JPH08126896A - Deep tank type waste water treatment utilizing sulfate reducing bacteria - Google Patents

Deep tank type waste water treatment utilizing sulfate reducing bacteria

Info

Publication number
JPH08126896A
JPH08126896A JP26641594A JP26641594A JPH08126896A JP H08126896 A JPH08126896 A JP H08126896A JP 26641594 A JP26641594 A JP 26641594A JP 26641594 A JP26641594 A JP 26641594A JP H08126896 A JPH08126896 A JP H08126896A
Authority
JP
Japan
Prior art keywords
zone
sulfate
deep
reducing bacteria
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26641594A
Other languages
Japanese (ja)
Other versions
JP3135026B2 (en
Inventor
Saburo Matsui
三郎 松井
Haruki Wakimoto
春樹 脇本
Takaaki Tsukada
高明 塚田
Katsunori Koike
勝則 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP26641594A priority Critical patent/JP3135026B2/en
Publication of JPH08126896A publication Critical patent/JPH08126896A/en
Application granted granted Critical
Publication of JP3135026B2 publication Critical patent/JP3135026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PURPOSE: To provide a deep tank type waste water treating method which utilizes sulfate reducing bacteria and does not allow hydrogen sulfide to escape to the outside of a treating chamber. CONSTITUTION: A deep reaction vessel 1 is divided to an anaeration zone 3 and aeration zone 4 communicated with each other at the bottom ends by a perpendicular partition wall 2. An anaerobic treatment by the sulfate reducing bacteria is executed by supplying raw water S to the top part of the anaeration zone 3 and bringing the water into contact with the sulfate reducing bacteria while allowing the water to fall in the zone, by which even the org. compds. hardly decomposable by aerobic microorganisms are decomposed. The raw water S after the anaerobic treatment is admitted from the bottom end of the deep reaction chamber 1 into the aeration zone 4 where the metabolite of the anaeration treatment is decomposed down to the inorg. matter by the aeration treatment. The hydrogen sulfide generated at the time of the sulfate reduction in the anaeration zone 3 is dissolved in the raw water S and while the hydrogen sulfide is held in the water system, the raw water is sent to the aeration zone where the hydrogen sulfide is oxidized to sulfuric acid ions. The hydrogen sulfide having smells is thus prevented from being released outside the reaction chamber 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硫酸塩還元菌利用の深
槽式廃水処理方法に関し、とくに生活下水(し尿、生活
雑廃水、雨水、路上廃水等を含む。)から産業廃水(農
業畜産廃水、工業廃水、水産加工廃水等を含む。)まで
の廃水全般に亘り効果的な硫酸塩還元菌利用の深槽式廃
水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deep tank type wastewater treatment method using sulfate-reducing bacteria, and particularly from domestic wastewater (including human waste, household wastewater, rainwater, street wastewater, etc.) to industrial wastewater (agriculture and livestock). (Including wastewater, industrial wastewater, seafood processing wastewater, etc.) to a deep tank type wastewater treatment method using sulfate-reducing bacteria.

【0002】[0002]

【従来の技術】嫌気性菌を用いた廃水の嫌気性処理は、
有機物濃度の高い廃水の処理能力、エネルギー回収によ
る高効率性等の利点を有するので、実用化が進んでい
る。
BACKGROUND ART Anaerobic treatment of wastewater using anaerobic bacteria is
Since it has advantages such as the treatment capacity of wastewater with high organic matter concentration and high efficiency by energy recovery, it is being put to practical use.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の嫌気性
処理には、脱窒素率が70%程度にとどまっている問題点
がある。その理由の一つは、嫌気性菌の一種である硫酸
塩還元菌の働きを積極的に活用しないことにあった。硫
酸塩還元菌は他の嫌気性菌に比し、 (1)環境条件の変化に対する抵抗力が大きい (2)増殖速度が大きい (3)有機物の分解能力が高い などの有利な特性を有するが、その活動過程で悪臭と毒
性のある硫化水素を発生するので、積極的に用いられる
ことがなかった。
However, the conventional anaerobic treatment has a problem that the denitrification rate is about 70%. One of the reasons for this is that the action of sulfate-reducing bacteria, which is a type of anaerobic bacterium, is not actively utilized. Compared to other anaerobic bacteria, sulfate-reducing bacteria have the following advantageous properties: (1) Greater resistance to changes in environmental conditions (2) Higher growth rate (3) Higher ability to decompose organic substances , It emits foul-smelling and toxic hydrogen sulfide in the course of its activity, so it was never used actively.

【0004】従って、本発明の目的は硫化水素を処理槽
外へ逃がさない硫酸塩還元菌利用の深槽式廃水処理方法
を提供するにある。
Accordingly, it is an object of the present invention to provide a deep tank type wastewater treatment method utilizing sulfate reducing bacteria which does not allow hydrogen sulfide to escape to the outside of the treatment tank.

【0005】[0005]

【課題を解決するための手段】本発明者は、深井戸型等
の深い処理槽中に原水を下降させながら硫酸塩還元菌を
作用させるならば、硫酸塩還元で生ずる硫化水素を深い
処理槽の高い水圧下で原水中に溶解させてこれを水系中
に留め処理槽外へ逃がさないことが可能である点、及び
さらにこの硫化水素含有原水を好気ゾーンへ送り好気性
菌による処理を加えるならば硫化水素を酸化して無害な
硫酸イオンにできる点に着目して本発明を完成した。
Means for Solving the Problems The present inventor has proposed that if the sulfate-reducing bacteria are allowed to act while lowering the raw water into a deep treatment tank of a deep well type or the like, the hydrogen sulfide produced by the sulfate reduction is treated deeply. It is possible to dissolve it in raw water under high water pressure and retain it in the water system so that it will not escape to the outside of the treatment tank. Furthermore, this raw water containing hydrogen sulfide is sent to the aerobic zone for treatment with aerobic bacteria. Then, the present invention has been completed by focusing on the fact that hydrogen sulfide can be oxidized into harmless sulfate ions.

【0006】図1の実施例を参照するに、本発明による
硫酸塩還元菌利用の深槽式廃水処理方法は、深い反応槽
1を鉛直隔壁2により下端で連通した嫌気ゾーン3と好
気ゾーン4に分割し、原水Sを、前記嫌気ゾーン3で下
降させながら硫酸塩還元菌に接触させて硫酸塩還元によ
る嫌気性処理をした後、前記好気ゾーン4へ流入させて
前記嫌気性処理の代謝物を好気性処理し、前記嫌気ゾー
ン3の硫酸塩還元時に生ずる硫化水素を原水Sに溶解さ
せて好気ゾーンへ送り酸化して硫酸イオンとすることに
より水系中で分解してなるものである。
Referring to the embodiment shown in FIG. 1, the deep tank type wastewater treatment method using sulfate reducing bacteria according to the present invention is an aerobic zone 3 and an aerobic zone 3 in which a deep reaction tank 1 is connected at a lower end by a vertical partition wall 2. 4, the raw water S is brought into contact with the sulfate-reducing bacteria while descending in the anaerobic zone 3 to perform anaerobic treatment by sulfate reduction, and then the raw water S is allowed to flow into the aerobic zone 4 to perform the anaerobic treatment. The metabolites are subjected to aerobic treatment, and hydrogen sulfide generated during the reduction of sulfates in the anaerobic zone 3 is dissolved in the raw water S and sent to the aerobic zone to be oxidized and converted into sulfate ions, which are decomposed in an aqueous system. is there.

【0007】好ましくは、前記好気ゾーン4に鉛直仕切
壁7により上下端で連通した上昇部5と下降部6とを設
け、前記上昇部5へ空気を送って空気泡を発生させ、原
水Sを、前記上昇部5中で前記空気泡の浮上に伴って矢
印Uで示すように上昇させ、前記上昇部5の上端から前
記下降部6中へ移行させて矢印Dで示すように下降さ
せ、前記下降部6の下端において前記上昇部5へ帰して
前記好気ゾーン4内に矢印Cで示すように循環させる。
図示例では、上昇部5へ空気を送るために、曝気装置8
を用いる。原水Sと嫌気性菌及び好気性菌との接触を確
保するため、好ましくは、軽石等の担体9により流動床
を形成する。図1に好気ゾーン4の流動床のみを示す
が、嫌気ゾーン3にも流動床を設けることができる。
Preferably, the aerobic zone 4 is provided with an ascending section 5 and a descending section 6 which communicate with each other by a vertical partition wall 7 at the upper and lower ends, and air is sent to the ascending section 5 to generate air bubbles and the raw water S Is raised in the rising portion 5 as the air bubbles float, as indicated by the arrow U, is moved from the upper end of the rising portion 5 into the descending portion 6 and is lowered as indicated by the arrow D, At the lower end of the descending portion 6, the air is returned to the ascending portion 5 and circulated in the aerobic zone 4 as indicated by an arrow C.
In the illustrated example, in order to send air to the rising section 5, the aeration device 8
To use. In order to ensure contact between the raw water S and the anaerobic bacteria and aerobic bacteria, it is preferable to form a fluidized bed with the carrier 9 such as pumice. Although FIG. 1 shows only the fluidized bed in the aerobic zone 4, the anaerobic zone 3 can also be provided with the fluidized bed.

【0008】[0008]

【作用】図1の嫌気ゾーン3に流入した原水Sは、ゆる
やかに下降し、硫酸塩還元菌を含む嫌気性菌に接触し、
原水S中の有機物の分解・低分子化が行われる。原水S
中の硫黄分の大部分は硫酸イオン(SO4 2-)として存在
するが、嫌気ゾーン3を下降するに伴い硫酸塩還元菌に
より還元される。例えば、低分子化されたプロピオン酸
イオン(CH3CH2C00-)存在下における硫酸イオンの硫化
水素への還元は酢酸の生成を伴う下記反応式(1)(2)で示
される。但し、本発明はこれらの反応に限定されない。
The raw water S flowing into the anaerobic zone 3 in FIG. 1 slowly descends and comes into contact with anaerobic bacteria including sulfate-reducing bacteria,
Organic substances in raw water S are decomposed and the molecular weight is reduced. Raw water S
Most of the sulfur content therein exists as sulfate ions (SO 4 2− ), but is reduced by sulfate-reducing bacteria as it moves down the anaerobic zone 3. For example, low molecular weight have been propionate - represented by the reduction to hydrogen sulphide of sulfate ion in the presence the following reaction formula with the formation of acetic acid (1) (2) (CH 3 CH 2 C00). However, the present invention is not limited to these reactions.

【0009】こうして生成した硫化水素(H2S+HS-
は、原水Sの下向き流れに伴い深い処理槽1の深部で高
圧下の原水S中に溶解し、水系中に留まって処理槽外へ
逃げることがない。含硫化水素原水Sが反応槽1の下端
で好気ゾーン4へ進入して酸素及び好気性菌に接触する
と、硫化水素が速やかに酸素と結合して下記反応式(3)
に示すように硫酸イオンSO4 2-となる。
[0009] Thus produced hydrogen sulfide (H 2 S + HS -)
Is dissolved in the raw water S under high pressure in the deep portion of the deep treatment tank 1 with the downward flow of the raw water S, does not stay in the water system and escape to the outside of the treatment tank. When the hydrogen sulfide-containing raw water S enters the aerobic zone 4 at the lower end of the reaction tank 1 and comes into contact with oxygen and aerobic bacteria, hydrogen sulfide is quickly combined with oxygen and the following reaction formula (3)
As shown in, it becomes sulfate ion SO 4 2- .

【0010】[0010]

【化1】 4CH3CH2C00-+3SO4 2-=4CH3C00-+H++4HCO3 -+4HS- ……(1) H++HS-=H2S ……(2) H2S+HS-+4O2=2SO4 2-+3H+ ……(3)## STR1 ## 4CH 3 CH 2 C00 - + 3SO 4 2- = 4CH 3 C00 - + H + + 4HCO 3 - + 4HS - ...... (1) H + + HS - = H 2 S ...... (2) H 2 S + HS - + 4O 2 = 2SO 4 2- + 3H + …… (3)

【0011】よって、嫌気ゾーン3で発生した硫化水素
は水系中に留りながら移動し好気ゾーン4で酸化されて
硫酸イオンとなるので、硫化水素が処理槽1の外へ出る
ことはなく、本発明の深槽式廃水処理の全過程を通じて
硫化水素の臭気や毒性が環境へ出る虞がなく、好気ゾー
ン4から流出する処理水Tには硫化水素は含まれない。
Therefore, since hydrogen sulfide generated in the anaerobic zone 3 moves while staying in the water system and is oxidized in the aerobic zone 4 to form sulfate ions, hydrogen sulfide does not go out of the treatment tank 1. There is no possibility that the odor and toxicity of hydrogen sulfide will be released to the environment during the whole process of the deep tank type wastewater treatment of the present invention, and the treated water T flowing out from the aerobic zone 4 does not contain hydrogen sulfide.

【0012】また、嫌気ゾーン3における上記硫化水素
の発生及び原水Sへの溶解は嫌気ゾーン3での原水S中
の有機物の分解・低分子化に影響するものではなく、さ
らに好気ゾーン4における上記硫化水素の硫酸イオンへ
の酸化は好気ゾーン4での原水の好気性消化に影響する
ものではない。
The generation of hydrogen sulfide in the anaerobic zone 3 and the dissolution in the raw water S do not affect the decomposition and molecular weight reduction of the organic matter in the raw water S in the anaerobic zone 3, and further in the aerobic zone 4. The oxidation of hydrogen sulfide to sulfate ions does not affect the aerobic digestion of raw water in aerobic zone 4.

【0013】こうして、本発明の目的である「硫化水素
を処理槽外へ逃がさない硫酸塩還元菌利用の深槽式廃水
処理方法」の提供が達成される。
Thus, the object of the present invention is to provide a "deep tank type wastewater treatment method utilizing sulfate-reducing bacteria that does not allow hydrogen sulfide to escape to the outside of the treatment tank".

【0014】[0014]

【実施例】図1の実施例において、原水Sは流量調整槽
12に一旦蓄えられた後、ポンプPにより所要の流量Qで
スクリーン15を介して反応槽1の嫌気ゾーン3の頂部へ
送られる。処理槽1で浄化された水は好気性ゾーン4の
頂部から沈殿槽13へ抽出され、余剰汚泥10を沈殿により
分離させる。汚泥分離後の処理水Tが処理水貯留槽14に
蓄えられる。原水Sにおける有機物や硫酸イオンの濃度
調整のため、処理水貯留槽14の処理水TをポンプPによ
り返送水Rとして嫌気ゾーン3へ適宜戻してもよい。ま
た、汚泥補給のため、沈殿槽13の余剰汚泥10の一部を嫌
気ゾーン3へ適宜戻すことができる。
Example In the example of FIG. 1, the raw water S is a flow rate adjusting tank.
After being temporarily stored in 12, the pump P sends it to the top of the anaerobic zone 3 of the reaction tank 1 through the screen 15 at a required flow rate Q. The water purified in the treatment tank 1 is extracted from the top of the aerobic zone 4 into the settling tank 13, and the excess sludge 10 is separated by settling. The treated water T after sludge separation is stored in the treated water storage tank 14. In order to adjust the concentration of organic substances and sulfate ions in the raw water S, the treated water T in the treated water storage tank 14 may be appropriately returned to the anaerobic zone 3 as return water R by the pump P. In addition, a part of the excess sludge 10 in the settling tank 13 can be appropriately returned to the anaerobic zone 3 for sludge supply.

【0015】図2により、上記実施例における廃水処理
の過程を、家庭下水の嫌気性分解の場合について説明す
る。嫌気ゾーン3における処理では、硫酸塩還元菌の
特徴として、従来の好気性微生物では難分解有機物であ
るとされていたテトラクロロエチレン、トリクロロエチ
レン、ヂチクロロエチレンや、トリニトロトルエン、ヂ
ニトロトルエンを分解することができる。下記反応式
(4)は、家庭下水中の成分の嫌気性分解の一例として蛋
白質・炭水化物・脂質混合組成をプロピオンとアンモニ
アに分解する反応を示す。
The process of wastewater treatment in the above embodiment will be described with reference to FIG. 2 for the case of anaerobic decomposition of domestic sewage. In the treatment in the anaerobic zone 3, as a feature of the sulfate-reducing bacteria, tetrachloroethylene, trichlorethylene, dithichloroethylene, trinitrotoluene, and dinitrotoluene, which have been considered to be hardly decomposable organic substances in conventional aerobic microorganisms, can be decomposed. it can. The following reaction formula
As an example of anaerobic decomposition of components in domestic sewage, (4) shows a reaction of decomposing a mixed composition of protein, carbohydrate, and lipid into propion and ammonia.

【0016】好気ゾーン4では、仕切壁7を介して上昇
部5と下降部6との間で原水Sの循環が行われている。
上昇部5には曝気装置8を設け、空気送入により気泡を
発生させ、気泡の上昇により原水Sの上昇を促進すると
共に空気中の酸素により原液S中の窒素が酸化する。従
って、下降部6中の下降原水S中にはNO3 -が存在する。
好ましくは、嫌気ゾーン3からの流入量Qに対して(0.
5〜3.0)Qの循環水を混合する。好気ゾーン4の下端部
では、硫黄による脱窒処理と酢酸による脱窒処理が
下記反応式(5)(6)のように行われる。上記硫黄による脱
窒処理と酢酸による脱窒処理との併用により脱窒素
の効率を80%以上に高めることができる。
In the aerobic zone 4, the raw water S is circulated between the ascending section 5 and the descending section 6 via the partition wall 7.
The ascending unit 5 is provided with an aerator 8, and bubbles are generated by air feeding, the rise of the bubbles promotes the rise of the raw water S, and the oxygen in the air oxidizes the nitrogen in the stock solution S. Therefore, NO 3 exists in the descending raw water S in the descending section 6.
Preferably, with respect to the inflow amount Q from the anaerobic zone 3, (0.
5 to 3.0) Mix the circulating water of Q. At the lower end of the aerobic zone 4, denitrification treatment with sulfur and denitrification treatment with acetic acid are carried out as shown in the following reaction formulas (5) and (6). The combined use of the denitrification treatment with sulfur and the denitrification treatment with acetic acid can increase the denitrification efficiency to 80% or more.

【0017】曝気装置8の下流において、上記反応式
(3)の硫化水素酸化処理が行われる。次に、下記反応
式(7)に示すように、嫌気性状態で生成したアンモニア
(NH4 +)を硝化細菌で硝酸塩(NO3 -)に酸化するアンモ
ニア酸化処理がなされる。
Downstream of the aeration device 8, the above reaction formula
The hydrogen sulfide oxidation treatment of (3) is performed. Next, as shown in the following reaction formula (7), an ammonia oxidation treatment is performed in which nitrifying bacteria oxidize ammonia (NH 4 + ) produced in an anaerobic state into nitrate (NO 3 ).

【0018】最後に残存した有機物を上昇部5の上部に
おいて有機物好気性酸化処理により例えば下記反応式
(8)のプロピオン酸の酸化のように分解する。
The organic matter remaining at the end is subjected to an aerobic oxidation treatment of organic matter at the upper part of the rising section 5, for example, by the following reaction formula.
Decomposes like the oxidation of propionic acid in (8).

【0019】[0019]

【化2】 7C10H19O3N+18HCO3 -+H20=25CH3CH2C00-+7NH4 ++13CO2 ……(4) 5H2S+5HS-+16NO3 -+HCO3 -+H+=10S04 2-+8N2+8H2O ……(5) 5CH3C00-+8H++8NO3 -=5CO2+5HCO3 -+4N2+9H2O ……(6) NH4 ++2O2=NO3 -+H2O+2H+ ……(7) 2CH3CH2C00-+7O2=4C02+4H2O+2HCO3 - ……(8)## STR2 ## 7C 10 H 19 O 3 N + 18HCO 3 - + H 2 0 = 25CH 3 CH 2 C00 - + 7NH 4 + + 13CO 2 ...... (4) 5H 2 S + 5HS - + 16NO 3 - + HCO 3 - + H + = 10S0 4 2- + 8N 2 + 8H 2 O …… (5) 5CH 3 C00 + 8H + + 8NO 3 = 5CO 2 + 5HCO 3 + 4N 2 + 9H 2 O …… (6) NH 4 + + 2O 2 = NO 3 + H 2 O + 2H + …… (7) 2CH 3 CH 2 C00 - + 7O 2 = 4C0 2 + 4H 2 O + 2HCO 3 - ...... (8)

【0020】[実験例] (イ) 実験下水の組成 BOD:200mg/リットル SO4 2-:30mg/リットル 全窒素量T-N:45mg/リットル(NH4 +:35mg/リットル) 浮遊物濃度SS:240mg/リットルテトラクロロエチレン 、トリクロロエチレン、チ゛チクロロエチレン:それぞれ10mg/リッ
トルトリニトロトルエン 、チ゛ニトロトルエン:それぞれ 10mg/リットル 汚水量Q:30m3/日 (ロ) 構成部の水理学的滞留時間 硫酸塩還元嫌気性部(図2の):3時間 硫黄脱窒素部(図2の):0.5時間 有機性脱窒素部(図2の):0.5時間 硫化水素酸化部(図2の):0.5時間 硝化部(図2の):2時間 有機物好気性酸化部(図2の):0.5時間 循環部(図2の):2時間 沈殿槽(図1及び図2の符号13):2時間 (ハ) 固定付着体微生物 上記図2のないしの各部にリングレースに担持した (ニ) 循環水量 原水量と等しくしたので、嫌気ゾーン3頂部における原
水Sの流量をQとしたとき、嫌気ゾーン4の下端から上
昇部5への流入量は2Qとした。 (ホ) 空気吹込み量 上記原水Sの流量Qの5倍程度を目安とした (ト) 処理水実績 BOD:10mg/リットル、除去率95% SO4 2-:30mg/リットル 全窒素量T-N:9.0mg/リットル、除去率80% 浮遊物濃度SS:10mg/リットル、除去率95.8% 低級脂肪酸(吉草酸、プロピオン酸、酢酸):それぞれ
検出せずテトラクロロエチレン 、トリクロロエチレン、チ゛チクロロエチレン:それぞれ 0.0mg/
リットル、検出せずトリニトロトルエン 、チ゛ニトロトルエン:それぞれ 0.0mg/リットル、検出せ
[Experimental Example] (b) Composition of experimental sewage BOD: 200 mg / liter SO 4 2- : 30 mg / liter Total nitrogen amount TN: 45 mg / liter (NH 4 + : 35 mg / liter) Suspended matter concentration SS: 240 mg / Liter Tetrachlorethylene, trichloroethylene, dimethylchloroethylene: 10 mg / liter each trinitrotoluene, dinitrotoluene: 10 mg / liter each Sewage volume Q: 30 m 3 / day (b) Hydraulic retention time of components Sulfate reduction anaerobic part (Fig. 2): 3 hours Sulfur denitrification section (Fig. 2): 0.5 hour Organic denitrification section (Fig. 2): 0.5 hour Hydrogen sulfide oxidation section (Fig. 2): 0.5 hour Nitrification section (Fig. 2) ): 2 hours Organic aerobic oxidation part (Fig. 2): 0.5 hours Circulation part (Fig. 2): 2 hours Precipitation tank (reference numeral 13 in Figs. 1 and 2): 2 hours (c) Fixed adhering microorganisms A ring race was carried on each part of FIG. Having equal to two) circulating water raw water amount, when the flow rate of raw water S in the anaerobic zone 3 top and is Q, inflow into rising portion 5 from the lower end of the anaerobic zone 4 was 2Q. (E) Amount of air blown About 5 times the flow rate Q of raw water S as a guideline (g) Actual treated water BOD: 10 mg / liter, removal rate 95% SO 4 2- : 30 mg / liter Total nitrogen amount TN: 9.0 mg / liter, removal rate 80% Suspended matter concentration SS: 10 mg / liter, removal rate 95.8% Lower fatty acids (valeric acid, propionic acid, acetic acid): Not detected respectively Tetrachloroethylene, trichloroethylene, dichloroethylene: 0.0 mg each /
L, not detected trinitrotoluene, dinitrotoluene: 0.0 mg / l each, not detected

【0021】上記実験例の結果を通常使用される標準活
性汚泥法と比較すると、水理学的滞留時間が殆ど同程度
で、窒素除去率を向上させ、また有害難分解物質も分解
できることが実証された。なお、上記実験例では固定付
着体微生物を利用したが、流動床を嫌気ゾーンに利用し
たり、浮遊媒体に微生物を付着させ嫌気ゾーン以外の部
分に循環させることも可能である。
Comparing the results of the above experimental examples with the standard activated sludge method which is usually used, it has been proved that the hydraulic retention time is almost the same, the nitrogen removal rate is improved, and the harmful persistent substances can be decomposed. It was It should be noted that, although the fixed adherent microorganisms were used in the above experimental example, it is also possible to use a fluidized bed in the anaerobic zone, or to attach the microorganisms to the floating medium and circulate the microorganisms in a portion other than the anaerobic zone.

【0022】[0022]

【発明の効果】以上詳細に説明したように本発明の硫酸
塩還元菌利用の深槽式廃水処理方法は、鉛直隔壁で隔て
た嫌気ゾーンと好気ゾーンとを有する深槽処理槽の嫌気
ゾーンに硫酸塩還元菌を装填し、原水の嫌気処理で発生
する硫化水素を高圧の原水に溶解させ、これを好気ゾー
ンで酸化するので、次の顕著な効果を奏する。
As described above in detail, the deep tank type wastewater treatment method using sulfate reducing bacteria of the present invention is an anaerobic zone of a deep tank treating tank having an anaerobic zone and an aerobic zone separated by a vertical partition wall. Sulfate-reducing bacteria are loaded into the solution, hydrogen sulfide generated by anaerobic treatment of raw water is dissolved in high-pressure raw water, and this is oxidized in the aerobic zone, so that the following remarkable effects are exhibited.

【0023】(イ)下水や工場廃水に含まれる硫酸イオ
ンSO4 2-を嫌気ゾーンで硫酸塩還元して生成した硫化水
素を利用して、好気ゾーンで硫黄脱窒素を従来の有機物
脱窒素反応に加えて行い、脱窒効率を高めることができ
る。 (ロ)悪臭のある硫化水素を水系に留め、さらに好気ゾ
ーンで酸化分解するので、これを環境に出さず、環境問
題を発生させない。 (ハ)好気性微生物では分解が難しい有機物質であるテ
トラクロロエチレン、トリクロロエチレン、ヂチクロロ
エチレンや、トリニトロトルエン、ヂニトロトルエン
を、硫酸塩還元菌の使用により分解することができる。 (ニ)嫌気ゾーンにおける嫌気性分解の代謝産物である
低級脂肪酸を好気ゾーンの好気性微生物により無機物に
まで完全に分解するので、悪臭等の環境問題を生じない
処理水を流出させることができる。 (ホ)敷地面積が少なくてすむ深槽式であるので、用地
が制限される都市下水処理場や工場廃水処理施設に新設
又は改造により有利に設置することができる。 (へ)総窒素量(T-N)に比して硫酸イオンSO4 2-量が少
ない廃水の場合に処理水を返送水として原水に混入して
脱窒素効率を上げることができる。
(A) Utilizing hydrogen sulfide produced by reducing sulfate ion SO 4 2- contained in sewage or industrial wastewater with sulfate in the anaerobic zone, sulfur denitrification is carried out in the aerobic zone with conventional organic matter denitrification. It can be performed in addition to the reaction to increase the denitrification efficiency. (B) Hydrogen sulfide, which has a bad odor, is retained in an aqueous system and further oxidatively decomposed in an aerobic zone. Therefore, this is not discharged to the environment and no environmental problem occurs. (C) Organic substances that are difficult to decompose with aerobic microorganisms such as tetrachloroethylene, trichloroethylene, ditichloroethylene, trinitrotoluene, and dinitrotoluene can be decomposed by using sulfate reducing bacteria. (D) Lower fatty acids, which are metabolites of anaerobic decomposition in the anaerobic zone, are completely decomposed into inorganic substances by aerobic microorganisms in the aerobic zone, so treated water that does not cause environmental problems such as malodor can be discharged. . (E) Since it is a deep tank type that requires a small site area, it can be installed advantageously in a new or modified urban sewage treatment plant or factory wastewater treatment facility where the site is limited. (V) In the case of wastewater containing less sulfate ion SO 4 2− than the total nitrogen content (TN), the treated water can be mixed with the raw water as return water to improve the denitrification efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明の一実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】は、上記実施例の各部分における反応の説明図
である。
FIG. 2 is an explanatory diagram of a reaction in each part of the above example.

【符号の説明】[Explanation of symbols]

1 反応槽 2 隔壁 3 嫌気ゾーン 4 好気ゾーン 5 上昇部 6 下降部 7 仕切壁 8 曝気装置 9 担体 10 余剰汚泥 11 越流部 12 流量調整槽 13 沈殿槽 14 処理水貯留槽 15 スクリーン。 1 reaction tank 2 partition wall 3 anaerobic zone 4 aerobic zone 5 rising part 6 falling part 7 partition wall 8 aeration device 9 carrier 10 surplus sludge 11 overflow part 12 flow control tank 13 settling tank 14 treated water storage tank 15 screen.

フロントページの続き (72)発明者 塚田 高明 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 (72)発明者 小池 勝則 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内Front page continuation (72) Takaaki Tsukada, Inventor Takaaki, 1-9-2 Motoakakasaka, Minato-ku, Tokyo Kashima Construction Co., Ltd. (72) Inventor, Katsunori Koike 1-2-7, Motoakakasaka, Minato-ku, Tokyo Inside the corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】深い反応槽を鉛直隔壁により下端で連通し
た嫌気ゾーンと好気ゾーンに分割し、原水を、前記嫌気
ゾーンで下降させながら硫酸塩還元菌に接触させて硫酸
塩還元による嫌気性処理をした後、前記好気ゾーンへ流
入させて前記嫌気性処理の代謝物を好気性処理し、前記
嫌気ゾーンの硫酸塩還元時に生ずる硫化水素を原水に溶
解させて好気ゾーンへ送り酸化して硫酸イオンとするこ
とにより水系中で分解してなる硫酸塩還元菌利用の深槽
式廃水処理方法。
1. A deep reaction tank is divided by a vertical partition into an anaerobic zone and an aerobic zone, which communicate with each other at the lower end, and raw water is brought into contact with sulfate-reducing bacteria while descending in the anaerobic zone to anaerobicize by sulfate reduction. After the treatment, the metabolites of the anaerobic treatment are aerobically treated by flowing into the aerobic zone, and hydrogen sulfide generated during sulfate reduction of the anaerobic zone is dissolved in raw water and sent to the aerobic zone for oxidation. A deep-tank wastewater treatment method utilizing sulfate-reducing bacteria, which decomposes in an aqueous system by converting into sulfate ions.
【請求項2】請求項1の深槽式廃水処理方法において、
前記好気ゾーンに鉛直仕切壁により上下端で連通した上
昇部と下降部とを設け、前記上昇部へ空気を送って空気
泡を発生させ、原水を、前記上昇部中で前記空気泡の浮
上に伴って上昇させ、前記上昇部上端から前記下降部中
へ移行させて下降流とし、前記下降部下端において前記
上昇部へ帰して前記好気ゾーン内に循環させてなる硫酸
塩還元菌利用の深槽式廃水処理方法。
2. The deep tank type wastewater treatment method according to claim 1,
The aerobic zone is provided with an ascending part and a descending part communicating at the upper and lower ends by a vertical partition wall, and air is sent to the ascending part to generate air bubbles, and raw water is floated in the ascending part. Of the sulphate-reducing bacteria, which is circulated in the aerobic zone by returning to the ascending section at the lower end of the descending section, and moving downward from the upper end of the ascending section into the descending section. Deep tank type wastewater treatment method.
【請求項3】請求項1又は2の深槽式廃水処理方法にお
いて、前記好気ゾーンの上澄み水を処理水として抽出
し、前記処理水の一部を返送水として前記嫌気ゾーンへ
戻してなる硫酸塩還元菌利用の深槽式廃水処理方法。
3. The deep-tank wastewater treatment method according to claim 1, wherein the supernatant water of the aerobic zone is extracted as treated water, and a part of the treated water is returned to the anaerobic zone as return water. Deep tank type wastewater treatment method using sulfate reducing bacteria.
【請求項4】請求項1又は2の深槽式廃水処理方法にお
いて、前記処理槽を地中に設置してなる硫酸塩還元菌利
用の深槽式廃水処理方法。
4. The deep-tank wastewater treatment method according to claim 1 or 2, wherein the treatment tank is installed underground to utilize a sulfate-reducing bacterium.
【請求項5】請求項1、2、3又は4の深槽式廃水処理
方法において、前記反応槽中に前記硫酸塩還元菌及び原
水処理菌を担体に保持させた流動床を設けてなる硫酸塩
還元菌利用の深槽式廃水処理方法。
5. The deep tank type waste water treatment method according to claim 1, 2, 3 or 4, wherein a sulfuric acid is provided in the reaction tank, wherein a fluidized bed in which the sulfate reducing bacteria and the raw water treating bacteria are held on a carrier is provided. Deep tank type wastewater treatment method using salt-reducing bacteria.
【請求項6】請求項5の深槽式廃水処理方法において、
前記担体を軽石としてなる硫酸塩還元菌利用の深槽式廃
水処理方法。
6. The deep tank type wastewater treatment method according to claim 5,
A deep tank wastewater treatment method using sulfate-reducing bacteria, wherein the carrier is pumice.
【請求項7】深い反応槽の内部に鉛直隔壁により下端で
連通した嫌気ゾーンと好気ゾーンとを形成し、前記好気
ゾーンに鉛直仕切壁により上下端で連通した上昇部と下
降部とを設け、前記上昇部に曝気装置を設けてなり、原
水を前記嫌気ゾーンで下降させながら硫酸塩還元菌に接
触させて硫酸塩還元による嫌気性処理をした後前記好気
ゾーンへ流入させて前記嫌気性処理の代謝物を好気性処
理する廃水処理槽。
7. An anaerobic zone and an aerobic zone, which communicate with each other at the lower end by a vertical partition, are formed inside the deep reaction tank, and an ascending part and a descending part which communicate with each other at the upper and lower ends by a vertical partition wall are formed in the aerobic zone. An aeration device is provided in the ascending section, and raw water is brought into contact with sulfate-reducing bacteria while descending in the anaerobic zone to perform anaerobic treatment by sulfate reduction and then flow into the aerobic zone for anaerobic treatment. Wastewater treatment tank for aerobic treatment of sexually treated metabolites.
JP26641594A 1994-10-31 1994-10-31 Deep tank wastewater treatment method using sulfate reducing bacteria Expired - Lifetime JP3135026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26641594A JP3135026B2 (en) 1994-10-31 1994-10-31 Deep tank wastewater treatment method using sulfate reducing bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26641594A JP3135026B2 (en) 1994-10-31 1994-10-31 Deep tank wastewater treatment method using sulfate reducing bacteria

Publications (2)

Publication Number Publication Date
JPH08126896A true JPH08126896A (en) 1996-05-21
JP3135026B2 JP3135026B2 (en) 2001-02-13

Family

ID=17430621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26641594A Expired - Lifetime JP3135026B2 (en) 1994-10-31 1994-10-31 Deep tank wastewater treatment method using sulfate reducing bacteria

Country Status (1)

Country Link
JP (1) JP3135026B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100314988B1 (en) * 1999-09-06 2001-11-24 김형벽ㅂ Advanced sewage and wastewater treatment process applied with filtration bed
KR20040000859A (en) * 2002-06-26 2004-01-07 지해성 A mixture for solution of animal manure and animal manure scum
KR100433096B1 (en) * 2001-03-28 2004-05-28 황용우 Equipment and Method of Nitrogen Removal with Down-flow Biofilm System using the Granule Sulfur
JP2004322023A (en) * 2003-04-28 2004-11-18 Nippon Steel Chem Co Ltd Nitrate nitrogen treatment material and nitrate nitrogen treatment method
CN102190411A (en) * 2010-05-17 2011-09-21 浙江大学 Treatment method for acidic organic chemical wastewater with high COD (chemical oxygen demand) and high sulfate radical concentration
JP2017064635A (en) * 2015-09-30 2017-04-06 三菱重工環境・化学エンジニアリング株式会社 Nitrogen removing apparatus and method for modifying nitrogen removing apparatus
CN115745179A (en) * 2022-11-29 2023-03-07 华夏碧水环保科技股份有限公司 Dynamic hydrolysis acidification device for high-concentration sulfate wastewater

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100314988B1 (en) * 1999-09-06 2001-11-24 김형벽ㅂ Advanced sewage and wastewater treatment process applied with filtration bed
KR100433096B1 (en) * 2001-03-28 2004-05-28 황용우 Equipment and Method of Nitrogen Removal with Down-flow Biofilm System using the Granule Sulfur
KR20040000859A (en) * 2002-06-26 2004-01-07 지해성 A mixture for solution of animal manure and animal manure scum
JP2004322023A (en) * 2003-04-28 2004-11-18 Nippon Steel Chem Co Ltd Nitrate nitrogen treatment material and nitrate nitrogen treatment method
JP4493927B2 (en) * 2003-04-28 2010-06-30 新日鐵化学株式会社 Nitrate nitrogen treatment material and nitrate nitrogen treatment method
CN102190411A (en) * 2010-05-17 2011-09-21 浙江大学 Treatment method for acidic organic chemical wastewater with high COD (chemical oxygen demand) and high sulfate radical concentration
JP2017064635A (en) * 2015-09-30 2017-04-06 三菱重工環境・化学エンジニアリング株式会社 Nitrogen removing apparatus and method for modifying nitrogen removing apparatus
CN115745179A (en) * 2022-11-29 2023-03-07 华夏碧水环保科技股份有限公司 Dynamic hydrolysis acidification device for high-concentration sulfate wastewater
CN115745179B (en) * 2022-11-29 2024-02-20 华夏碧水环保科技股份有限公司 Dynamic hydrolysis acidification device for high-concentration sulfate wastewater

Also Published As

Publication number Publication date
JP3135026B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
EP0051888B1 (en) Process for the purification of waste water and/or waste water sludge
US4188289A (en) Process for purification of sanitary waters
US5141647A (en) Control of odor and septicity of sewage
RU97107174A (en) METHOD AND INSTALLATION FOR WASTE WATER TREATMENT
JPS5933439B2 (en) Microbiological wastewater treatment equipment for nitrogenous wastewater
US5350516A (en) Control of odor and septicity and purification of sewage and wastewater
AU2008244181A1 (en) Method and equipment for processing waste water containing sulphides and ammonium
JP4882175B2 (en) Nitrification method
JP4867098B2 (en) Biological denitrification method and apparatus
JP3135026B2 (en) Deep tank wastewater treatment method using sulfate reducing bacteria
JP2000189995A (en) Method and device for removing nitrogen in waste water
KR100336483B1 (en) Method for removing nitrogen from waste water through sulfur-utilizing denitrification
JPH0687942B2 (en) Biological deodorization method for odorous components
JP3402411B2 (en) Nitrogen treatment method for wastewater
JP5008249B2 (en) Deodorization method and apparatus
JP2000024687A (en) Treatment of waste nitric acid
JP4648872B2 (en) Wastewater treatment method for wastewater containing high concentration organic matter
JP3837757B2 (en) Method for treating selenium-containing water
JP2001205295A (en) Method for treating organic wastewater
KR200286507Y1 (en) Sulfur Denitrification reactor
JPH09234499A (en) Treatment of bottom mud and device therefor
JPS6339310B2 (en)
KR100503134B1 (en) A wastewater treatment methods
JPH08141596A (en) Nitrogen treatment method for waste water containing ammonia nitrogen and oxide nitrogen
JPH0631297A (en) Method for treating waste water containing high concentration of nitrogen sophistically

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term