に囲
繞する熱湯導通用外管23から成り、原料流過時その流束
を直径振分けに二分して180度位相をずらすスワールプ
レート24が90度ピッチで内管22の略全長に亘り連設され
ている。
The heat exchanger 20 is formed by horizontally stacking a plurality of units 21 and connecting them directly to each other. As shown in FIG. 2, each unit 21 has a straight raw material conducting inner tube 22 and a coaxially surrounding the inner tube 22. A swirl plate 24, which comprises an outer pipe 23 for conducting hot water, divides the flux into two parts for diameter distribution and shifts the phase by 180 degrees when the raw material flows, is continuously provided at a 90 degree pitch over substantially the entire length of the inner tube 22.

本実施例では、以上において、プロセスラインLp1を
実際に流れている原料Mpの流量を検出する検出器1を熱
交換器20の下流側に取付け、その検出信号Sd1を伝える
リード線2をモータコントローラ14に接続してフィード
バック制御を掛けることにより、制御信号Scの大きさを
適宜増減せしめ、以って、モータ12の回転数を制御して
ポンプ流量を一定に保持し、ポンプ11に常に最適流量を
吐出させるようにしている。
In the present embodiment, as described above, the detector 1 for detecting the flow rate of the raw material Mp actually flowing through the process line Lp1 is attached to the downstream side of the heat exchanger 20, and the lead wire 2 for transmitting the detection signal Sd1 is attached to the motor controller. By connecting to 14 and performing feedback control, the magnitude of the control signal Sc is appropriately increased or decreased, whereby the rotation speed of the motor 12 is controlled to keep the pump flow rate constant, and the pump 11 is always supplied with the optimum flow rate. Is to be discharged.

次いで、第3図及び第4図を参照し、熱媒を被処理物
に直接接触させる接触式システムの例を述べる。
Next, with reference to FIG. 3 and FIG. 4, an example of a contact type system in which a heat medium is brought into direct contact with an object to be treated will be described.

第3図は接触式熱処理システムの流れ概要図、第4図
は同システムの流体回路を構成するスチームインジェク
ターの縦断面図で、前の実施例と同様なものは同じ参照
番号で表されている。
FIG. 3 is a schematic view of the flow of the contact heat treatment system, and FIG. 4 is a vertical cross-sectional view of a steam injector that constitutes a fluid circuit of the system, and those similar to the previous embodiment are designated by the same reference numerals. .

図中、S2は接触式熱処理システムの全体を表し、同シ
ステムS2は、液体原料Mlに熱媒としての蒸気Stを直接混
入接触させ、比較的速やかに加熱して滅菌処理を行なう
為のもので、システム面では、処理系Sp2の加熱方式
が、また、設備面では、プロセスラインLp2をスチーム
インジェクター40で構成し、その原料流量検出信号Sd2
をモータ12のコントローラ14に入力している点が、前実
施例と相違している。
In the figure, S2 represents the entire contact-type heat treatment system, and the system S2 is for performing a sterilization process by directly mixing and contacting the vapor St as a heat medium with the liquid raw material Ml and heating it relatively quickly. On the system side, the heating system of the processing system Sp2 is used. On the equipment side, the process line Lp2 is composed of the steam injector 40, and the raw material flow rate detection signal Sd2
Is input to the controller 14 of the motor 12, which is different from the previous embodiment.

インジェクター40は、原料導通管41とこれに平行なス
チームヘッダー42を複数本の傾斜ノズル43…でつないだ
構造のもので、プロセスラインLp2の原料流量が誤検出
されない程度に蒸気Stの吹込み量を抑えてある。
The injector 40 has a structure in which a raw material conducting pipe 41 and a steam header 42 parallel to the raw material conducting pipe 41 are connected by a plurality of inclined nozzles 43, and the amount of steam St blown in is such that the raw material flow rate of the process line Lp2 is not erroneously detected. Is suppressed.

最後に、第5図を参照して、接触非接触併用式熱処理
システムの例を説明しておく。
Finally, an example of the contact / non-contact combined heat treatment system will be described with reference to FIG.

第5図は同システムの流れ図で、前の実施例と同様な
ものは同じ参照番号で表されている。
FIG. 5 is a flow chart of the system, where like elements from the previous embodiment are designated by like reference numbers.

図中、S3は接触非接触併用式熱処理システムの全体を
表し、本システムS3は、前記接触式システムS2の供給系
Sfと処理系Sp2との間に、非接触式システムS1の処理系S
p1を介在せしめたもので、設備的には、フィードライン
LfとプロセスラインLp2をプロセスラインLp1で直列につ
ないだ構成を有し、下流側に位置するプロセスラインLp
2の原料流量検出信号S d2がコントローラ14にフィード
バックされている。尚、接続位置での温度条件と圧力条
件が整合すれば、プロセスラインLp1とLp2の接続順序を
逆にし、ラインLp1からの検出信号S d1をフィードバッ
クさせるようにしても良い。
In the figure, S3 represents the entire contact / non-contact type heat treatment system, and this system S3 is the supply system of the contact type system S2.
Between Sf and processing system Sp2, processing system S of non-contact system S1
With p1 interposed, the equipment is a feed line
Lf and process line Lp2 are connected in series by process line Lp1, and the process line Lp located downstream
The raw material flow rate detection signal S d2 of 2 is fed back to the controller 14. If the temperature condition and the pressure condition at the connection position match, the connection order of the process lines Lp1 and Lp2 may be reversed and the detection signal S d1 from the line Lp1 may be fed back.

以上、いずれの実施例においても、従来よりの構成、
つまり、フィードバック系1,2を除いた各システムS1〜S
3の構成を余りいじることなく、処理系Sp1,Sp2の能動的
メカニズム、即ち、ポンプ11の二次圧押上げに逐一対処
することができる。
As described above, in any of the embodiments, the conventional configuration,
That is, each system S1 to S excluding the feedback systems 1 and 2
It is possible to deal with the active mechanism of the processing systems Sp1 and Sp2, that is, the secondary pressure push-up of the pump 11 one by one, without messing with the configuration of 3.

こゝで、非接触式熱処理システムS1と、これよりフィ
ードバック系を取除いた従来システムとの比較実験例を
示しておく。
Here, a comparative experiment example of the non-contact heat treatment system S1 and a conventional system from which a feedback system is removed will be shown.

設備仕様 ポンプ11:モーノポンプ2NEL−20 吐出量max1,200l/hr 兵神装備(株)製 熱交換器20 段数、接続:6段直列 ユニット21:内径23mm 長さ1.25m スワールプレート34枚 検出器1:電磁流量計MET−Y442−C6−2F 山武ハネウェル(株)製 コントローラ14:デジタル指示調節計 山武ハネウェル(株)製 プロセス仕様 原料Ml:フラワーペースト 熱媒Wh:熱湯 加熱条件 原料側:温度 入口 40℃ 出口 115℃ 熱媒側:温度 入口 150℃ 出口 140℃ 実験結果 システムS1 設定流量 200l/hr 加熱時流量 200l/hr 従来システム 設定流量 200l/hr 加熱時流量 30l/hr 次いで、接触式熱処理システムS2の性能試験結果を二
種の原料Mlにつき例示しておく。
Facility specifications Pump 11: MONO pump 2 NEL-20 Discharge rate max 1,200 l / hr Heat exchanger made by Hyōjin Kikai Co., Ltd. 20 heat exchangers Number of stages, connection: 6 stages Series unit 21: Inner diameter 23 mm, length 1.25 m 34 swirl plates 34 detectors 1 : Electromagnetic flowmeter MET-Y442-C6-2F Yamatake Honeywell Co., Ltd. Controller 14: Digital indicating controller Yamatake Honeywell Co., Ltd. Process specification Raw material Ml: Flower paste Heat medium Wh: Hot water heating condition Raw material side: Temperature inlet 40 ℃ outlet 115 ℃ Heat medium side: Temperature inlet 150 ℃ outlet 140 ℃ Experimental result System S1 Set flow rate 200l / hr Heating flow rate 200l / hr Conventional system set flow rate 200l / hr Heating flow rate 30l / hr Next, contact heat treatment system S2 The performance test results of the above are illustrated for two kinds of raw materials Ml.

原料I 名称:フラワーペースト(コーンスターチ、粉乳、練
乳、脱脂粉乳、グラニュー糖、バニラエッセンス、油、
水等の混合液) 粘度:処理前 3,000CP(40℃) 処理後 80,000CP(40℃) 温度:プロセス入口 40℃ 加熱処理 120℃ 処理量:200l/hr 菌数(個/g) 一般生菌:処理前 4,000 処理後 < 10 耐熱菌: 処理前 2,000 処理後 < 10 大腸菌: 処理前 (+) 処理後 (−) 原料II 名称:カスタードクリーム(コーンスターチ、牛乳、卵
黄、脱脂粉乳、グラニュー糖、バニラエッセンス、油、
水等の混合液) 粘度:処理前 3,000CP(40℃) 処理後 10,000CP(40℃) 温度:プロセス入口 40℃ 加熱処理 120℃ 処理量:200l/hr 菌数(個/g) 一般生菌:処理前 4,000 処理後 < 10 耐熱菌: 処理前 2,000 処理後 < 10 大腸菌: 処理前 (+) 処理後 (−) 尚、前記実施例において、モータ12のコントローラ14
の回路詳細並びにその配設位置は、これを適宜選定し得
ること明らかであろう。
Raw material I Name: Flower paste (corn starch, milk powder, condensed milk, skim milk powder, granulated sugar, vanilla extract, oil,
Mixture of water, etc.) Viscosity: Before treatment 3,000CP (40 ℃) After treatment 80,000CP (40 ℃) Temperature: Process inlet 40 ℃ Heat treatment 120 ℃ Treatment amount: 200l / hr Number of bacteria (cells / g) General viable bacteria : Before treatment 4,000 After treatment <10 Heat-resistant bacteria: Before treatment 2,000 After treatment <10 Escherichia coli: Before treatment (+) After treatment (-) Raw material II Name: Custard cream (corn starch, milk, egg yolk, skim milk powder, granulated sugar, vanilla) Essence, oil,
Mixture of water etc.) Viscosity: Before treatment 3,000CP (40 ℃) After treatment 10,000CP (40 ℃) Temperature: Process inlet 40 ℃ Heat treatment 120 ℃ Treatment amount: 200l / hr Number of bacteria (cells / g) General viable bacteria : Before treatment 4,000 After treatment <10 Thermostable bacteria: Before treatment 2,000 After treatment <10 Escherichia coli: Before treatment (+) After treatment (-) In the above embodiment, the controller 14 of the motor 12
It will be apparent that the circuit details and the position of the circuit can be appropriately selected.

(発明の効果) 以上の説明により明らかな如く、本発明によれば、原
料を送給するポンプをモーノポンプとし、熱処理システ
ムの処理系に位置する流体回路中の原料流量を検出し、
検出流量に応じた信号でポンプの回転数を制御して、最
適流量を維持するようにしているので、従来よりの構成
を余りいじることなく、処理系の能動的メカニズムに逐
一対処することができ、下流側に負荷の変動があったと
しても流量に変動がなく常に一定となり、その結果、処
理温度も安定し、収量が増す。
(Effect of the invention) As is apparent from the above description, according to the present invention, the pump for feeding the raw material is a mono pump, and the raw material flow rate in the fluid circuit located in the treatment system of the heat treatment system is detected,
Since the pump speed is controlled by a signal according to the detected flow rate to maintain the optimum flow rate, it is possible to deal with the active mechanism of the processing system one by one without having to mess with the conventional configuration. Even if the load fluctuates on the downstream side, the flow rate does not fluctuate and is always constant. As a result, the processing temperature is stable and the yield increases.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明を熱媒加熱型の熱処理システムに適用した
実施例に付いてのもので、第1図は非接触式システムの
流れ図、第2図は同システムを構成する熱交換ユニット
の縦断面図、第3図は接触式システムの流れ図、第4図
は同システムを構成するスチームインジェクターの縦断
面図、第5図は接触非接触併用式システムの流れ図であ
る。 尚、図中、1は流量検出器、2はリード線、11はフィー
ドポンプ、12はモータ、14はコントローラ、20は熱交換
器、40はスチームインジェクタ、Lfはフィードライン、
Lp1,Lp2はプロセスライン、Mlは液体原料、Mpは処理済
原料、S1は非接触式熱処理システム、S2は接触式熱処理
システム、S3は接触非接触併用式熱処理システム、Scは
制御信号、Sd1,Sd2は検出信号、Sfは供給系、Sp1,Sp2は
処理系、Stは蒸気、Whは熱湯を表している。
The drawings relate to an embodiment in which the present invention is applied to a heat medium heating type heat treatment system. FIG. 1 is a flow chart of a non-contact type system, and FIG. 2 is a vertical cross-sectional view of a heat exchange unit constituting the system. 3 and 4 are a flow chart of the contact type system, FIG. 4 is a vertical sectional view of a steam injector constituting the system, and FIG. 5 is a flow chart of the contact / non-contact combination type system. In the figure, 1 is a flow rate detector, 2 is a lead wire, 11 is a feed pump, 12 is a motor, 14 is a controller, 20 is a heat exchanger, 40 is a steam injector, Lf is a feed line,
Lp1 and Lp2 are process lines, Ml is a liquid raw material, Mp is a treated raw material, S1 is a non-contact heat treatment system, S2 is a contact heat treatment system, S3 is a contact non-contact combined heat treatment system, Sc is a control signal, Sd1, Sd2 is a detection signal, Sf is a supply system, Sp1 and Sp2 are processing systems, St is steam, and Wh is hot water.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】有機組成の原料を送給するポンプと、該ポ
ンプより供給された原料に熱処理を施して原料粘度を比
較的大幅に変化せしめ得る流体回路とを備えて成り、上
記ポンプは吐出量が二次圧に左右され、上記熱処理は最
適の原料流量が知られている熱処理システムにおいて、
前記ポンプをモーノポンプとし、前記流体回路を流れる
原料の流量を検出し、検出流量に応じた信号でポンプの
回転数を制御して、前記最適流量を維持するようにした
熱処理システム。
1. A pump comprising a raw material having an organic composition and a fluid circuit capable of subjecting the raw material supplied from the pump to a heat treatment to change the viscosity of the raw material relatively significantly. The amount depends on the secondary pressure, and the above heat treatment is performed in a heat treatment system in which the optimum raw material flow rate is known.
A heat treatment system in which the pump is a mono pump, the flow rate of the raw material flowing through the fluid circuit is detected, and the rotation speed of the pump is controlled by a signal according to the detected flow rate to maintain the optimum flow rate.
【請求項2】前記流体回路は原料と触媒とに非接触状態
で熱を交換させ合う為の機構を備えて成る請求項1記載
の熱処理システム。
2. The heat treatment system according to claim 1, wherein the fluid circuit includes a mechanism for exchanging heat between the raw material and the catalyst in a non-contact state.
【請求項3】前記流体回路は原料に熱媒を直接接触させ
る為の機構を備えて成る請求項1記載の熱処理システ
ム。
3. The heat treatment system according to claim 1, wherein the fluid circuit comprises a mechanism for directly contacting the heat medium with the raw material.
JP63295116A 1988-11-21 1988-11-21 Heat treatment system Expired - Lifetime JPH0813259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63295116A JPH0813259B2 (en) 1988-11-21 1988-11-21 Heat treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63295116A JPH0813259B2 (en) 1988-11-21 1988-11-21 Heat treatment system

Publications (2)

Publication Number Publication Date
JPH02142458A JPH02142458A (en) 1990-05-31
JPH0813259B2 true JPH0813259B2 (en) 1996-02-14

Family

ID=17816498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63295116A Expired - Lifetime JPH0813259B2 (en) 1988-11-21 1988-11-21 Heat treatment system

Country Status (1)

Country Link
JP (1) JPH0813259B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5268509B2 (en) * 2008-09-08 2013-08-21 森永乳業株式会社 Detection method of sterilization start position of direct steam heating

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4637936A (en) * 1984-08-10 1987-01-20 Marlen Research Corporation Aspetic food processing apparatus and method

Also Published As

Publication number Publication date
JPH02142458A (en) 1990-05-31

Similar Documents

Publication Publication Date Title
US4361083A (en) Apparatus for treating a foodstuff
US5863587A (en) Apparatus and method for heat treating a fluid product
WO1983002050A1 (en) Process and installation for applying a controllable heat-exchange in a regenerative heat-exchanger
CA2748217C (en) Method and device for producing a product by microgelling and/or microparticulation of a preparation
SE459415B (en) PROCEDURE TO TRANSFER A PRODUCT TO A FILLING DEVICE
US5727452A (en) Plant for continuously sterilising fluids, such as milk and cream
JPH0813259B2 (en) Heat treatment system
US6513422B1 (en) Apparatus for evaporative cooling of a liquiform product
CA1236437A (en) Systems for feeding liquid substances
NL8400742A (en) STERILIZATION DEVICE.
EP0800775A1 (en) Apparatus and method for treating a fluid product by injection of steam and the fluid product
US4469524A (en) Continuous process and apparatus for modifying carbohydrate material
WO1996002626A9 (en) Method and apparatus for the pasteurization of a continuous line of products
US5298266A (en) Process to subject pumpable candy stock to heat
CA2320486C (en) An apparatus in an infusor for a liquid food product
JPS61228250A (en) Heating treatment device for liquid
JP2799341B2 (en) Back pressure applying structure in heat sterilizer for solid-containing liquid
JPH0227236B2 (en) EKISHORISOCHI
RU2112402C1 (en) Method for automatic controlling of moisture-and-heat processing of bulk product
JPH0615953B2 (en) Indirect heating device
EP2434912B1 (en) Food product heat treatment apparatus and method for heat treating food products
JP7250083B2 (en) Sterilizer
JPH03221755A (en) Device for liquid heat treatment
RU1780660C (en) Method and device for milk homogenization
JPH01225468A (en) Automatic control of amount of treating liquid in continuous sterilizing apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 13