JPH081223B2 - Rotational resistance applying device - Google Patents

Rotational resistance applying device

Info

Publication number
JPH081223B2
JPH081223B2 JP4164231A JP16423192A JPH081223B2 JP H081223 B2 JPH081223 B2 JP H081223B2 JP 4164231 A JP4164231 A JP 4164231A JP 16423192 A JP16423192 A JP 16423192A JP H081223 B2 JPH081223 B2 JP H081223B2
Authority
JP
Japan
Prior art keywords
outer ring
central axis
raceway
rotating body
raceway surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4164231A
Other languages
Japanese (ja)
Other versions
JPH0674260A (en
Inventor
信夫 高田
Original Assignee
株式会社テイエチケーメント研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テイエチケーメント研究所 filed Critical 株式会社テイエチケーメント研究所
Priority to JP4164231A priority Critical patent/JPH081223B2/en
Publication of JPH0674260A publication Critical patent/JPH0674260A/en
Publication of JPH081223B2 publication Critical patent/JPH081223B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転系に設けられ回転
系に回転抵抗を付与する回転抵抗付与装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotation resistance applying device which is provided in a rotation system and applies rotation resistance to the rotation system.

【0002】[0002]

【従来の技術】回転系に於いては、常に一定の回転抵抗
が存在することが望ましい場合がある。又、駆動側と負
荷側との結合において、負荷トルクが一定以上の大きさ
になると、駆動側と負荷側との間に相対回転を生じさせ
て、定格トルク以上のトルクが駆動側にかからないよう
にし、回転系の安全を図りたい場合もある。更に、回転
慣性の大きい回転系では、系の停止時に一定の回転抵抗
を与えて所定時間内に系を停止する必要がある場合も多
い。そしてこのように回転抵抗を与えると、回転エネル
ギーの吸収に伴いその部分が発熱するため、この発熱に
よる温度を安全な範囲に押さえる必要がある。
2. Description of the Related Art In a rotary system, it is sometimes desirable that a constant rotation resistance always exists. In addition, when the load torque exceeds a certain level in the connection between the drive side and the load side, relative rotation is generated between the drive side and the load side so that torque above the rated torque is not applied to the drive side. In some cases, you may want to ensure the safety of the rotating system. Further, in a rotary system having a large rotational inertia, it is often necessary to give a constant rotational resistance when the system is stopped to stop the system within a predetermined time. When the rotational resistance is applied in this manner, the portion generates heat as the rotational energy is absorbed. Therefore, it is necessary to keep the temperature due to this heat generation within a safe range.

【0003】このような場合に、ブレーキ等の従来の回
転抵抗付与装置では、すべり摩擦のみにより回転抵抗を
与えたり、流体の粘性抵抗を利用する方法が一般的であ
った。しかしながら、すべり摩擦のみを利用する場合に
は、静摩擦と動摩擦との差により付与する回転抵抗に大
きなばらつきが生じたり、流体抵抗を利用する場合に
は、温度による流体の粘度差により回転抵抗が異なって
きて、正確に安定して一定の回転抵抗を与えることがで
きなかった。又、回転抵抗に伴う発熱により生ずる温度
上昇の制御も困難であった。更に、摩擦等を利用したブ
レーキ装置は、大きな摩擦面を必要とするため、回転抵
抗の大きさに対して相対的に形状が大きなものであっ
た。
In such a case, in a conventional rotational resistance imparting device such as a brake, a method of imparting rotational resistance only by sliding friction or utilizing a viscous resistance of a fluid is generally used. However, when only sliding friction is used, the difference in static friction and dynamic friction causes a large variation in the applied rotational resistance, and when fluid resistance is used, the rotational resistance differs due to the difference in fluid viscosity due to temperature. Then, it was not possible to give a stable rotation resistance accurately and stably. Further, it is difficult to control the temperature rise caused by the heat generated by the rotation resistance. Further, a brake device utilizing friction or the like requires a large friction surface, and therefore has a relatively large shape with respect to the magnitude of rotation resistance.

【0004】[0004]

【発明が解決しようとする課題】本発明は従来技術に於
ける上記問題を解決し、請求項1の発明は、小形で大き
な回転抵抗を精度よく安定して付与することができる
共に、温度上昇がある程度以上大きくならず熱的に安定
した回転抵抗付与装置を提供することを課題とし、請求
2及び3の発明は、小形で大きな回転抵抗を精度よく
安定して付与することができると共に、回転抵抗を制御
することができる回転抵抗付与装置を提供することを課
とする。
[0008] The present invention solves the in the problems in the prior art, the invention of claim 1, when it is possible to impart a large rotational resistance is small in size with high precision stable
In both cases, the temperature rise does not exceed a certain level and is thermally stable.
It is an object of the present invention to provide a rotation resistance imparting device, and the inventions according to claims 2 and 3 are small in size and have high rotation resistance with high accuracy.
It is an object of the present invention to provide a rotation resistance applying device capable of stably applying rotation resistance and controlling rotation resistance.
The title .

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するために、請求項1の発明は、内側回転体と、外輪
と、ころと、中間部材と、付勢手段と、を有し、前記内
側回転体は、その中心軸まわりの単葉回転双曲面をなす
内側軌道面を備え、前記外輪は、前記内側軌道面との間
で軌道を形成するように前記中心軸まわりの単葉回転双
曲面をなす外輪軌道面を備え、前記ころは、ころがり面
が円筒形状であり、前記軌道において該ころの中心線を
前記中心軸を含む断面から一定角度傾斜して前記軌道の
円周方向に複数個配設され、該ころの表面は前記内側軌
道面と前記外輪軌道面とに線状に接触し、前記中間部材
は、前記外輪が中心軸方向に移動自在なようにトルク伝
達手段を介して前記外輪を結合すると共に、中心軸方向
の一定位置で前記内側回転体との間で回転が自在なよう
に軸受を介して前記内側回転体を結合し、前記付勢手段
は、前記内側回転体と前記外輪との間が自由回転方向に
回転するときに所定の回転抵抗であって使用される最大
回転速度における温度上昇を一定値以内で飽和させる所
定の回転抵抗を与えるような付勢力で前記外輪を前記中
心軸方向であって前記軌道の間隔を狭くする方向に付勢
する、回転抵抗付与装置であることを特徴とし、請求項
2の発明は、内側回転体と、外輪と、ころと、中間部材
と、付勢手段と、を有し、前記内側回転体は、その中心
軸まわりの単葉回転双曲面をなす内側軌道面を備え、前
記外輪は、前記内側軌道面との間で軌道を形成するよう
に前記中心軸まわりの単葉回転双曲面をなす外輪軌道面
を備え、前記ころは、ころがり面が円筒形状であり、前
記軌道において該ころの中心線を前記中心軸を含む断面
から一定角度傾斜して前記軌道の円周方向に複数個配設
され、該ころの表面は前記内側軌道面と前記外輪軌道面
とに線状に接触し、前記中間部材は、前記外輪が中心軸
方向に移動自在なようにトルク伝達手段を介して前記外
輪を結合すると共に、中心軸方向の一定位置で前記内側
回転体との間で回転が自在なように軸受を介して前記内
側回転体を結合し、前記付勢手段は、前記内側回転体と
前記外輪との間が自由回転方向に回転するときに所定の
回転抵抗を与えるような付勢力で前記外輪を前記中心軸
方向であって前記軌道の間隔を狭くする方向に付勢し、
前記付勢手段が付勢する方向とは反対の方向に前記外輪
を付勢する第二付勢手段と、該第二付勢手段による付勢
を解除する解除手段と、を設けた、 回転抵抗付与装置で
あることを特徴とし、請求項3の発明は、内側回転体
と、外輪と、ころと、中間部材と、付勢手段と、を有
し、前記内側回転体は、その中心軸まわりの単葉回転双
曲面をなす内側軌道面を備え、前記外輪は、前記内側軌
道面との間で軌道を形成するように前記中心軸まわりの
単葉回転双曲面をなす外輪軌道面を備え、前記ころは、
ころがり面が円筒形状であり、前記軌道において該ころ
の中心線を前記中心軸を含む断面から一定角度傾斜して
前記軌道の円周方向に複数個配設され、該ころの表面は
前記内側軌道面と前記外輪軌道面とに線状に接触し、前
記中間部材は、前記外輪が中心軸方向に移動自在なよう
にトルク伝達手段を介して前記外輪を結合すると共に、
中心軸方向の一定位置で前記内側回転体との間で回転が
自在なように軸受を介して前記内側回転体を結合し、
記付勢手段は、前記外輪を前記中心軸方向であって前記
軌道の間隔を狭くする方向に付勢し、前記付勢手段が付
勢する方向とは反対の方向に前記外輪を付勢する第二付
勢手段と、該第二付勢手段による付勢を解除すると共に
前記軌道の間隔を狭くする方向への前記外輪の移動を所
定位置で停止させる解除停止手段と、を設けた、 回転抵
抗付与装置であることを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention according to claim 1 has an inner rotating body, an outer ring, rollers, an intermediate member, and a biasing means. The inner rotating body has an inner raceway surface that forms a single-leaf rotation hyperboloid around the central axis, and the outer ring forms a single raceway between the inner raceway and the inner raceway surface. The roller has a curved outer ring raceway surface, and the rolling surface of the roller has a cylindrical shape, and a plurality of rollers are provided in a circumferential direction of the raceway with a center line of the roller inclined at a certain angle from a cross section including the central axis. Individually arranged, the surfaces of the rollers linearly contact the inner raceway surface and the outer raceway surface, and the intermediate member is provided with a torque transmitting means so that the outer race is movable in the central axis direction. While connecting the outer ring, the inner ring is fixed at a fixed position in the central axis direction. The inner rotating body is coupled via a bearing so as to be freely rotatable with the rotating body, and the urging means has a predetermined value when the inner rotating body and the outer ring rotate in a free rotation direction. Rotation resistance of the maximum used
Where the temperature rise at the rotation speed is saturated within a certain value
The rotation resistance imparting device for urging the outer ring in the direction of the central axis and in the direction of narrowing the space between the raceways by an urging force that gives a constant rotation resistance. Has an inner rotating body, an outer ring, a roller, an intermediate member, and a biasing means, and the inner rotating body is provided with an inner raceway surface forming a single-leaf rotating hyperboloid about its central axis, The outer ring includes an outer ring raceway surface that forms a single-leaf rotation hyperboloid around the central axis so as to form a raceway with the inner raceway surface, and the roller has a cylindrical rolling surface, and in the raceway, A plurality of roller center lines are arranged in a circumferential direction of the raceway with a certain angle of inclination from a cross section including the center axis, and the surfaces of the rollers linearly contact the inner raceway surface and the outer ring raceway surface. The outer ring of the intermediate member is movable in the central axis direction. As described above, the outer ring is coupled via the torque transmitting means, and the inner rotating body is coupled via a bearing so as to be rotatable with the inner rotating body at a fixed position in the central axis direction. The means narrows the space between the races in the central axis direction and the raceway by a biasing force that gives a predetermined rotation resistance when the inner rotating body and the outer ring rotate in a free rotation direction. Bias in the direction
The outer ring is in a direction opposite to the direction in which the biasing means biases the outer ring.
And a second urging means for urging the second urging means.
And canceling means for canceling was a provided, with the rotation resistance applying unit
According to another aspect of the present invention, there is provided an inner rotating body, an outer ring, a roller, an intermediate member, and a biasing means, wherein the inner rotating body is a single-leaf rotation about a central axis thereof. An inner raceway surface forming a hyperboloid, the outer ring comprises an outer ring raceway surface forming a single leaf rotation hyperboloid around the central axis so as to form a raceway with the inner raceway surface, and the roller,
The rolling surface has a cylindrical shape, and a plurality of rollers are arranged in the circumferential direction of the raceway with the center line of the roller inclined at a certain angle from the cross section including the central axis, and the surface of the roller has the inner raceway. Linearly in contact with a surface and the outer ring raceway surface, and the intermediate member couples the outer ring via torque transmitting means so that the outer ring is movable in the central axis direction,
A constant position of the center axis via a bearing so rotate freely between the inner rotating member coupling said inner rotary member, before
The urging means is configured to move the outer ring in the central axis direction and
Energize in the direction that narrows the space between the tracks, and apply the energizing means.
A second attachment for urging the outer ring in a direction opposite to the urging direction
The urging means and the urging by the second urging means, and
Move the outer ring in the direction of narrowing the space between the tracks.
The rotation resistance provided with release stop means for stopping at a fixed position.
It is an anti-applying device .

【0006】[0006]

【作 用】請求項1の発明によれば、次の作用が生ず
る。中間部材は、外輪が中心軸方向に移動自在なように
トルク伝達手段を介して外輪を結合すると共に、中心軸
方向の一定位置で内側回転体との間で回転が自在なよう
に軸受を介して内側回転体と結合されるので、内側回転
体と外輪との間の回転の関係は、内側回転体と中間部材
との間の回転の関係になる。
[Operation] According to the invention of claim 1, the following action occurs. The intermediate member connects the outer ring through the torque transmitting means so that the outer ring can move in the central axis direction, and also via the bearing so as to be rotatable with the inner rotating body at a fixed position in the central axis direction. Therefore, the rotational relationship between the inner rotary body and the outer ring is the rotational relationship between the inner rotary body and the intermediate member.

【0007】次に、内側回転体と外輪とが相対向するそ
れぞれの面を単葉回転双曲面とし、両面で形成した軌道
に複数個のころを傾斜させて両軌道面に線接触するよう
に構成しているので、内側回転体と外輪との間ではころ
がり軸受クラッチとしての作用が生ずる。例えば中間部
材を固定することにより外輪の回転を固定したときに、
外部回転系から内側回転体に入力トルクが伝達されて内
側回転体が自由回転側に回転すると、ころは内外軌道面
に案内されてそれぞれの上を自転しつつ公転する共に、
その傾斜により内側回転体及び外輪に対してそれぞれ軸
方向において反対方向に進む。その結果、ころの傾斜方
向及び内側回転体の回転方向の関係で、内側回転体と外
輪との間に引き離し力が発生する。そして、外輪が軸方
向に移動自在であるため外輪が軸方向に動いて軌道間隔
を広げようとする。ところが、付勢手段は、このときに
所定の回転抵抗を与えるような付勢力で軌道間隔を狭く
する方向に外輪を付勢しているので、軌道間隔は広がら
ず、内側回転体には所定の回転抵抗が与えられる。そし
てこの場合、この回転抵抗が回転系の駆動トルク以下で
あれば、回転系はこのような回転抵抗を付与されつつ回
転する。従って、このような回転抵抗付与装置は、一定
の張力を与えつつ行う作業や回転系のブレーキに適用す
ることができ、例えば、巻取り機、巻戻し機、伸線機、
より線機、圧延機、スリッタ、ねじ締め機等に有効に利
用される。一方、内側回転体と中間部材とが回転系の駆
動側と負荷側との間に結合される場合において、所定の
回転抵抗を駆動系の定格トルクと同じにしておけば、定
格トルクまでは駆動側と負荷側とが結合されるが、負荷
側のトルクが定格トルク以上になったときには、結合部
内外輪間にはそれ以上のトルク伝達能力がないため、
内外輪間の相対回転により駆動側と負荷側との間が相対
回転して回転抵抗に等しい定格トルクが伝達され、回転
系がオーバートルクから保護される。このような回転抵
抗付与装置は、例えば掘削機や巻取り機等に用いること
ができる。
Next, each of the surfaces of the inner rotating body and the outer ring facing each other is made into a single-leaf rotating hyperboloid, and a plurality of rollers are inclined in a raceway formed on both sides to make line contact with both raceway surfaces. Therefore, an action as a rolling bearing clutch occurs between the inner rotating body and the outer ring. For example, when fixing the rotation of the outer ring by fixing the intermediate member,
When the input torque is transmitted from the external rotary system to the inner rotary body and the inner rotary body rotates to the free rotation side, the rollers are guided by the inner and outer raceway surfaces and revolve while revolving on their respective tops.
Due to the inclination, the inner rotating body and the outer ring move in opposite axial directions. As a result, a separation force is generated between the inner rotating body and the outer ring due to the relationship between the inclination direction of the rollers and the rotating direction of the inner rotating body. Since the outer ring is movable in the axial direction, the outer ring moves in the axial direction and tries to widen the track interval. However, since the urging means urges the outer ring in the direction of narrowing the orbital interval by the urging force that gives a predetermined rotational resistance at this time, the orbital interval does not widen, and the inner rotating body has a predetermined distance. Rotational resistance is given. In this case, if this rotation resistance is equal to or less than the drive torque of the rotation system, the rotation system rotates while being imparted with such rotation resistance. Therefore, such a rotation resistance imparting device can be applied to work performed while applying a constant tension or to a brake of a rotary system, for example, a winding machine, a rewinding machine, a wire drawing machine,
It is effectively used for stranding machines, rolling mills, slitters, screw tighteners, etc. On the other hand, when the inner rotating body and the intermediate member are coupled between the drive side and the load side of the rotary system, if the predetermined rotation resistance is set to be the same as the rated torque of the drive system, driving up to the rated torque is possible. Side and load side are coupled, but when the torque on the load side exceeds the rated torque, there is no further torque transmission capability between the inner and outer rings of the coupling part.
Relative rotation between the inner and outer wheels causes relative rotation between the drive side and the load side to transmit a rated torque equal to the rotation resistance, thereby protecting the rotating system from overtorque. Such a rotation resistance imparting device can be used, for example, in an excavator or a winder.

【0008】ところでこのような回転抵抗は、付勢手段
により外輪が付勢されて軌道間隔が狭まり、ころと内外
軌道面との間に大きな面圧が生じ、この面圧下における
ころと内外軌道面との間のすべり摩擦及びころがり摩擦
により生ずる。このすべり摩擦及びころがり摩擦は面圧
に比例して発生し、又、外輪を付勢する力と面圧との間
には一定の関係が有る。従って、回転抵抗付与装置の諸
寸法が決まれば、所定の回転抵抗を与えるために必要な
付勢力を計算することができる。この場合、すべり摩擦
は、傾斜して配設されたころがその軸方向に動くときの
摩擦であるが、このときにはころが容易に回転するの
で、内外輪間に相対回転のない静止状態から内外輪間が
相対回転し始めるときの回転抵抗、内外輪間が相対回
転して動いている状態における回転抵抗とに差異が生じ
ないため、付勢手段による付勢力に対して常に正確で安
定した回転抵抗が生ずることになる。又、本装置が内外
輪間に複数のころを介在させたころがり軸受状構造であ
ることから許容面圧を大きくとることができ、従来のす
べり摩擦を利用したブレーキ装置のように大きな摺動部
分を必要としないため、その形状が小形化される。
By the way, in such rotational resistance, the outer ring is urged by the urging means to narrow the raceway distance, a large surface pressure is generated between the roller and the inner and outer raceway surfaces, and the roller and the inner and outer raceway surfaces are subjected to this surface pressure. It is caused by sliding friction and rolling friction between and. The sliding friction and the rolling friction are generated in proportion to the surface pressure, and there is a certain relationship between the force for urging the outer ring and the surface pressure. Therefore, if the dimensions of the rotation resistance applying device are determined, the urging force required to give a predetermined rotation resistance can be calculated. In this case, the sliding friction is the friction when the rollers arranged at an inclination move in the axial direction.However, at this time, the rollers rotate easily, so that the sliding state is changed from the stationary state where there is no relative rotation between the inner and outer rings to the inside and outside. Between the wheels
The rotation resistance at the start of relative rotation and the relative rotation between the inner and outer rings
Since there is no difference from the rotational resistance in the state of rolling and moving, an accurate and stable rotational resistance is always generated against the urging force of the urging means. In addition, this device inside and outside
Since it has a rolling bearing-like structure in which a plurality of rollers are interposed between the wheels , a large allowable surface pressure can be obtained, and a large sliding portion is not required unlike a conventional brake device that uses sliding friction. Its shape is reduced.

【0009】次に、回転抵抗付与装置により回転抵抗を
与えるときには、その損失エネルギーは熱に変換され
る。即ち、回転抵抗付与装置で発生する単位時間当たり
の回転エネルギーは、付与する回転抵抗(トルク)と回
転速度との積である仕事率に対応して与えられ、これが
単位時間当たりに発生する熱量になる。一方、この発生
した熱は、装置の温度をある程度上昇させるが、その温
度、回転速度、周囲条件等と一定の関係をもって放散さ
れ、装置の温度がある温度まで上昇すると、単位時間当
たりの発生熱量と放熱量とがバランスしてその温度で運
転状態が維持されることになる。このような回転エネル
ギーと温度上昇との関係は、各種各サイズの回転抵抗付
与装置毎に、予め計算又は実験で把握しておくことがで
きる。そして請求項1の発明の付勢手段は、回転抵抗付
与装置の使用される最大回転速度における温度上昇を一
定値以内で飽和させる所定の回転抵抗を与えるように外
輪を付勢するので、回転抵抗付与装置の温度上昇を抑制
し、その熱的安全性を確保することができる。 ここで温
度上昇の上限である一定値は、通常50°C程度に定め
られるが、内側回転体、外輪、ころ等の回転抵抗付与装
置を構成する構成体の材質、回転抵抗付与装置が機械要
素として組み込まれる対象となる機械装置の種類、その
中における装着場所、等の諸条件を考慮して、実際の使
用に適合するように決定される。例えば、プラスチック
系の材料を用いる場合、発生する熱が機械装置の他の部
品等に悪影響を与える場合、人の手に触れやすい場所に
装着されている場合等には、温度上昇の一定値をより低
く決定することが望ましいこともある。
Next, when the rotational resistance is applied by the rotational resistance applying device, the energy loss is converted into heat. That is, the rotational energy per unit time generated by the rotational resistance imparting device is given in correspondence with the work rate which is the product of the rotational resistance (torque) to be applied and the rotational speed, and this is the amount of heat generated per unit time. Become. On the other hand, this generated heat raises the temperature of the device to some extent, but is dissipated in a certain relationship with the temperature, rotation speed, ambient conditions, etc. When the device temperature rises to a certain temperature, the amount of heat generated per unit time And the amount of heat radiation are balanced, and the operating state is maintained at that temperature. Such a relationship between the rotational energy and the temperature rise can be grasped in advance by calculation or experiment for each rotational resistance imparting device of each size. And the urging means of the invention of claim 1 has a rotation resistance.
The temperature rise at the maximum rotation speed of the equipment
Outside to give a specified rotation resistance that saturates within a fixed value
Since the wheel is urged, the temperature rise of the rotation resistance applying device is suppressed
However, the thermal safety can be secured. Warm here
The fixed value that is the upper limit of the temperature rise is usually set at about 50 ° C.
However, the internal resistance, outer ring, rollers, etc.
The material of the components that make up the
The type of machinery that is to be installed as a source,
In consideration of various conditions such as the installation location in the
It is decided to suit. For example, plastic
When using the materials of the system, the generated heat is
If the product is adversely affected, place it in a place that is easily touched by human hands.
If it is installed, lower the constant value of temperature rise.
Sometimes it is desirable to make a decision.

【0010】請求項2の発明によれば、内側回転体と外
輪とが自由回転方向に回転するときに所定の回転抵抗を
付与する付勢手段に加えて、付勢手段が付勢する方向と
は反対の方向に外輪を付勢する第二付勢手段と、この第
二付勢手段による付勢を解除する解除手段とを設けるの
で、解除手段を作動させない第一状態と、これを作動さ
せた第二状態との間で、2種類の回転転抵抗を選択して
付与することができる。例えば、第二付勢手段の付勢力
を付勢手段の付勢力より大きくしておけば、解除手段を
作動させないときには、回転抵抗の無い自由回転状態が
得られ、解除手段を作動させると、付勢手段の付勢力に
対応した回転抵抗が得られる。このような回転抵抗付与
装置は、例えば巻取り機等のブレーキ装置に利用でき
る。この場合、付勢手段の付勢力により正確に計算され
た回転抵抗を与えることができるので、回転系の回転慣
性と付与する回転抵抗との関係で、正確な制動時間を計
算することも可能になる。又、第二付勢手段の付勢力を
付勢手段の付勢力より小さくしておけば、解除手段の作
動/不作動により予め精度よく定められた2種類の回転
抵抗が得られる。この場合には、例えば、解除手段を
作動させたときの大きい回転抵抗と不作動時の小さい回
転抵抗との間に回転系の定格トルクを設定すれば、解除
手段の作動又は不作動により、回転系の駆動側と負荷側
とを結合して相対回転の無い運転状態と小さい方の回転
抵抗で相対回転する運転状態とを得ることができる。こ
のような回転抵抗付与装置は、例えば物を安全に吊り下
ろす装置に利用することができる。
According to the invention of claim 2, the inner rotating body and the outer
When the wheel and the wheel rotate freely,
In addition to the urging means to be applied, a second urging means for urging the outer ring in a direction opposite to the urging direction of the urging means, and a releasing means for releasing the urging by the second urging means. Since the release means is provided, two types of rotational resistance can be selectively applied between the first state in which the releasing means is not activated and the second state in which the releasing means is activated. For example, if the urging force of the second urging means is set to be larger than the urging force of the urging means, a free rotation state without rotation resistance is obtained when the releasing means is not activated, and when the releasing means is activated, the Rotational resistance corresponding to the urging force of the urging means can be obtained. Such a rotation resistance imparting device can be used for a brake device such as a winder. In this case, since the rotational resistance accurately calculated by the urging force of the urging means can be given, it is also possible to calculate the accurate braking time based on the relationship between the rotational inertia of the rotary system and the rotational resistance to be given. Become. Further, if the urging force of the second urging means is made smaller than the urging force of the urging means, two types of rotations which are accurately determined in advance by the actuation / non-actuation of the releasing means.
Resistance is obtained. In this case, for example, if the rated torque of the rotating system is set between a large rotation resistance when the release means is activated and a small rotation resistance when the release means is not activated, the rotation of the release means is activated or inactivated. By connecting the drive side and the load side of the system, it is possible to obtain an operating state in which there is no relative rotation and an operating state in which relative rotation occurs with a smaller rotational resistance. Such a rotation resistance applying device can be used, for example, as a device for safely suspending an object.

【0011】請求項3の発明によれば、上記のような付
勢手段及び該付勢手段が付勢する方向とは反対の方向に
外輪を付勢する第二付勢手段と、第二付勢手段による付
勢を解除すると共に軌道間隔を狭くする方向への外輪の
移動を所定位置で停止させる解除停止手段とを設けるの
で、解除停止手段を作動させないときには、付勢手段が
付勢する付勢力より大きい付勢力で第二付勢手段が外輪
を付勢する場合には、軌道間隔が広がり自由回転が得ら
れ、付勢手段が付勢する付勢力より小さい付勢力で第二
付勢手段が外輪を付勢する場合には、解除停止手段が不
作動時に外輪を停止させる位置に対応した回転抵抗で内
外輪間が回転可能になる。又、解除停止手段を作動させ
るときには、解除停止手段が作動時に外輪を停止させる
位置に対応した回転抵抗で内外輪間を回転させることが
できる。
According to the invention of claim 3, the above-mentioned attachment
A second biasing means and the direction in which the energization means and said biasing means biases for urging the outer ring in the opposite direction, in the direction to narrow the track gap with releasing the urging by the second biasing means Since the release stop means for stopping the movement of the outer ring at a predetermined position is provided, when the release stop means is not activated, the second biasing means biases the outer ring with a biasing force larger than the biasing force biased by the biasing means. In this case, when the track spacing is widened and free rotation is obtained, and the second biasing means biases the outer ring with a biasing force smaller than the biasing force biased by the biasing means, when the release stop means is inoperative. The rotation resistance corresponding to the position where the outer ring is stopped enables rotation between the inner and outer rings. Further, when the release stop means is operated, the inner and outer wheels can be rotated by the rotation resistance corresponding to the position at which the release stop means stops the outer wheel during operation.

【実 施 例】図1は、本発明の回転抵抗付与装置の第
一実施例を示す。本実施例の装置は、内側回転体として
の内輪1と、外輪2と、ころ3と、中間部材としてのハ
ウジング4と、付勢手段としての予圧ばね5と、を有す
る。内輪1は、その中心軸1bまわりの単葉回転双曲面
をなす内輪軌道面1aを備えている。外輪2は、内輪軌
道面1aとの間で軌道6を形成するように中心軸1bま
わりの単葉回転双曲面をなす外輪軌道面2aを有する。
ころ3は、ころがり面が円筒形状であり、軌道6におい
てころ3の中心線を中心軸1bを含む断面から一定角度
β(例えば15°)傾斜して軌道の円周方向に複数個配
設され、その表面は内側軌道面1aと外輪軌道面2aと
に線状に接触するようになっている。又ころ3は、それ
ぞれが相互に干渉することなく円滑に回転するように、
保持器7によりそれぞれの間が位置保持されている。内
輪1及び外輪2の軌道面1a及び2aは、上記の如く、
ころ3と線状に接するように、それぞれ次式に示す双曲
線を中心線1b回りに回転させた単葉回転双曲面として
いる。 yi/ai−xi/bi=1 yo/ao−xo/bo=1 ここで、x、xは、それぞれ内輪軌道面1a、外輪
軌道面2aの原点から中心線1b方向への距離、y
は、それぞれ、中心線1bを含む任意断面における
内輪軌道面1a、外輪軌道面2aの中心線1bからの距
離、又、ai、bi、ao、boは定数である。今、内
外輪の小径側の基準面(双曲線の原点面)における中心
線1bから軌道8の中心までの距離をF、ころ3の半径
をr、傾斜角をβとして、F=9、r=1.5、β=1
5°の場合の計算を行うと(計算は複雑であるため省略
する)、ai、bi、ao、boの値はそれぞれ、約
7.5、30.1、10.5、37となり、内外輪軌道
面の単葉回転双曲面の形状が与えられる。ハウジング4
は、外輪2が中心軸1b方向に移動自在なようにトルク
伝達手段の一例であるボールスプライン8を介して外輪
2を結合すると共に、中心軸1b方向の一定位置で内輪
1との間で回転が自在なように軸受9を介して内輪1と
結合している。このような外輪2とハウジング4との結
合は、インボリュートスプラインやトルク伝達ピン等他
の手段であってもよい。予圧ばね5は、中心軸1b方向
において軌道6の間隔を狭くする方向(図において左か
ら右の方向)へ外輪2を付勢する。なお本実施例では、
予圧ばね5を皿ばねとして付勢手段にのみ用いている
が、その外輪2側及びハウジング4側の端部を外輪2及
びハウジング4に嵌合させることにより、外輪2の付勢
と共に両者間でトルクが伝達されるようにし、ボールス
プラインを省略するような構造にしてもよい。符号1
0は予圧ばね5の付勢力を調整、設定する調整ねじであ
る。そしてこの予圧ばね5の付勢力は、内輪1と外輪2
との間が自由回転方向に回転するときに目的とする所定
の回転抵抗が得られるような付勢力である。次に所定の
回転抵抗トルクを得るための予圧ばね5の付勢力につい
て説明する。図2に示す如く、予圧ばね5の付勢力を
P、ころ3の接触角をθとすると、ころ3と内外輪1、
2との間には垂直力N=P/sinθが作用する。同図
(b)は、付勢力Pが作用したときの内外輪の力の釣合
い状態を示す。ここでQは、内外輪間の面圧に対抗して
生ずる内外輪の剛性に基づく力である。この垂直力Nに
よって、ころ3と外輪2との間には、ころがり摩擦力μ
Nがころ3の転がり方向に生ずると共に、ころ3の軸
方向にすべり摩擦μNが生ずる。その結果、外輪2
の付勢力P方向の平面内では、ほぼ同図(c)のような
力がはたらき、その合力Fが内外輪間を回転させようと
する力F´と釣り合うことになる。従って、内外輪1、
2間で伝達されるトルクTは、外輪2ところ3とのころ
がり摩擦中心の距離をPCDとすると、T=F・PC
D/2となる。この場合摩擦係数μ及びμは実験等
で求めることができるが、ころがり摩擦が加わるため静
止状態と運動状態とで差の無い極めて安定した値であ
る。この式により、回転抵抗付与装置の構造によって定
まる諸角度、寸法等及び予圧ばね5による付勢力Pを一
定の関係に定めることにより、所望の回転抵抗トルクT
が得られる。なお、このような設定トルクを、摩擦クラ
ッチ等における如く滑り摩擦の作用のみにより得る場合
には、そのトルクは極めて不安定なものとなるが、本発
明ではころがり軸受クラッチ状構造体を用いるので、上
記の計算式により精度よく回転抵抗トルクを得ることが
できる。図3は、本装置を単体で運転したときに、温度
上昇が50゜Cで飽和して安定するような吸収トルク
(回転抵抗トルク)と入力回転数(内外輪間の相対回転
数)との関係を示す。回転数が大きくなると吸収エネル
ギー(吸収トルク×入力回転数)が大きくなるのは、放
熱効果の影響である。なお破線は、標準的な予圧ばね5
の付勢力の上限値による吸収トルクの制限を示す。従っ
て、計算や実験等でこのような吸収トルク特性を予め把
握しておき、使用する回転速度の上限に対して、この曲
線で与えられる吸収トルク以内のトルクを回転抵抗とし
て設定するように予圧ばね5の付勢力を定めることによ
り、熱的に安全な回転抵抗付与装置を設計することがで
きる。図4は他の実施例の回転抵抗付与装置を示す。こ
ろがり軸受クラッチを基本構造としている点は図1の実
施例のものと同じなので、同様の構造の部分については
説明を省略する。内輪1´は、ねじ11により取付部材
12に取り付けられ、取付部材12が外部の取付けフレ
ーム100にねじ101で取り付けられることにより、
回転及び中心軸1b方向の位置を固定されている。中間
部材としてのハウジング4´は、取付部材12及び軸受
9´を介して中心軸1b方向の一定位置で回転自在に内
輪1´と結合され、更に、トルク伝達手段としてのボー
ルスプライン8´を介して中心軸1b方向に移動自在で
一体として回転するように外輪2´を結合している。
又、内輪1´内には、操作軸13が中心軸1b方向に移
動自在に嵌入され、この操作軸13には、外輪2´の中
心軸1b方向の移動を所定位置で停止させる解除停止手
段としてのスラスト軸受14が取り付けられた支持板1
5が固設されている。更に操作軸13には、ばねホルダ
兼位置決部材16が固設され、その中に、一端側が内輪
1に圧接し他端側がばねホルダ兼位置決部材16に圧接
して操作軸13を付勢する第二付勢手段としてのコイル
ばね17が設けられている。ホルダ兼位置決部材16
は、操作軸13を操作しないときには、コイルばね17
を位置決めすることによりコイルばね17を介して外輪
2´の所定位置を定め、操作軸13を操作するときに
は、取付部材12との間の間隙cにより外輪2´の所定
位置を定める。なお、予圧ばね5´の付勢力とコイルば
ね17の付勢力とは、回転抵抗付与装置の用途に合わせ
て、それぞれの大小の関係を定める。以上において、操
作軸13、スラスト軸受14、支持板15、ばねホルダ
兼位置決部材16、及びコイルばね17は、相互に関連
して第二付勢手段、解除手段、解除停止手段の一例を構
成する。このような構造により、中心軸1bから上半分
の図に示す如く操作軸13を操作しない場合には、コイ
ルばね17がホルダ兼位置決部材16を介して操作軸1
3を図において左から右に付勢し、支持板15及びスラ
スト軸受14を介して外輪2´を同じ方向に付勢する。
その結果、予圧ばね5´の軌道間隔を狭くする方向への
付勢力を減殺する。そして、コイルばね17の付勢力が
予圧ばね5´の付勢力より大きい場合には、内外輪間
(従って外輪2´)は正逆何れの方向にも自由回転が可
能になる。一方、コイルばね17の付勢力が予圧ばね5
´の付勢力より小さい場合には、内外輪間がクラッチし
ない方向(正転側)に回転するときには、両付勢力の差
に対応した回転抵抗をもって内外輪間が相対回転し、
又、内外輪間がクラッチ方向(逆転側)に回転するとき
には、内外輪間がクラッチしてコイルばね17の付勢力
に対応した位置で外輪2´の移動が停止し、そのときの
回転抵抗で内外輪間が相対回転する。次に、中心軸1b
から下半分の図の如く操作軸13を操作した場合には、
コイルばね17の付勢力が解除され、外輪2´が正転側
に回転するときには、予圧ばね5´の付勢力に対応した
回転抵抗をもって内外輪間が回転し、一方、外輪2´が
逆転側に回転するときには、外輪2´が軌道間隔の狭ま
る方向に移動し、間隙cが無くなってスラスト軸受14
が位置決めされた位置に外輪2´が当たって停止した位
置に相当する回転抵抗が与えられ、内外輪間が相対回転
することになる。なおこのように逆転側に回転する場合
には、クラッチトルクはスラスト軸受14の位置により
定まるので、予圧ばね5´は内外輪間をクラッチ状態に
導くだけの付勢力のものでよく、従ってその付勢力を解
除するコイルばね17の付勢力も小さいものでよくなる
という利点がある。本実施例の回転抵抗付与装置は、例
えば、駆動手段とクラッチとを介して結合される図示し
ない巻取りドラムをハウジング4´に取り付け、駆動手
段を連続回転させ、クラッチを結合して操作軸13を操
作しない状態でドラムの自由回転(正転でも逆転でも何
れでもよい)により糸等を巻取り、所定量巻き取るとク
ラッチを切離し、操作軸13を操作して外輪2の回転に
所定の回転抵抗を付与してブレーキをかけ、設定された
早い一定時間内にドラムを停止させ、ドラムを取り替え
てクラッチを結合し再び同様な巻取りを行うような目的
に使用される。この場合、本回転抵抗付与装置によれ
ば、安定した一定の回転抵抗をブレーキとして確実に付
与することができるので、ドラムを含む回転部分の極慣
性モーメントと付与する回転抵抗トルクとから、制動時
間を正確に計算し、巻取り作業の高能率化を図ることが
できる。なお以上の回転抵抗付与装置において、操作軸
13は、人が必要に応じ直接これを手で操作してもよい
が、てこ等の倍力装置を介して操作するようにすること
もでき、又場合によっては、一定の条件でソレノイド等
により自動もしくは遠隔的に作動させるようにすること
も可能である。このようにすれば、例えばハウジング4
´にワイヤー等を巻き付けられるようにして、本装置を
機側もしくは遠隔操作することにより、物を安全に吊り
下ろす作業や、人の緊急避難用に用いることもできる。
EXAMPLE FIG. 1 shows a first example of the rotation resistance applying device of the present invention. The device of this embodiment has an inner ring 1 as an inner rotating body, an outer ring 2, rollers 3, a housing 4 as an intermediate member, and a preload spring 5 as a biasing means. The inner ring 1 is provided with an inner ring raceway surface 1a forming a single-leaf rotating hyperboloid around its central axis 1b. The outer ring 2 has an outer ring raceway surface 2a forming a single-leaf rotating hyperboloid around the central axis 1b so as to form a raceway 6 with the inner ring raceway surface 1a.
The roller 3 has a cylindrical rolling surface, and a plurality of rollers 3 are arranged in the circumferential direction of the raceway with the center line of the roller 3 inclined at a constant angle β (for example, 15 °) from the cross section including the central axis 1b. The surface thereof linearly contacts the inner raceway surface 1a and the outer raceway surface 2a. In addition, the rollers 3 rotate smoothly without interfering with each other.
The cage 7 holds the positions between them. The raceways 1a and 2a of the inner ring 1 and the outer ring 2 are, as described above,
A single-leaf rotating hyperboloid is obtained by rotating the hyperbola shown in the following equation around the center line 1b so as to be in linear contact with the roller 3. yi 2 / ai 2 −xi 2 / bi 2 = 1 yo 2 / ao 2 −xo 2 / bo 2 = 1 where x i and x o are the center from the origin of the inner ring raceway surface 1 a and the outer ring raceway surface 2 a, respectively. Distance in the direction of line 1b, y i ,
yo is the distance from the center line 1b of the inner ring raceway surface 1a and the outer ring raceway surface 2a in an arbitrary cross section including the center line 1b, and ai, bi, ao, and bo are constants. F = 9, r =, where F is the distance from the center line 1b to the center of the track 8 on the reference surface (the origin surface of the hyperbola) on the small diameter side of the inner and outer rings, the radius of the roller 3 is r, and the inclination angle is β. 1.5, β = 1
When the calculation is performed for 5 ° (the calculation is omitted because it is complicated), the values of ai, bi, ao, and bo are about 7.5, 30.1, 10.5, and 37, respectively. The shape of a single-leaf rotating hyperboloid of the orbital surface is given. Housing 4
The outer ring 2 is coupled to the outer ring 2 via a ball spline 8 which is an example of torque transmitting means so that the outer ring 2 can move in the central axis 1b direction, and the outer ring 2 rotates with the inner ring 1 at a fixed position in the central axis 1b direction. It is connected to the inner ring 1 via a bearing 9 so as to be freely movable. The outer ring 2 and the housing 4 may be coupled by other means such as an involute spline or a torque transmission pin. The preload spring 5 biases the outer ring 2 in a direction (a left-to-right direction in the drawing) that narrows the space between the tracks 6 in the direction of the central axis 1b. In this example,
Although the preload spring 5 is used as a disc spring only for the biasing means, the outer ring 2 side and the housing 4 side end portions are fitted to the outer ring 2 and the housing 4 so that the outer ring 2 is biased and the two are pushed between them. The structure may be such that the torque is transmitted and the ball spline 8 is omitted. Sign 1
Reference numeral 0 is an adjusting screw for adjusting and setting the biasing force of the preload spring 5. The biasing force of the preload spring 5 is applied to the inner ring 1 and the outer ring 2
Is an urging force such that a desired predetermined rotational resistance can be obtained when rotating between and. Next, the biasing force of the preload spring 5 for obtaining a predetermined rotation resistance torque will be described. As shown in FIG. 2, when the biasing force of the preload spring 5 is P and the contact angle of the roller 3 is θ, the roller 3 and the inner / outer ring 1,
A vertical force N = P / sin θ acts between the two. Same figure
(B) is the balance of the forces of the inner and outer rings when the urging force P acts.
Shows the state. Here, Q is against the surface pressure between the inner and outer rings.
It is a force generated based on the rigidity of the inner and outer rings. This vertical force N causes a rolling frictional force μ between the roller 3 and the outer ring 2.
With 1 N is generated in the rolling direction of the roller 3, the friction force mu 2 N slip in the axial direction of the roller 3 occurs. As a result, the outer ring 2
Within the biasing force P direction of the plane of work force almost like FIG (c), the balance with the force F'the resultant force F is to rotate the between the inner and outer rings. Therefore, the inner and outer rings 1,
The torque T transmitted between the two is T = F · PC, where PCD is the distance between the rolling friction centers of the outer ring 2 and the outer ring 3.
It becomes D / 2. In this case, the friction coefficients μ 1 and μ 2 can be obtained by experiments or the like, but because rolling friction is applied, they are extremely stable values with no difference between a stationary state and a moving state. By using this formula, the various angles, dimensions, etc. determined by the structure of the rotation resistance imparting device and the biasing force P by the preload spring 5 are set in a fixed relationship to obtain a desired rotation resistance torque T.
Is obtained. When such a set torque is obtained only by the action of sliding friction as in a friction clutch or the like, the torque becomes extremely unstable. However, in the present invention, since the rolling bearing clutch-like structure is used, The rotation resistance torque can be accurately obtained by the above calculation formula. Fig. 3 shows the absorption torque (rotational resistance torque) and the input rotation speed (relative rotation speed between the inner and outer rings) such that the temperature rise is saturated and stable at 50 ° C when the device is operated alone. Show the relationship. The fact that the absorbed energy (absorption torque x input rotation speed) increases as the rotation speed increases is due to the effect of the heat radiation effect. The broken line shows the standard preload spring 5.
3 shows the limit of the absorption torque due to the upper limit value of the urging force of. Therefore, such absorption torque characteristics should be known in advance through calculations and experiments, and the preload spring should be set so that the torque within the absorption torque given by this curve is set as the rotation resistance with respect to the upper limit of the rotation speed used. By determining the biasing force of 5, it is possible to design a thermally safe rotation resistance applying device. FIG. 4 shows a rotation resistance applying device according to another embodiment. The rolling bearing clutch is the same as that of the embodiment shown in FIG. 1 in that the basic structure is the same as that of the embodiment shown in FIG. The inner ring 1 ′ is attached to the attachment member 12 with the screw 11, and the attachment member 12 is attached to the external attachment frame 100 with the screw 101,
The rotation and the position in the central axis 1b direction are fixed. The housing 4'as an intermediate member is rotatably coupled to the inner ring 1'at a fixed position in the direction of the central axis 1b via a mounting member 12 and a bearing 9 ', and further via a ball spline 8'as torque transmitting means. The outer ring 2'is coupled so as to be movable in the direction of the central axis 1b and rotate integrally.
Also, an operation shaft 13 is movably fitted in the inner ring 1'in the direction of the central shaft 1b, and a release stop means for stopping the movement of the outer ring 2'in the direction of the central shaft 1b at a predetermined position on the operation shaft 13. Plate 1 to which thrust bearing 14 is attached
5 is fixed. Further, a spring holder / positioning member 16 is fixed to the operation shaft 13, and one end of the spring holder / positioning member 16 is in pressure contact with the inner ring 1 and the other end is in pressure contact with the spring holder / positioning member 16 to urge the operation shaft 13. There is provided a coil spring 17 as a second urging means. Holder and positioning member 16
Is the coil spring 17 when the operation shaft 13 is not operated.
By positioning the outer ring 2'through the coil spring 17, and when operating the operating shaft 13, the predetermined position of the outer ring 2'is determined by the gap c between the outer ring 2'and the mounting member 12. The biasing force of the preload spring 5'and the biasing force of the coil spring 17 determine the magnitude relationship between them according to the application of the rotation resistance applying device. In the above, the operation shaft 13, the thrust bearing 14, the support plate 15, the spring holder / positioning member 16, and the coil spring 17 are mutually related and constitute an example of a second urging means, a releasing means, and a releasing stopping means. To do. With such a structure, when the operating shaft 13 is not operated as shown in the upper half of the central shaft 1b, the coil spring 17 causes the operating shaft 1 to operate via the holder / positioning member 16.
3 is urged from left to right in the figure, and the outer ring 2'is urged in the same direction via the support plate 15 and the thrust bearing 14.
As a result, the urging force in the direction of narrowing the track spacing of the preload spring 5'is reduced. When the biasing force of the coil spring 17 is larger than the biasing force of the preload spring 5 ', the inner and outer races (hence the outer race 2') can freely rotate in either forward or reverse directions. On the other hand, the biasing force of the coil spring 17 causes the preload spring 5 to
If it is smaller than the urging force of ′, when the inner and outer wheels rotate in the direction in which the clutch is not clutched (forward rotation side), the inner and outer wheels relatively rotate with a rotational resistance corresponding to the difference between the two urging forces.
When the inner and outer wheels rotate in the clutch direction (reverse rotation side), the inner and outer wheels are clutched to stop the movement of the outer ring 2'at a position corresponding to the biasing force of the coil spring 17, and the rotation resistance at that time causes The inner and outer rings rotate relative to each other. Next, the central axis 1b
When operating the operating shaft 13 as shown in the lower half of
When the biasing force of the coil spring 17 is released and the outer ring 2'rotates in the forward direction, the inner ring and the outer ring rotate with a rotation resistance corresponding to the biasing force of the preload spring 5 ', while the outer ring 2'rotates in the reverse direction. When the outer ring 2'rotates, the outer ring 2'moves in the direction in which the raceway gap is narrowed, the gap c disappears, and the thrust bearing 14
Rotational resistance corresponding to the position where the outer ring 2 ′ hits and stops at the position where is positioned is given, and the inner and outer rings relatively rotate. When rotating in the reverse direction in this way, the clutch torque is determined by the position of the thrust bearing 14, and therefore the preload spring 5'may have a biasing force for guiding the inner and outer races to the clutch state. There is an advantage that the biasing force of the coil spring 17 for releasing the biasing force may be small. In the rotation resistance imparting device of the present embodiment, for example, a winding drum (not shown) that is coupled via a driving means and a clutch is attached to the housing 4 ', the driving means is continuously rotated, and the clutch is coupled to operate the operation shaft 13. The yarn is wound by free rotation of the drum (normal rotation or reverse rotation) without operating, and when a predetermined amount is wound, the clutch is disengaged and the operation shaft 13 is operated to rotate the outer ring 2 a predetermined rotation. It is used for the purpose of applying resistance to brake, stop the drum within a set fast fixed time, replace the drum, connect the clutch, and perform similar winding again. In this case, according to this rotation resistance applying device, a stable and constant rotation resistance can be surely applied as a brake. Therefore, the braking time is calculated from the polar moment of inertia of the rotating portion including the drum and the rotation resistance torque to be applied. Can be accurately calculated, and the efficiency of the winding work can be improved. In the above rotation resistance imparting device, the manipulating shaft 13 may be manually manipulated by a person if necessary, but it may be manipulated via a booster such as a lever, or Depending on the case, it is also possible to operate automatically or remotely by a solenoid or the like under certain conditions. In this way, for example, the housing 4
It can also be used for work such as safely suspending an object or for emergency evacuation of a person by allowing a wire or the like to be wound around the ‘′ and operating this device on the machine side or remotely.

【発明の効果】以上の如く本発明によれば、請求項1の
発明においては、大きな回転抵抗を精度よく安定して付
与すると共に、回転速度との関係で付与する回転抵抗を
制限することにより回転抵抗付与装置の温度上昇を規制
し熱的に安定させることができ、請求項の発明は、
きな回転抵抗を精度よく安定して付与すると共に、解除
手段を操作したときと操作しないときとの間で回転抵抗
を変化させることにより回転抵抗を制御することがで
き、請求項の発明は、請求項の発明と同様の効果を
得られると共に付勢手段の付勢力を大きくしなくても大
きな回転抵抗を得ることができる。
According to the above as the present invention, in the invention of claim 1, a large rotational resistance with good precision stably imparted by limiting the rotational resistance imparting in relation to the rotational speed rotation resistance applying device to regulate the temperature rise can be thermally stable in the invention of claim 2 is large
With imparting deal of rotational resistance accurately stable, it is possible to control the rotation resistance by varying the rotational resistance between when no operation is performed and when operating the release means, the invention of claim 3 is The same effect as that of the invention of claim 2 can be obtained, and a large rotational resistance can be obtained without increasing the biasing force of the biasing means.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の回転抵抗付与装置の断面図である。FIG. 1 is a cross-sectional view of a rotation resistance imparting device according to an embodiment.

【図2】(a)〜(c)は、付勢力と回転抵抗との関係
を説明する説明図である。
FIG. 2A to FIG. 2C are explanatory diagrams illustrating the relationship between biasing force and rotation resistance.

【図3】温度上昇を一定範囲に規制する場合の入力回転
数と吸収トルクとの関係を示す曲線図である。
FIG. 3 is a curve diagram showing the relationship between the input rotation speed and the absorption torque when the temperature rise is regulated within a certain range.

【図4】他の実施例の回転抵抗付与装置の断面図であ
る。
FIG. 4 is a cross-sectional view of a rotation resistance imparting device of another embodiment.

【符号の説明】[Explanation of symbols]

1、1´ 内輪(内側回転体) 1a、1´a 内輪軌道面(内側軌道面) 1b 中心軸 2、2´ 外輪 2a、2´a 外輪軌道面 3 ころ 4、4´ ハウジング(中間部材) 5、5´ 予圧ばね(付勢手段) 6 軌道 8、8´ ボールスプライン(トルク伝達手
段) 9、9´ 軸受 13 操作軸(第二付勢手段、解除手段、
解除停止手段) 14 スラスト軸受(同上) 15 支持板(同上) 16 ばねホルダ兼位置決部材(同上) 17 コイルばね(同上)
1, 1'Inner ring (inner rotating body) 1a, 1'a Inner ring raceway surface (inner raceway surface) 1b Center axis 2, 2'Outer ring 2a, 2'a Outer ring raceway surface 3 Rollers 4, 4'Housing (intermediate member) 5, 5'preload spring (biasing means) 6 raceway 8, 8'ball spline (torque transmitting means) 9, 9'bearing 13 operation shaft (second biasing means, releasing means,
Release / stop means) 14 Thrust bearing (same as above) 15 Support plate (same as above) 16 Spring holder and positioning member (same as above) 17 Coil spring (same as above)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内側回転体と、外輪と、ころと、中間部
材と、付勢手段と、を有し、 前記内側回転体は、その中心軸まわりの単葉回転双曲面
をなす内側軌道面を備え、 前記外輪は、前記内側軌道面との間で軌道を形成するよ
うに前記中心軸まわりの単葉回転双曲面をなす外輪軌道
面を備え、 前記ころは、ころがり面が円筒形状であり、前記軌道に
おいて該ころの中心線を前記中心軸を含む断面から一定
角度傾斜して前記軌道の円周方向に複数個配設され、該
ころの表面は前記内側軌道面と前記外輪軌道面とに線状
に接触し、 前記中間部材は、前記外輪が中心軸方向に移動自在なよ
うにトルク伝達手段を介して前記外輪を結合すると共
に、中心軸方向の一定位置で前記内側回転体との間で回
転が自在なように軸受を介して前記内側回転体を結合
し、 前記付勢手段は、前記内側回転体と前記外輪との間が自
由回転方向に回転するときに所定の回転抵抗であって使
用される最大回転速度における温度上昇を一定値以内で
飽和させる所定の回転抵抗を与えるような付勢力で前記
外輪を前記中心軸方向であって前記軌道の間隔を狭くす
る方向に付勢する、 ことを特徴とする回転抵抗付与装置。
1. An inner rotating body, an outer ring, rollers, an intermediate member, and a biasing means, wherein the inner rotating body has an inner raceway surface forming a single-leaf rotating hyperboloid about its central axis. The outer ring has an outer ring raceway surface that forms a single-leaf rotation hyperboloid around the central axis so as to form a raceway with the inner raceway surface, and the roller has a cylindrical rolling surface, and In the raceway, a plurality of center lines of the rollers are arranged in the circumferential direction of the raceway with a certain angle of inclination from the cross section including the central axis, and the surfaces of the rollers are lined with the inner raceway surface and the outer ring raceway surface. In contact with each other, and the intermediate member couples the outer ring via a torque transmitting means so that the outer ring can move in the central axis direction, and at the same time, the intermediate member is connected to the inner rotating body at a fixed position in the central axis direction. Connect the inner rotating body through a bearing so that it can rotate freely. And, wherein the biasing means is used a predetermined rotational resistance when between the outer ring and the inner rotary member is rotated in free rotation direction
Within a certain value, the temperature rise at the maximum rotation speed used
A rotation resistance imparting device, characterized in that the outer ring is urged in the direction of the central axis and in a direction of narrowing the distance between the raceways by an urging force that gives a predetermined rotation resistance for saturation .
【請求項2】 内側回転体と、外輪と、ころと、中間部
材と、付勢手段と、を有し、 前記内側回転体は、その中心軸まわりの単葉回転双曲面
をなす内側軌道面を備え、 前記外輪は、前記内側軌道面との間で軌道を形成するよ
うに前記中心軸まわりの単葉回転双曲面をなす外輪軌道
面を備え、 前記ころは、ころがり面が円筒形状であり、前記軌道に
おいて該ころの中心線を前記中心軸を含む断面から一定
角度傾斜して前記軌道の円周方向に複数個配設され、該
ころの表面は前記内側軌道面と前記外輪軌道面とに線状
に接触し、 前記中間部材は、前記外輪が中心軸方向に移動自在なよ
うにトルク伝達手段を介して前記外輪を結合すると共
に、中心軸方向の一定位置で前記内側回転体との間で回
転が自在なように軸受を介して前記内側回転体を結合
し、 前記付勢手段は、前記内側回転体と前記外輪との間が自
由回転方向に回転するときに所定の回転抵抗を与えるよ
うな付勢力で前記外輪を前記中心軸方向であって前記軌
道の間隔を狭くする方向に付勢し、前記付勢手段が付勢する方向とは反対の方向に前記外輪
を付勢する第二付勢手段と、該第二付勢手段による付勢
を解除する解除手段と、を設けた ことを特徴とする回転
抵抗付与装置。
2. An inner rotating body, an outer ring, a roller, an intermediate member, and a biasing means, wherein the inner rotating body has an inner raceway surface forming a single-leaf rotating hyperboloid about its central axis. The outer ring has an outer ring raceway surface that forms a single-leaf rotation hyperboloid around the central axis so as to form a raceway with the inner raceway surface, and the roller has a cylindrical rolling surface, and In the raceway, a plurality of center lines of the rollers are arranged in the circumferential direction of the raceway with a certain angle of inclination from the cross section including the central axis, and the surfaces of the rollers are lined with the inner raceway surface and the outer ring raceway surface. In contact with each other, and the intermediate member couples the outer ring via a torque transmitting means so that the outer ring can move in the central axis direction, and at the same time, the intermediate member is connected to the inner rotating body at a fixed position in the central axis direction. Connect the inner rotating body through a bearing so that it can rotate freely. The urging means applies a urging force that gives a predetermined rotational resistance when the inner rotating body and the outer ring rotate in a free rotation direction to the outer ring in the central axis direction and the orbit. The outer ring in a direction opposite to the direction in which the biasing means biases the outer ring
And a second urging means for urging the second urging means.
And a releasing means for releasing the rotation resistance providing device.
【請求項3】 内側回転体と、外輪と、ころと、中間部
材と、付勢手段と、を有し、 前記内側回転体は、その中心軸まわりの単葉回転双曲面
をなす内側軌道面を備え、 前記外輪は、前記内側軌道面との間で軌道を形成するよ
うに前記中心軸まわりの単葉回転双曲面をなす外輪軌道
面を備え、 前記ころは、ころがり面が円筒形状であり、前記軌道に
おいて該ころの中心線を前記中心軸を含む断面から一定
角度傾斜して前記軌道の円周方向に複数個配設され、該
ころの表面は前記内側軌道面と前記外輪軌道面とに線状
に接触し、 前記中間部材は、前記外輪が中心軸方向に移動自在なよ
うにトルク伝達手段を介して前記外輪を結合すると共
に、中心軸方向の一定位置で前記内側回転体との間で回
転が自在なように軸受を介して前記内側回転体を結合
し、前記付勢手段は、前記外輪を前記中心軸方向であって前
記軌道の間隔を狭くする方向に付勢し、 前記付勢手段が付勢する方向とは反対の方向に前記外輪
を付勢する第二付勢手段と、 該第二付勢手段による付勢を解除すると共に前記軌道の
間隔を狭くする方向への前記外輪の移動を所定位置で停
止させる解除停止手段と、 を設けたことを特徴とする回転抵抗付与装置。
3. An inner rotating body, an outer ring, rollers, an intermediate member, and a biasing means, wherein the inner rotating body has an inner raceway surface forming a single-leaf rotating hyperboloid about its central axis. The outer ring has an outer ring raceway surface that forms a single-leaf rotation hyperboloid around the central axis so as to form a raceway with the inner raceway surface, and the roller has a cylindrical rolling surface, and In the raceway, a plurality of center lines of the rollers are arranged in the circumferential direction of the raceway with a certain angle of inclination from the cross section including the central axis, and the surfaces of the rollers are lined with the inner raceway surface and the outer ring raceway surface. In contact with each other, and the intermediate member couples the outer ring via a torque transmitting means so that the outer ring can move in the central axis direction, and at the same time, the intermediate member is connected to the inner rotating body at a fixed position in the central axis direction. Connect the inner rotating body through a bearing so that it can rotate freely. And said biasing means, before said outer ring a said central axis
The outer ring is urged in a direction in which the space between the tracks is narrowed, and the outer ring is urged in a direction opposite to the urging direction of the urging means.
A second urging means for urging the
Stop the movement of the outer ring in the direction of narrowing the gap at a predetermined position.
A rotation resistance applying device , comprising: a release stop means for stopping .
JP4164231A 1992-05-30 1992-05-30 Rotational resistance applying device Expired - Lifetime JPH081223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4164231A JPH081223B2 (en) 1992-05-30 1992-05-30 Rotational resistance applying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4164231A JPH081223B2 (en) 1992-05-30 1992-05-30 Rotational resistance applying device

Publications (2)

Publication Number Publication Date
JPH0674260A JPH0674260A (en) 1994-03-15
JPH081223B2 true JPH081223B2 (en) 1996-01-10

Family

ID=15789168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4164231A Expired - Lifetime JPH081223B2 (en) 1992-05-30 1992-05-30 Rotational resistance applying device

Country Status (1)

Country Link
JP (1) JPH081223B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374641A (en) * 1989-05-08 1991-03-29 Nobuo Takada Roller bearing clutch

Also Published As

Publication number Publication date
JPH0674260A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
US11913502B2 (en) Torque limiter
US3367456A (en) Torque sensitive brake
JPH04228934A (en) Brake mechanism
JP3084078B2 (en) Torque absorber
US3049019A (en) Drive unit
US3621958A (en) Bidirectional no-back unit for ball screw utilizing roller cams
JPH081223B2 (en) Rotational resistance applying device
US3902334A (en) Constant torque clutch
US3754413A (en) Friction clutch
JP2566874B2 (en) Centrifugal clutch
JPH01158223A (en) Clutch
JP2766810B2 (en) Rotation speed adjustment device
JP2663224B2 (en) Automatic tensioning mechanism for belt transmission
JPH05149352A (en) Rolling bearing clutch
JPH086764B2 (en) On-off clutch and lifting device using the same
JP2509843B2 (en) Torque retention safety device
JPH06330941A (en) Ball screw device
WO2018216185A1 (en) Power transmission device
JPH045854B2 (en)
JP3031942B2 (en) Torque limiter
JPH0674253A (en) Inlined roller bearing like structure
JP3243105B2 (en) Variable torque absorber
JPH02504Y2 (en)
JP3243106B2 (en) On-off clutch
JP2002206575A (en) Brake mechanism

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 17