JPH08126838A - Vessel - Google Patents

Vessel

Info

Publication number
JPH08126838A
JPH08126838A JP6289273A JP28927394A JPH08126838A JP H08126838 A JPH08126838 A JP H08126838A JP 6289273 A JP6289273 A JP 6289273A JP 28927394 A JP28927394 A JP 28927394A JP H08126838 A JPH08126838 A JP H08126838A
Authority
JP
Japan
Prior art keywords
container body
temperature control
container
control element
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6289273A
Other languages
Japanese (ja)
Other versions
JP2984977B2 (en
Inventor
Tomoo Inoue
智夫 井上
Haruyuki Nishimi
晴行 西見
Toshihisa Kimura
利久 木村
Nobuo Matsuki
信雄 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP6289273A priority Critical patent/JP2984977B2/en
Publication of JPH08126838A publication Critical patent/JPH08126838A/en
Application granted granted Critical
Publication of JP2984977B2 publication Critical patent/JP2984977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • B01J3/046Pressure-balanced vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00083Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00085Plates; Jackets; Cylinders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE: To provide a vessel in which heat exchange efficiency of contents in its vessel body is improved and a uniform exchange is performed and production of a temperature regulating element and its incorporation into the vessel are effectively performed and also maintenance work is settled with ordinary in-vessel maintenance work or the like. CONSTITUTION: A temperature regulating element 5 having flow passages for a heating and cooling temperature regulating media divided in a plurality is formed on the outer surface of an inner cylinder 6. The temperature regulating element 5 is fixed in a vessel body 1 with the temperature element 5 side being opposite to the inner surface of the vessel body 1 leaving a space, and also a clearance between the temperature regulating element 5 and the inner surface of the vessel body 1 is made as a closed chamber 14 isolated from the inside of the vessel. It is more preferable that the closed chamber 14 between the inside of the vessel body 1 and the temperature regulating element 5 is communicated with the inside of the vessel body 1 by a pressure balance mechanism.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、化学・薬品・食品工
業等で反応槽、攪拌槽として使用される容器(以下、槽
容器という。)、就中、プロセス上、大きな熱負荷が生
じるもの、或いは、徐熱、加熱能力が製品の生産性を支
配する製品の製造に好適な槽容器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a container used as a reaction tank or a stirring tank in the chemical / chemical / food industry (hereinafter referred to as a tank container), and in particular, to a large heat load in the process. Alternatively, the present invention relates to a tank container suitable for manufacturing a product whose slow heating and heating capabilities control the productivity of the product.

【0002】[0002]

【従来の技術】一般に、この種の槽容器は、容器本体を
円筒形胴部の両端に皿形鏡板を溶接した耐圧密閉容器で
形成すると共に、この容器本体に、内部発熱を除去、或
は、内容物を加熱するための温調機構を設けている。
2. Description of the Related Art Generally, in this type of tank container, the container body is formed of a pressure-resistant closed container in which a dish-shaped end plate is welded to both ends of a cylindrical body, and internal heat is removed from the container body. A temperature control mechanism for heating the contents is provided.

【0003】従来、槽容器の徐熱機構としては、図7に
示すように容器本体1′の外部にジャケット20を付設
したジャケット方式、図8に示すように容器本体1′の
内面より内側に螺旋状のパイプ21を固定配置した内部
パイプ方式、又は図9に示すように容器本体1′の内面
より内側に容器本体の長手方向に延在し、かつ端部がエ
ルボ接続されたパイプ22を容器本体の周方向に蛇行す
るように固定して配置した内部パイプ方式、更には、図
10に示すように容器本体1′の内面と直角に仕切板2
3を間隔をおいて並設し、仕切板23の先端間に内スト
リップ24を跨設し、内ストリップ24と前記容器本体
1′の内面との間に仕切板23により仕切られた螺旋状
の流路25を形成したインナ−ジャケット方式(特開昭
57−147502号公報参照)等が知られている。
Conventionally, as a slow heating mechanism for a tank container, a jacket system in which a jacket 20 is attached to the outside of the container body 1'as shown in FIG. 7, and as shown in FIG. An internal pipe system in which a spiral pipe 21 is fixedly arranged, or a pipe 22 extending in the longitudinal direction of the container main body 1'inside the inner surface of the container main body 1'and having its end connected to an elbow as shown in FIG. An internal pipe system fixedly arranged so as to meander in the circumferential direction of the container body, and further, as shown in FIG. 10, a partition plate 2 perpendicular to the inner surface of the container body 1 '.
3 are arranged side by side at intervals, an inner strip 24 is laid across the tip of a partition plate 23, and a spiral shape partitioned by the partition plate 23 between the inner strip 24 and the inner surface of the container body 1 '. An inner jacket method (see JP-A-57-147502) in which the flow path 25 is formed is known.

【0004】[0004]

【発明が解決しようとする課題】図7の容器本体の壁を
通して熱交換するジャケット方式では、容器本体の板厚
は容器本体内部及びジャケット内部に発生する圧力を構
造強度上、保持する必要があるため、一般的に、厚くな
り容器本体の壁を通しての熱伝達率が低下するため不利
となる。また、容器を大型化する場合、更に、強度面か
ら容器本体の壁を厚くしなければならないから、この方
式では容器の大型化に対応し難いという不都合があっ
た。
In the jacket system of FIG. 7 in which heat is exchanged through the wall of the container body, the plate thickness of the container body must maintain the pressure generated inside the container body and inside the jacket in view of structural strength. Therefore, in general, it becomes thick and the heat transfer rate through the wall of the container body is lowered, which is disadvantageous. Further, when the size of the container is increased, the wall of the container body must be made thicker in terms of strength, and this method has a disadvantage that it is difficult to cope with the increase in size of the container.

【0005】図8,図9の容器本体1´の内側でパイプ
21,22の壁を通して熱交換する内部パイプ方式で
は、パイプ径でパイプの肉厚が決まり、容器本体1′の
内径に比べてパイプ径が小さいため、パイプの肉厚が薄
くなっており、熱伝達性が優れているという利点を有す
る反面、パイプ自体及びパイプ固定用のサポ−トに内容
物が付着して熱伝達を阻害し、また付着物が剥離して製
品中に混入するから、運転効率が不安定になると共に、
製品の劣化が生じるという不都合があった。
In the internal pipe system in which heat is exchanged through the walls of the pipes 21 and 22 inside the container body 1'in FIGS. 8 and 9, the wall thickness of the pipe is determined by the diameter of the pipe, which is larger than the inner diameter of the container body 1 '. Since the pipe diameter is small, the thickness of the pipe is thin, and it has the advantage of excellent heat transferability, but on the other hand, the contents adhere to the pipe itself and the support for fixing the pipe and hinder heat transfer. In addition, since the adhered substances are peeled off and mixed in the product, the operation efficiency becomes unstable and
There was an inconvenience that the product deteriorated.

【0006】更に、図10の容器本体1′の内側で内ス
トリップ24を通して熱交換するインナ−ジャケット方
式では、前記図7〜図9の方式の不都合を解消し得ると
共に、仕切板23の間隔で内ストリップ24の肉厚が決
まり、容器本体1′の内径に比べて仕切板23の間隔が
小さいため、内ストリップ24の肉厚は薄くなり、熱伝
達性が優れているという利点を有する反面、容器本体
1′の内面に仕切板23を間隔をおいて容器本体1′の
内面に一本一本取り付けた後、仕切板23の先端間に内
ストリップ24を跨設するから、現場作業に手間のかか
る槽内組立てが必要になると同時に、多数存在する内ス
トリップ24間の溶接部が表面に露出することとなり、
溶接部の表面を平滑に仕上げる必要があり、製作が面倒
で手間がかかる。
Further, in the inner jacket method in which heat is exchanged through the inner strip 24 inside the container body 1'in FIG. 10, the disadvantages of the methods in FIGS. 7 to 9 can be solved, and at the intervals of the partition plate 23. Since the wall thickness of the inner strip 24 is determined and the interval between the partition plates 23 is smaller than the inner diameter of the container body 1 ', the wall thickness of the inner strip 24 is thin and the heat transfer property is excellent. Since the partition plates 23 are attached to the inner surface of the container body 1 ′ at intervals and one by one on the inner surface of the container body 1 ′, the inner strips 24 are laid between the tips of the partition plates 23, which is troublesome for on-site work. At the same time that such in-vessel assembly is required, a large number of welds between the inner strips 24 are exposed on the surface,
Since it is necessary to finish the surface of the welded part smoothly, the production is troublesome and time-consuming.

【0007】また、溶接部が腐食性液に接する場合、腐
食の如何を確認し必要に応じて補修する必要があり、頻
繁なメンテナンス作業が必要になるという不都合があっ
た。
Further, when the welded portion comes into contact with a corrosive liquid, it is necessary to check if the corrosion has occurred and repair it if necessary, which is a disadvantage that frequent maintenance work is required.

【0008】この発明は前記インナ−ジャケット方式の
前記の課題を解決するためになしたもので、容器本体内
での組立て作業を大幅に少なくし、かつ、温調エレメン
トの製作及び容器内への組込み作業を能率良く行えると
共に、メンテナンス作業も通常の容器内メンテナンス作
業程度で済む槽容器を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems of the inner-jacket system, and significantly reduces the assembling work in the container body, and makes the temperature control element and the container. It is an object of the present invention to provide a tank container that can be efficiently assembled and that requires only a normal maintenance work inside the container.

【0009】[0009]

【課題を解決するための手段】この発明によれば、平板
状の内筒6の外面に複数に区分された加熱又は冷却用の
温調媒体の流路91 ,92 を有する温調エレメント5を
形成し、この温調エレメント5の外形を槽容器の内形よ
り小さく形成し、この温調エレメント側を容器本体1の
内面に対向させて固定する。
According to the present invention, a temperature control element having a plurality of flow paths 9 1 , 9 2 of a temperature control medium for heating or cooling is provided on the outer surface of a flat plate-shaped inner cylinder 6. 5, the outer shape of the temperature control element 5 is formed smaller than the inner shape of the tank container, and the temperature control element side is fixed so as to face the inner surface of the container body 1.

【0010】即ち、容器本体1の内部に固定された複数
に区分された温調媒体の流路を有する温調エレメント5
と容器本体1の内面との間には一定の間隔を有してお
り、かつ、この間隙を容器内と遮断して密閉室としたこ
と、また、密閉室と容器本体内とを圧力バランス機構に
よって連通し、密閉室と容器本体内とを同圧としたこと
を特徴とするものである。
That is, the temperature control element 5 having a plurality of flow paths for the temperature control medium fixed inside the container body 1
And an inner surface of the container body 1 have a certain space, and this space is closed from the inside of the container to form a closed chamber, and the closed chamber and the inside of the container body have a pressure balance mechanism. It is characterized in that the closed chamber and the inside of the container body are made to have the same pressure.

【0011】[0011]

【作用】製作時、温調エレメント5を容器本体1の内に
該容器本体1の内面と間隔を置いて固定するだけで済む
と共に、その内表面は平板を曲げ加工した平滑で溶接部
等の露出が少ない内筒6で構成されており、殆ど内面の
仕上げを必要としない。
At the time of manufacture, the temperature control element 5 need only be fixed in the container body 1 at a distance from the inner surface of the container body 1, and the inner surface of the container body 1 is formed by bending a flat plate to form a smooth welded portion. It is composed of the inner cylinder 6 which is not exposed so that almost no finishing of the inner surface is required.

【0012】また、使用時、容器本体1内の処理液は、
温調エレメント5の内筒6を介して流路91 ,92 内を
流れる熱媒又は冷媒と熱交換されるが、温調エレメント
5の流路91 ,92 は複数に区分されている。このた
め、容器本体1の内周に巻回する流路91 ,92 の長さ
は、1流路の場合に比較して、2流路の場合は約1/
2、3流路の場合は約1/3となると共に、流路の断面
積が等しければ、流路断面積も実質的に区分した数だけ
倍増するので、熱媒体の温調エレメント内での滞溜時間
が短縮されるので、温度変化も少なくなり、熱交換効率
が向上すると共に、流路内での熱媒体の圧力損失も小さ
いので、熱媒体の循環圧力も低くできる。
Further, during use, the processing liquid in the container body 1 is
Flow path 9 1 through the inner cylinder 6 of the temperature control element 5, 9 heat medium or refrigerant flowing in the 2 and it is heat-exchanged, the flow path 9 1, 9 2 of the temperature control element 5 is divided into a plurality There is. Therefore, the length of the flow paths 9 1 , 9 2 wound around the inner circumference of the container body 1 is about 1 / two in the case of two flow paths as compared with the case of one flow path.
In the case of a few channels, it is about 1/3, and if the cross-sectional areas of the channels are the same, the cross-sectional area of the channel will also be doubled by the number of divided sections, so that in the temperature control element of the heat medium. Since the retention time is shortened, the temperature change is reduced, the heat exchange efficiency is improved, and the pressure loss of the heat medium in the flow path is small, so that the circulation pressure of the heat medium can be lowered.

【0013】また、複数に区分された流路91 ,92
入口101 ,102 と出口111 ,112 とを逆にするこ
とによっ温調エレメント5全体に亘り熱量均一化を図
り、容器本体1内の内容物を均一に熱交換することがで
きる。更に、複数に区分された流路91 ,92 に異なる
温調媒体を流通させて、性質の異なる温調媒体の特性を
利用して最適な熱交換条件を選定することもできる。ま
た、温調エレメントを容器本体の内面に密着させること
もないから、温調エレメントの製作精度も厳しくなく、
容器本体への組込みや取付け作業も容易に行える。
Further, by making the inlets 10 1 and 10 2 and the outlets 11 1 and 11 2 of the flow passages 9 1 and 9 2 which are divided into a plurality of parts opposite to each other, heat quantity can be made uniform over the entire temperature control element 5. As a result, the contents in the container body 1 can be uniformly heat-exchanged. Furthermore, it is also possible to circulate different temperature control media in the plurality of divided channels 9 1 , 9 2 and select the optimum heat exchange condition by utilizing the characteristics of the temperature control media having different properties. Also, since the temperature control element is not brought into close contact with the inner surface of the container body, the temperature control element is not manufactured with high precision.
It can be easily installed and installed in the container body.

【0014】[0014]

【実施例】以下、この発明の一実施例を図1及び図2に
沿って説明する。図1は螺旋状に2条の流路を内面に設
けた槽容器、図2は流路の断面形状の一例を示す要部拡
大断面を示している。図中1は容器本体で、円筒形胴部
2の上下両端に皿形鏡板3,4を溶接した耐圧密閉容器
となっている。5は温調エレメントで、内筒6の外側に
直角に隅肉溶接で仕切板7を間隔をおいて並設し、仕切
板7の先端間、即ち、内筒6の反対側に突合せ溶接で外
ストリップ8を跨設して断面形状が矩形の螺旋状の2条
の流路91 ,92 を形成している。なお、前記流路
1 ,92 の断面形状は、前記した矩形に限定されるも
のではなく、任意の多角形,半円形或いは円形等の任意
の形状を選択できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a tank container in which two flow passages are spirally provided on the inner surface, and FIG. 2 shows an enlarged cross-sectional view of an essential part showing an example of the cross-sectional shape of the flow passage. In the figure, 1 is a container body, which is a pressure-resistant closed container in which dish-shaped end plates 3 and 4 are welded to the upper and lower ends of a cylindrical body 2. Reference numeral 5 is a temperature control element, and partition plates 7 are arranged side by side at a right angle on the outside of the inner cylinder 6 by fillet welding, and are butt welded between the tips of the partition plates 7, that is, on the opposite side of the inner cylinder 6. The outer strip 8 is straddled to form two spiral flow passages 9 1 and 9 2 having a rectangular cross section. The cross-sectional shape of the flow paths 9 1 and 9 2 is not limited to the above-described rectangle, and any shape such as an arbitrary polygon, a semicircle, or a circle can be selected.

【0015】前記温調エレメント5は容器本体1とは別
に予め製作されており、次のように容器本体1の内部に
装入されて固定されると共に、流路91 ,92 の夫々の
入口101 ,102 及び出口111 , 112 が夫々容器
本体1の底部及び上部に外方に突出させて設けられてい
る。即ち、温調エレメント5は、容器本体1の内径より
も外径を小さく形成しており、下部鏡板3を取り付けた
円筒形胴部2の内部に装入し、下端部を底部鏡板に固定
する。この時、容器本体1の内面と温調エレメント5の
外面との間には両者の径の差だけの間隙Hができるが、
この間隙Hが円周方向に略均一になるように略同芯に固
定する。なお、温調エレメント5の下端部の固定は図1
に示すように槽容器ノズル12に近接して下部鏡板3に
直接固定しても良いし、図示しない隔壁或いは、熱応力
を吸収するエキスパンジョンを介して固定してもよい。
The temperature control element 5 is prefabricated separately from the container body 1, and is inserted and fixed in the container body 1 as described below, and the temperature control element 5 is provided in each of the flow paths 9 1 and 9 2 . The inlets 10 1 and 10 2 and the outlets 11 1 and 11 2 are provided at the bottom and the top of the container body 1 so as to project outward. That is, the temperature control element 5 has an outer diameter smaller than the inner diameter of the container body 1, is inserted into the cylindrical body portion 2 to which the lower mirror plate 3 is attached, and fixes the lower end portion to the bottom mirror plate. . At this time, a gap H is formed between the inner surface of the container body 1 and the outer surface of the temperature control element 5 by the difference in diameter between the two.
The gap H is fixed substantially concentrically so as to be substantially uniform in the circumferential direction. Note that the lower end of the temperature control element 5 is fixed as shown in FIG.
It may be fixed to the lower end plate 3 in the vicinity of the tank container nozzle 12 directly as shown in (3), or may be fixed via a partition wall (not shown) or an expansion that absorbs thermal stress.

【0016】次いで、流路91 ,92 の入口101 ,1
2 及び出口111 ,112 を装着すると共に、円筒形
胴部2に上部鏡板4を取付ける。そして、最後に、温調
エレメント5Aの上端部と上部鏡板4との間を隔壁13
或いはエキスパンジョンを介して固定する。従って、容
器本体1の内面と温調エレメント5との間の隙間Hは容
器の内部から遮断された密閉室14となる。なお、前記
流路91 ,92 の入口101 ,102 と出口111 ,1
2 の位置は上下逆にしても良く、また、一方の入口1
1 と出口112 を上又は下とし、他方の入口102
出口111 を下又は上としても良い。更に、温調媒体の
流路91 ,92 は2条(2層)に限定されるものではな
く、3条(3層)以上としてもよいことは言うまでもな
い。
Next, the inlets 10 1 , 1 of the flow paths 9 1 , 9 2
0 2 and outlets 11 1 and 11 2 are attached, and the upper end plate 4 is attached to the cylindrical body 2. Finally, the partition wall 13 is provided between the upper end of the temperature control element 5A and the upper end plate 4.
Alternatively, it is fixed through expansion. Therefore, the gap H between the inner surface of the container body 1 and the temperature control element 5 becomes the closed chamber 14 which is shielded from the inside of the container. In addition, the inlets 10 1 and 10 2 and the outlets 11 1 and 1 of the flow paths 9 1 and 9 2 are
The position of 1 2 may be turned upside down, and one entrance 1
0 1 and the outlet 11 2 may be above or below, and the other inlet 10 2 and outlet 11 1 may be below or above. Furthermore, it goes without saying that the flow paths 9 1 , 9 2 of the temperature control medium are not limited to two (two layers) and may have three (three) layers or more.

【0017】15は圧力バランス機構で、一端を容器本
体1の内部に連通し、他端を密閉室14に連通した連通
管16の途中にバランスピストン17を設け、容器本体
1の内部と密閉室13内とに圧力差が発生した場合、バ
ランスピストン17の移動により自動的に圧力をバラン
スさせる。この時、バランスピストン17により容器本
体1の内部と密閉室14内とは遮断された状態を維持し
ているため、容器本体1内のガス等が密閉室14内に侵
入することがなく、多種の材料を交互に処理する場合に
も異物の混入を防止できる。
Reference numeral 15 denotes a pressure balance mechanism, which is provided with a balance piston 17 in the middle of a communication pipe 16 having one end communicating with the inside of the container body 1 and the other end communicating with the closed chamber 14, and the inside of the container body 1 and the closed chamber. When a pressure difference occurs inside 13, the balance piston 17 moves to automatically balance the pressure. At this time, since the balance piston 17 maintains the state in which the inside of the container body 1 and the inside of the closed chamber 14 are shut off, the gas and the like in the container body 1 does not enter the closed chamber 14 and various Foreign matter can be prevented from being mixed even when the above materials are alternately processed.

【0018】図3は、本発明の他の実施例を示すもの
で、基本的には図1,図2の実施例と同様であるから同
一部材には同一符号を付し、主として相違点についての
み説明する。前記図1,図2の実施例では、温調エレメ
ント5の流路を螺旋状の流路91 ,92 とした例につい
て説明したが、図3に示すように、2条の流路91 ,9
2 を容器本体1の上下方向にジグザグに蛇行させながら
容器本体1の周囲に巻回してもよい。なお、この場合、
下端部の鏡板3に対応する部分に設けられた流路を前記
温調エレメント5と同様に形成した螺旋状の流路91
2 とし、2種の流路形状を組合せた温調エレメント5
としても良い。
FIG. 3 shows another embodiment of the present invention. Since it is basically the same as the embodiment of FIGS. 1 and 2, the same members are designated by the same reference numerals, and mainly different points are shown. Only explained. In the embodiment shown in FIGS. 1 and 2, the temperature control element 5 has the spiral flow passages 9 1 and 9 2 as an example. However, as shown in FIG. 1 , 9
2 may be wound around the container body 1 while meandering in a zigzag pattern in the vertical direction of the container body 1. In this case,
A spiral flow path 9 1 , in which a flow path provided in a portion corresponding to the end plate 3 at the lower end is formed in the same manner as the temperature control element 5,
9 2 and temperature control element 5 combining two types of flow path shapes
Also good.

【0019】また、この温調エレメント5も前記実施例
と同様に容器本体1とは別に予め製作して、容器本体1
の内部に装入して下端部を下部鏡板3に固定すると共
に、流路91 ,92 の入口101 ,102 及び出口11
1 ,112 を夫々下部鏡板3部の下部又は上部に外方に
突出させて設る。また、本実施例では圧力バランス機構
151 を単に、容器本体1の内部と密閉室14とを連通
する連通管161 により連通して両室を圧力バランスさ
せるようにしている。
Further, this temperature control element 5 is also prefabricated separately from the container body 1 in the same manner as in the above embodiment, and the container body 1 is manufactured.
And the lower end is fixed to the lower end plate 3 and the inlets 10 1 and 10 2 and the outlets 11 of the flow paths 9 1 and 9 2 are inserted.
1 and 11 2 are provided so as to project outward at the lower part or the upper part of the lower end plate 3 part, respectively. Further, in the present embodiment, the pressure balance mechanism 15 1 is simply connected by the communication pipe 16 1 that connects the inside of the container body 1 and the closed chamber 14 to balance the pressure of both chambers.

【0020】尚、前記の実施例では、温調エレメント5
の上端部と上部鏡板4との間に隔壁13を設けて密閉室
14を形成しているが、本実施例に示す如く、温調エレ
メント5の上端部と容器本体1の円筒形胴部との間に隔
壁13を設けてもよい。また、この隔壁13は、温調エ
レメント5の熱による伸縮を吸収可能にエキスパンショ
ンを設けるのが好ましい。
In the above embodiment, the temperature control element 5 is used.
A partition wall 13 is provided between the upper end of the upper end plate 4 and the upper end plate 4 to form a closed chamber 14. However, as shown in the present embodiment, the upper end of the temperature control element 5 and the cylindrical body of the container body 1 are formed. A partition wall 13 may be provided between them. Further, it is preferable that the partition wall 13 is provided with an expansion so as to absorb expansion and contraction due to heat of the temperature control element 5.

【0021】更に、圧力バランス機構15は、槽容器を
常圧で使用する場合には必ずしも必要ではない。また、
密閉室14内に空気圧、或は、プロセス液との相性を考
慮した均圧液体を封入又は循環させるようにしても良
い。更に、前記圧力バランス機構は実施例に限定される
ものではなく、容器本体1の内部圧力を測定し、密閉室
14内の圧力が容器本体1の内部圧力と等しくなるよう
に別置きの加・減圧装置によって圧力制御するようにし
ても良い。
Furthermore, the pressure balance mechanism 15 is not always necessary when the tank container is used at normal pressure. Also,
Air pressure or a pressure equalizing liquid in consideration of compatibility with the process liquid may be enclosed or circulated in the closed chamber 14. Further, the pressure balance mechanism is not limited to the embodiment, but the internal pressure of the container body 1 is measured, and the pressure in the closed chamber 14 is separately provided so that the pressure becomes equal to the internal pressure of the container body 1. The pressure may be controlled by a pressure reducing device.

【0022】また、前記した2つの実施例では、流路9
1 ,92 を螺旋状(図1)或いは、上下にジグザグの蛇
行状(図3)としたものについて例示したが、流路
1 ,92 の形状は図4に示すように容器本体1の周方
向に上から下或いは下から上に向かってジグザグに蛇行
状に巻回しても良いし、図5,図6に示すように容器本
体1の周囲に多層に重ねて巻回した流路91 ,92 を流
路の本数に応じて一層飛び(2流路の場合)或いはn−
1層飛び(n流路の場合)に斜め(図5)或いは略垂直
(図6)な流路で接続してもよい。
Further, in the above-mentioned two embodiments, the flow path 9
The example in which 1 and 9 2 are formed in a spiral shape (FIG. 1) or in a zigzag meandering shape in the upper and lower directions (FIG. 3) has been illustrated, but the shapes of the flow paths 9 1 and 9 2 are as shown in FIG. It may be wound in a zigzag manner from the top to the bottom or from the bottom to the top in the circumferential direction of the container, or as shown in FIGS. Depending on the number of channels, 9 1 and 9 2 are skipped one layer (for two channels) or n-
Connections may be made in every one layer (in the case of n flow paths) with oblique (FIG. 5) or substantially vertical (FIG. 6) flow paths.

【0023】従って、本発明によれば、温調エレメント
5に複数に区分された加熱又は冷却用温調媒体の流路9
1 ,92 を設けているので、異なる流路に異種の温調媒
体を流通させることができる。また、異なる流路に逆方
向に温調媒体を流通させることもできる。更に、実質的
に流路の断面積は、流路の数に比例して増加し、流路の
長さは流路の数に反比例して減少するので、温調媒体の
圧力損失が低減し、温調エレメント5内での滞溜時間が
短くできる。
Therefore, according to the present invention, the flow path 9 of the temperature control medium for heating or cooling divided into the plurality of temperature control elements 5 is provided.
Since 1 , 9 2 are provided, different temperature control media can be passed through different flow paths. Further, the temperature control medium can be passed through the different flow paths in the opposite direction. Furthermore, since the cross-sectional area of the flow path substantially increases in proportion to the number of flow paths and the length of the flow path decreases in inverse proportion to the number of flow paths, the pressure loss of the temperature control medium is reduced. The retention time in the temperature control element 5 can be shortened.

【0024】[0024]

【発明の効果】本発明によれば、温調エレメント5の内
表面は平板を曲げ加工して円筒状とした平滑な円筒6で
構成されているから、ほとんど内面仕上げを必要としな
いと共に、使用時にも処理液の付着が少なく、良好な処
理が可能となる。また、温調エレメント5は容器本体と
一定の間隔Hを置いて設けられているから、高い製作精
度を要求されることがなく、しかも、容器本体への取付
け作業も容易に行える。更に、複数に区分した温調エレ
メントに供給する温調媒体を複数種類選択採用したり温
調媒体の流通方向を選択することによって、最適な温調
媒体の組合せ使用や、温調エレメントの全体を均熱化す
ることが可能となる。また、複数流路とすることにより
実質的に流路断面積を増加し、流路長さを減少できるの
で、流路での温調媒体の圧損の低減、滞溜時間の短縮を
図り得る等、熱交換効率の向上を図り得ると共に、容器
本体全体の均熱化を図り得る。更に、従来装置に比べて
容器製作の能率向上が図れ、メンテナンスも容易になる
と共に、運転効率及び製品品質の向上を図り得る。
According to the present invention, since the inner surface of the temperature control element 5 is composed of a smooth cylinder 6 which is formed by bending a flat plate into a cylindrical shape, almost no inner surface finishing is required and it is used. Even in some cases, the treatment liquid does not adhere to the surface, and good treatment becomes possible. Further, since the temperature control element 5 is provided at a constant distance H from the container body, high manufacturing accuracy is not required, and the mounting operation to the container body can be easily performed. Furthermore, by selecting and adopting multiple types of temperature control media to be supplied to the temperature control elements divided into a plurality and selecting the flow direction of the temperature control media, the optimum combination of temperature control media and the entire temperature control element can be selected. It becomes possible to equalize the temperature. In addition, since the flow passage cross-sectional area can be substantially increased and the flow passage length can be reduced by using a plurality of flow passages, it is possible to reduce the pressure loss of the temperature control medium in the flow passage, shorten the retention time, etc. The heat exchange efficiency can be improved and the temperature of the entire container body can be equalized. Further, as compared with the conventional device, the efficiency of container production can be improved, maintenance can be facilitated, and the operation efficiency and product quality can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す縦断面図。FIG. 1 is a vertical sectional view showing an embodiment of the present invention.

【図2】図1の要部拡大図。FIG. 2 is an enlarged view of a main part of FIG.

【図3】本発明の他の実施例を示す縦断面図。FIG. 3 is a vertical sectional view showing another embodiment of the present invention.

【図4】本発明の他の流路形状の例を示す概略図。FIG. 4 is a schematic view showing an example of another flow path shape of the present invention.

【図5】本発明の他の流路形状の例を示す概略図。FIG. 5 is a schematic view showing an example of another flow path shape of the present invention.

【図6】本発明の他の流路形状の例を示す概略図。FIG. 6 is a schematic view showing an example of another flow path shape of the present invention.

【図7】従来例を示す縦断面図。FIG. 7 is a vertical cross-sectional view showing a conventional example.

【図8】従来例を示す縦断面図。FIG. 8 is a vertical cross-sectional view showing a conventional example.

【図9】従来例を示す縦断面図。FIG. 9 is a vertical sectional view showing a conventional example.

【図10】従来例を示す縦断面図。FIG. 10 is a vertical cross-sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 容器本体 2 円筒形胴部 3 下部鏡板 4 上部鏡板 5 温調エレメント 6 内筒 7 仕切板 8 外ストリップ 91 ,92 (複数に区分した)流路 101 ,102 (流路の)入口 111 ,112 (流路の)出口 12 槽容器ノズル 13 隔壁 14 密閉室 15 圧力バランス機構 16 連通管 17 バランスピストン 18 閉塞板 19 切欠き部 H 隙間1 Container Body 2 Cylindrical Body 3 Lower End Plate 4 Upper End Plate 5 Temperature Control Element 6 Inner Cylinder 7 Partition Plate 8 Outer Strip 9 1 , 9 2 (Divided into Multiple) Flow Paths 10 1 , 10 2 (of Flow Path) Inlet 11 1 , 11 2 (flow path) Outlet 12 Tank container nozzle 13 Partition wall 14 Closed chamber 15 Pressure balance mechanism 16 Communication pipe 17 Balance piston 18 Closure plate 19 Notch H gap

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松木 信雄 愛媛県東予市今在家1501番地 住友重機械 工業株 式会社 東予製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuo Matsuki 1501 Imaike, Toyo City, Ehime Prefecture Sumitomo Heavy Industries Co., Ltd. Toyo Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内筒の外面に複数に区分された加熱又は
冷却用熱媒体の流路を有する温調エレメントを形成し、
この温調エレメントを容器本体内に温調エレメント側を
容器本体の内面に対向させて間隔を置いて固定すると共
に、前記温調エレメントと容器本体の内面との間の間隙
を容器内と遮断した密閉室としたことを特徴とする槽容
器。
1. A temperature control element having a plurality of flow passages for a heating or cooling heat medium is formed on the outer surface of an inner cylinder,
The temperature control element was fixed in the container body with the temperature control element side facing the inner surface of the container body with a space therebetween, and the gap between the temperature control element and the inner surface of the container body was blocked from the inside of the container. A tank container characterized by being a closed chamber.
【請求項2】 複数に区分された熱媒体の流路は、多条
の螺旋溝であることを特徴とする請求項1に記載の槽容
器。
2. The tank container according to claim 1, wherein the heat medium flow path divided into a plurality of sections is a multi-row spiral groove.
【請求項3】 複数に区分された熱媒体の流路は、多重
の溝を容器本体の周方向又は上下方向にジグザグに巻回
した溝であることを特徴とする請求項1に記載の槽容
器。
3. The tank according to claim 1, wherein the flow path of the heat medium divided into a plurality of grooves is a groove formed by winding a plurality of grooves in a zigzag pattern in the circumferential direction or the vertical direction of the container body. container.
【請求項4】 複数に区分された熱媒体の流路は、容器
本体の周方向に略平行に巻回した多層の溝を一層飛び又
は複数層飛びに接続した連続溝であることを特徴とする
請求項1に記載の槽容器。
4. The heat medium flow path divided into a plurality of sections is a continuous groove formed by connecting a plurality of multi-layered grooves wound substantially parallel to the circumferential direction of the container body in one layer or in a plurality of layers. The tank container according to claim 1.
JP6289273A 1994-10-28 1994-10-28 Tank container Expired - Fee Related JP2984977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6289273A JP2984977B2 (en) 1994-10-28 1994-10-28 Tank container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6289273A JP2984977B2 (en) 1994-10-28 1994-10-28 Tank container

Publications (2)

Publication Number Publication Date
JPH08126838A true JPH08126838A (en) 1996-05-21
JP2984977B2 JP2984977B2 (en) 1999-11-29

Family

ID=17741035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6289273A Expired - Fee Related JP2984977B2 (en) 1994-10-28 1994-10-28 Tank container

Country Status (1)

Country Link
JP (1) JP2984977B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176207A (en) * 1994-12-21 1996-07-09 Mitsubishi Chem Corp Production of vinyl chloride polymer
JP2004087549A (en) * 2002-08-23 2004-03-18 Tokyo Electron Ltd Tank for processing liquid and processing apparatus
JP2005525217A (en) * 2002-01-21 2005-08-25 ロディア ポリアミド インターミーディエイツ Coil for refrigerant circulation, method for producing the same, and reaction apparatus having the same
US7691337B2 (en) 2004-06-29 2010-04-06 Solvay (Societe Anonyme) Thermal conditioning container and method of manufacturing it
CN103318577A (en) * 2013-06-21 2013-09-25 李旭丹 Steam heating container capable of exhausting steam
DE102012017405A1 (en) * 2012-09-03 2014-03-06 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Heat exchanger for motor vehicle-air conditioning system of motor vehicle, has two inner tubes and outer tube which partially encloses inner tube under formation of intermediate space flowed through by heat exchanging medium
JP2017083104A (en) * 2015-10-30 2017-05-18 水道機工株式会社 Storage tank and manufacturing method of storage tank
JP2018150575A (en) * 2017-03-10 2018-09-27 日新製鋼株式会社 Closed vessel for steam treatment
JP2019208720A (en) * 2018-06-01 2019-12-12 三浦工業株式会社 Steam pot

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176207A (en) * 1994-12-21 1996-07-09 Mitsubishi Chem Corp Production of vinyl chloride polymer
JP2005525217A (en) * 2002-01-21 2005-08-25 ロディア ポリアミド インターミーディエイツ Coil for refrigerant circulation, method for producing the same, and reaction apparatus having the same
JP2004087549A (en) * 2002-08-23 2004-03-18 Tokyo Electron Ltd Tank for processing liquid and processing apparatus
US7691337B2 (en) 2004-06-29 2010-04-06 Solvay (Societe Anonyme) Thermal conditioning container and method of manufacturing it
DE102012017405A1 (en) * 2012-09-03 2014-03-06 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Heat exchanger for motor vehicle-air conditioning system of motor vehicle, has two inner tubes and outer tube which partially encloses inner tube under formation of intermediate space flowed through by heat exchanging medium
CN103318577A (en) * 2013-06-21 2013-09-25 李旭丹 Steam heating container capable of exhausting steam
JP2017083104A (en) * 2015-10-30 2017-05-18 水道機工株式会社 Storage tank and manufacturing method of storage tank
JP2018150575A (en) * 2017-03-10 2018-09-27 日新製鋼株式会社 Closed vessel for steam treatment
JP2019208720A (en) * 2018-06-01 2019-12-12 三浦工業株式会社 Steam pot

Also Published As

Publication number Publication date
JP2984977B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
JPH07185314A (en) Vessel
CN110494208B (en) Heat exchanger and reactor
JP7418030B2 (en) flow reactor
JPH08126838A (en) Vessel
JPH034249B2 (en)
US20230020370A1 (en) Heat exchanger
CN100487351C (en) Shell and tube heat exchanger and method for producing (melhyl) propenoic acid using said heat exchanger
WO2013072566A1 (en) Plate heat exchanger and method for manufacturing of a plate heat exchanger
JP2020012630A (en) Heat transfer plate for heat exchanger
US12000661B2 (en) Flow reactor
EP0395080B1 (en) Reactor vessel
US5150831A (en) Reactor vessel
CN100498181C (en) Multi-thread type heat exchanger and the manufacture method
JP2984976B2 (en) Tank container
JP2773970B2 (en) Tank container
WO2019221238A1 (en) Reaction device
RU203282U1 (en) CONSTRUCTION OF THE SPIRAL HEAT EXCHANGER
KR20220118997A (en) heat exchanger
RU202931U1 (en) IMPROVED HEAT EXCHANGER
JPS6042292Y2 (en) Heat exchanger
JP4631224B2 (en) Heat exchanger
JP2003172588A (en) Heat exchanger
RU2087823C1 (en) Tubular heat exchanger
JPS621579Y2 (en)
JPH05149690A (en) Heat exchanger

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees