JPH08121480A - Superconducting bearing device - Google Patents

Superconducting bearing device

Info

Publication number
JPH08121480A
JPH08121480A JP6260049A JP26004994A JPH08121480A JP H08121480 A JPH08121480 A JP H08121480A JP 6260049 A JP6260049 A JP 6260049A JP 26004994 A JP26004994 A JP 26004994A JP H08121480 A JPH08121480 A JP H08121480A
Authority
JP
Japan
Prior art keywords
superconductor
annular
cooling
temperature
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6260049A
Other languages
Japanese (ja)
Other versions
JP3663470B2 (en
Inventor
Ryoichi Takahata
良一 高畑
Shoji Eguchi
正二 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP26004994A priority Critical patent/JP3663470B2/en
Publication of JPH08121480A publication Critical patent/JPH08121480A/en
Application granted granted Critical
Publication of JP3663470B2 publication Critical patent/JP3663470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/005Cooling of bearings of magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE: To decrease the number of replacing times of a touch down bearing, as a result, simplify the replacing work and also to reduce a cost. CONSTITUTION: A device comprises a rotary unit 2, high frequency electric motor 8 of driving the rotary unit 2 rotated, annular permanent magnet parts 17, 18 fixedly provided in the rotary unit 2 further to have permanent magnets 14, 16, annular superconductor parts 19, 20 arranged in a fixed part so as to be opposed to the annular permanent magnet parts 17, 18 further to have superconductors 35, 24 and cooling devices 38, 27 of cooling the superconductors 35, 24 by supplying a cooling fluid to the annular superconductor parts 19, 20. Assist cooling devices 41, 30 of cooling the superconductors 35, 24 by supplying a cooling fluid to the annular superconductor parts 19, 20 are juxtaposed with the cooling devices 38, 27. A temperature sensor 45 of detecting a temperature of the superconductors 35, 24 is provided. The device has a control device 47 of supplying the cooling fluid to the annular superconductor parts 19, 20 from the assist cooling devices 41, 30 in the case that a temperature detected by the temperature sensor 45 rises higher than a critical temperature of the superconductors 35, 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、たとえば余剰電力を
フライホイールの運動エネルギに変換して貯蔵する電力
貯蔵装置に適用される超電導軸受装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting bearing device applied to, for example, an electric power storage device for converting surplus electric power into kinetic energy of a flywheel and storing it.

【0002】[0002]

【従来の技術】従来、超電導軸受装置として、回転体
と、回転体の回転駆動源と、回転体に固定状に設けられ
かつ永久磁石を有する環状永久磁石部と、環状永久磁石
部と対向するように固定部に配置されかつ超電導体を有
する環状超電導体部と、環状超電導体部に冷却流体を供
給することにより超電導体を冷却する冷却手段と、固定
部に設けられたタッチダウン軸受とを備えたものが知ら
れている。この超電導軸受装置では、冷却手段により超
電導体を臨界温度よりも低い温度まで冷却して超電導体
を超電導状態とし、これにより回転体を固定部に対して
非接触状態で支持しうるようになっている。また、この
ような超電導軸受装置では、通常回転体と固定部との間
に保護用タッチダウン軸受が配置されており、超電導軸
受装置の運転中に、何らかの理由により超電導体の温度
が臨界温度よりも高くなって常電導化した場合に、回転
体がタッチダウン軸受により固定部に回転支持されて回
転体およびそのまわりの部品の破損を防止するようにな
っている。
2. Description of the Related Art Conventionally, as a superconducting bearing device, a rotating body, a rotary drive source for the rotating body, an annular permanent magnet portion fixedly provided on the rotating body and having a permanent magnet, and the annular permanent magnet portion are opposed to each other. Thus, the annular superconductor portion which is arranged in the fixed portion and has the superconductor, the cooling means for cooling the superconductor by supplying the cooling fluid to the annular superconductor portion, and the touchdown bearing provided in the fixed portion Those equipped are known. In this superconducting bearing device, the cooling means cools the superconductor to a temperature lower than the critical temperature to bring the superconductor into a superconducting state, whereby the rotating body can be supported in a non-contact state with respect to the fixed portion. There is. Further, in such a superconducting bearing device, a protective touchdown bearing is usually arranged between the rotating body and the fixed part, and during operation of the superconducting bearing device, the temperature of the superconductor is higher than the critical temperature for some reason. When the temperature rises to normal conductivity, the rotating body is rotatably supported by the fixed portion by the touchdown bearing to prevent damage to the rotating body and parts around it.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
超電導軸受装置では、回転体が回転駆動源により高速回
転させられた状態で、タッチダウン軸受により固定部に
回転支持されるようになっているので、タッチダウン軸
受が数回の使用で破損することが多く、タッチダウン軸
受の交換回数が多くなって、交換作業が面倒であるとと
もにコストが高くなるという問題がある。
However, in the conventional superconducting bearing device, since the rotating body is rotated at a high speed by the rotary drive source, it is rotatably supported by the fixed portion by the touchdown bearing. However, the touch-down bearing is often damaged after being used several times, and the touch-down bearing needs to be replaced many times, resulting in a troublesome replacement work and a high cost.

【0004】この発明の目的は、上記問題を解決した超
電導軸受装置を提供することにある。
An object of the present invention is to provide a superconducting bearing device which solves the above problems.

【0005】[0005]

【課題を解決するための手段】この発明による超電導軸
受装置は、回転体と、回転体の回転駆動源と、回転体に
固定状に設けられかつ永久磁石を有する環状永久磁石部
と、環状永久磁石部と対向するように固定部に配置され
かつ超電導体を有する環状超電導体部と、環状超電導体
部に冷却流体を供給することにより超電導体を冷却する
冷却手段と、固定部に設けられたタッチダウン軸受とを
備えた超電導軸受装置において、上記冷却手段と併設さ
れ、かつ環状超電導体部に冷却流体を供給することによ
り超電導体を冷却する補助冷却手段と、超電導体の温度
を検出する温度センサと、温度センサにより検出された
温度が超電導体の臨界温度よりも高くなった際に補助冷
却手段から環状超電導体部に冷却流体を供給させる制御
手段とを備えているものである。
A superconducting bearing device according to the present invention comprises a rotating body, a rotary drive source for the rotating body, an annular permanent magnet portion fixed to the rotating body and having a permanent magnet, and an annular permanent magnet. An annular superconductor portion having a superconductor arranged in the fixed portion so as to face the magnet portion, cooling means for cooling the superconductor by supplying a cooling fluid to the annular superconductor portion, and a fixed portion provided in the fixed portion. In a superconducting bearing device equipped with a touchdown bearing, auxiliary cooling means for cooling the superconductor by providing cooling fluid to the annular superconductor part, which is provided with the cooling means, and a temperature for detecting the temperature of the superconductor. A sensor and a control means for supplying a cooling fluid from the auxiliary cooling means to the annular superconductor portion when the temperature detected by the temperature sensor becomes higher than the critical temperature of the superconductor. It is intended.

【0006】上記超電導軸受装置において、回転体の制
動手段を備えており、制御手段が、温度センサにより検
出された温度が超電導体の臨界温度よりも高くなった際
に制動手段を作動させるようになっていることがある。
In the above superconducting bearing device, the rotating means braking means is provided, and the controlling means operates the braking means when the temperature detected by the temperature sensor becomes higher than the critical temperature of the superconductor. It has become.

【0007】[0007]

【作用】冷却手段と併設され、かつ環状超電導体部に冷
却流体を供給することにより超電導体を冷却する補助冷
却手段と、超電導体の温度を検出する温度センサと、温
度センサにより検出された温度が超電導体の臨界温度よ
りも高くなった際に補助冷却手段から環状超電導体部に
冷却流体を供給させる制御手段とを備えていると、温度
センサにより検出された温度が超電導体の臨界温度より
も高くなった際に、制御手段が補助冷却手段から環状超
電導体部に冷却流体を供給させ、これにより超電導体を
臨界温度よりも低い温度に冷却することが可能になる。
したがって、この間に回転体の回転駆動源を停止させれ
ば、回転体の回転速度が小さくなった後に、回転体がタ
ッチダウン軸受により固定部に回転支持されることにな
る。
Operation: Auxiliary cooling means which is provided with cooling means and cools the superconductor by supplying a cooling fluid to the annular superconductor portion, a temperature sensor for detecting the temperature of the superconductor, and a temperature detected by the temperature sensor. When the control means for supplying the cooling fluid from the auxiliary cooling means to the annular superconductor part when the temperature becomes higher than the critical temperature of the superconductor, the temperature detected by the temperature sensor is higher than the critical temperature of the superconductor. When the temperature rises, the control means causes the auxiliary cooling means to supply the cooling fluid to the annular superconductor portion, whereby the superconductor can be cooled to a temperature lower than the critical temperature.
Therefore, if the rotation driving source of the rotating body is stopped during this period, the rotating body is rotatably supported by the fixed portion by the touchdown bearing after the rotation speed of the rotating body becomes low.

【0008】回転体の制動手段を備えており、制御手段
が、温度センサにより検出された温度が超電導体の臨界
温度よりも高くなった際に制動手段を作動させるように
なっていると、温度センサにより検出された温度が超電
導体の臨界温度よりも高くなった際に、補助冷却手段か
ら環状超電導体部に冷却流体を供給させることにより超
電導体を臨界温度よりも低い温度に冷却している間に、
制御手段が制動手段を作動させることにより回転体の回
転速度が減速させることができるので、回転体の回転速
度を速やかに小さくすることができる。したがって、回
転体をタッチダウン軸受により固定部に回転支持するま
での時間を短縮することができる。
If the control means is provided with braking means for the rotating body and the control means activates the braking means when the temperature detected by the temperature sensor becomes higher than the critical temperature of the superconductor, When the temperature detected by the sensor becomes higher than the critical temperature of the superconductor, the cooling fluid is supplied from the auxiliary cooling means to the annular superconductor part to cool the superconductor to a temperature lower than the critical temperature. Between,
Since the rotation speed of the rotating body can be reduced by the control means operating the braking means, the rotation speed of the rotating body can be quickly reduced. Therefore, it is possible to shorten the time required to rotatably support the rotating body on the fixed portion by the touchdown bearing.

【0009】[0009]

【実施例】以下、この発明の実施例を、図面を参照して
説明する。この実施例は、超電導軸受装置を電力貯蔵装
置に適用したものである。
Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, the superconducting bearing device is applied to a power storage device.

【0010】図1および図2は電力貯蔵装置の概略を示
し、図3は電力貯蔵装置の原理を示す図である。
1 and 2 show the outline of the power storage device, and FIG. 3 is a diagram showing the principle of the power storage device.

【0011】図1および図2において、電力貯蔵装置
は、真空チャンバ(1) と、真空チャンバ(1) 内に配置さ
れた垂直軸状の回転体(2) と、回転体(2) の高さの中間
部に固定状に設けられたフライホイール(3) とを備えて
いる。
In FIG. 1 and FIG. 2, the power storage device comprises a vacuum chamber (1), a vertical axis rotary body (2) arranged in the vacuum chamber (1), and a rotary body (2) with a high height. A flywheel (3) fixedly provided in the middle of the hood.

【0012】真空チャンバ(1) の頂壁(1a)の中央部に、
下方に突出しかつ下端がフライホイール(3) の若干上方
に至る厚肉円筒状部(4) が一体に形成されている。ま
た、真空チャンバ(1) の底壁(1b)上面に内周面が円筒面
となされた凹所(5) が形成されている。回転体(2) の上
部は厚肉円筒状部(4) 内に径方向に間隔をおいて入り込
み、回転体(2) の下端部の小径部(2a)が凹所(5) 内に径
方向に間隔をおいて入り込んでいる。厚肉円筒状部(4)
の内周面の上端部および凹所(5) の内周面の上端部に、
それぞれ転がり軸受からなりかつ通常は回転体(2) と非
接触で、非常時に回転体(2) を支持する保護用のタッチ
ダウン軸受(6)(7)が設けられている。
At the center of the top wall (1a) of the vacuum chamber (1),
A thick-walled cylindrical portion (4) is integrally formed that projects downward and the lower end thereof extends slightly above the flywheel (3). Further, a recess (5) having an inner peripheral surface of a cylindrical surface is formed on the upper surface of the bottom wall (1b) of the vacuum chamber (1). The upper part of the rotating body (2) is inserted into the thick-walled cylindrical part (4) at intervals in the radial direction, and the small diameter part (2a) at the lower end of the rotating body (2) is inserted into the recess (5). It has entered at intervals in the direction. Thick cylindrical part (4)
At the upper end of the inner peripheral surface of and the upper end of the inner peripheral surface of the recess (5),
Protective touchdown bearings (6) (7) are provided, each consisting of a rolling bearing and usually not in contact with the rotating body (2) and supporting the rotating body (2) in an emergency.

【0013】回転体(2) におけるフライホイール(3) よ
りも上側の部分と厚肉円筒状部(4)との間に、回転体(2)
を高速回転させる高周波電動機(回転駆動源)(8) が
配置されている。高周波電動機(8) は、回転体(2) に取
付けられたロータ(9) と、その周囲において厚肉円筒状
部(4) の内周面に取付けられたステータ(10)とよりな
る。高周波電動機(8) は、回生制動により回転体(2) の
回転速度を減速する機能を有しており、回転体(2) の制
動手段を兼ねている。
Between the portion of the rotating body (2) above the flywheel (3) and the thick-walled cylindrical portion (4), the rotating body (2)
A high-frequency motor (rotational drive source) (8) for rotating the motor at high speed is arranged. The high frequency electric motor (8) comprises a rotor (9) attached to the rotating body (2) and a stator (10) attached to the inner peripheral surface of the thick-walled cylindrical portion (4) around the rotor (9). The high frequency motor (8) has a function of reducing the rotational speed of the rotating body (2) by regenerative braking, and also serves as a braking means for the rotating body (2).

【0014】高周波電動機(8) の上下において、回転体
(2) と厚肉円筒状部(4) との間にそれぞれ磁気軸受部(1
1)が設けられている。磁気軸受部(11)は、回転体(2) の
回転を開始した後、安定回転領域に達するまでに回転体
(2) に共振が発生して回転体(2) の互いに直交するラジ
アル方向のふれが発生した場合に、このふれを補正する
働きをする。図示は省略したが、回転体(2) の互いに直
交する方向に伸びる軸をX軸およびY軸とすると、各磁
気軸受部(11)は、X軸方向の制御形磁気軸受と、Y軸方
向の制御形磁気軸受とよりなる。両制御形磁気軸受は、
それぞれX軸上およびY軸上に、回転体(2) を両側から
吸引するするように配置された電磁石と、各電磁石の近
傍に配置され、かつ回転体(2) のX軸方向の変位および
Y軸方向の変位を検出するラジアル方向変位センサとを
備えている。
Above and below the high-frequency motor (8), the rotating body
Between the (2) and the thick-walled cylindrical part (4), the magnetic bearing part (1
1) is provided. The magnetic bearing part (11) rotates the rotating body (2) until it reaches the stable rotating area after it starts rotating.
When resonance occurs in (2) and vibrations of the rotating body (2) in the radial directions orthogonal to each other occur, this function corrects this vibration. Although illustration is omitted, when the axes extending in the directions orthogonal to each other of the rotating body (2) are the X axis and the Y axis, each magnetic bearing portion (11) has a control type magnetic bearing in the X axis direction and a Y axis direction. Controlled magnetic bearing. Both control type magnetic bearings
Electromagnets arranged to attract the rotating body (2) from both sides on the X-axis and Y-axis, respectively, and displacements in the X-axis direction of the rotating body (2) arranged in the vicinity of the electromagnets. And a radial direction displacement sensor that detects displacement in the Y-axis direction.

【0015】フライホイール(3) の上面の周縁部には厚
肉円筒状部(12)が一体に形成されている。厚肉円筒状部
(12)は、真空チャンバ(1) の頂壁(1a)の厚肉円筒状部
(4) の下部の周囲を囲繞するようになっている。フライ
ホイール(3) の厚肉円筒状部(12)の上面に、回転体(2)
と同心状に複数の環状凹溝(13)が形成されており、各環
状凹溝(13)内に環状永久磁石(14)が嵌められて固定され
ている。また、フライホイール(3) の下面に、回転体
(2) と同心状に複数の環状凹溝(15)が形成されており、
各環状凹溝(15)内に環状永久磁石(16)が嵌められて固定
されている。そして、フライホイール(3) と上下の永久
磁石(14)(16)とにより上下の環状永久磁石部(17)(18)が
形成されている。
A thick-walled cylindrical portion (12) is integrally formed on the peripheral portion of the upper surface of the flywheel (3). Thick-walled cylindrical part
(12) is a thick-walled cylindrical part of the top wall (1a) of the vacuum chamber (1)
It is designed to surround the lower part of (4). Attach the rotor (2) to the upper surface of the thick-walled cylindrical part (12) of the flywheel (3).
A plurality of annular grooves (13) are formed concentrically with each other, and an annular permanent magnet (14) is fitted and fixed in each annular groove (13). Also, attach the rotating body to the underside of the flywheel (3).
A plurality of annular concave grooves (15) are formed concentrically with (2),
An annular permanent magnet (16) is fitted and fixed in each annular groove (15). The flywheel (3) and the upper and lower permanent magnets (14) and (16) form upper and lower annular permanent magnet portions (17) and (18).

【0016】真空チャンバ(1) に、上側の環状永久磁石
部(17)の上方において回転体(2) の回転軸心方向に間隔
をおいて対向するように上部環状超電導体部(19)が設け
られ、下側の環状永久磁石部(18)の下方において回転体
(2) の回転軸心方向に間隔をおいて対向するように、下
部環状超電導体部(20)が設けられている。
An upper annular superconductor section (19) is provided in the vacuum chamber (1) so as to face the upper annular permanent magnet section (17) at a distance in the direction of the rotation axis of the rotating body (2). A rotating body is provided below the lower annular permanent magnet section (18).
A lower annular superconductor portion (20) is provided so as to face each other with a space in the direction of the rotation axis of (2).

【0017】下部環状超電導体部(20)は、図2に示すよ
うに、2つの半環状の水平ハウジング(21)を備えてお
り、両水平ハウジング(21)が全体として環状となるよう
に組み合わされている。そして、この組合わせ体(22)の
中心にこれを上下方向に貫通する貫通穴(23)が形成さ
れ、この貫通穴(23)に回転体(2) が径方向に間隔をおい
て通されている。各半環状水平ハウジング(21)は半環状
中空部(21a) を備えており、この中空部(21a) 内に水平
な半環状の第2種超電導体(24)が配置されている。各半
環状ハウジング(21)に、その内部の中空部(21a) と連通
するように冷却流体供給管(25)および同排出管(26)が接
続されている。各冷却流体供給管(25)は、ハウジング(2
1)の中空部(21a) に、たとえば液体窒素からなる冷却流
体を供給する下部冷却装置(冷却手段)(27)に接続され
ている。冷却流体供給管(25)の下部冷却装置(27)側の端
部に、下部冷却装置(27)から冷却流体が出て行く方向の
流体の流れのみを許容する逆止弁(28)が設けられてい
る。冷却流体供給管(25)における逆止弁(28)よりも下流
側の部分から分岐管(29)が設けられており、分岐管(29)
の先端が、ハウジング(21)の中空部(21a) に、たとえば
液体窒素からなる冷却流体を供給する下部補助冷却装置
(補助冷却手段)(30)に接続されている。分岐管(29)の
途中には電磁弁(31)が設けられている。
As shown in FIG. 2, the lower annular superconductor portion (20) is provided with two semi-annular horizontal housings (21), and both horizontal housings (21) are combined so as to form an annular shape as a whole. Has been done. Then, a through hole (23) is formed at the center of this combined body (22) so as to vertically penetrate therethrough, and the rotating body (2) is passed through the through hole (23) at intervals in the radial direction. ing. Each semi-annular horizontal housing (21) has a semi-annular hollow portion (21a), and a horizontal semi-annular type 2 superconductor (24) is arranged in the hollow portion (21a). A cooling fluid supply pipe (25) and a discharge pipe (26) are connected to each of the semi-annular housings (21) so as to communicate with the hollow portion (21a) therein. Each cooling fluid supply pipe (25)
The hollow portion (21a) of 1) is connected to a lower cooling device (cooling means) (27) that supplies a cooling fluid made of, for example, liquid nitrogen. At the end of the cooling fluid supply pipe (25) on the lower cooling device (27) side, a check valve (28) that allows only the flow of the fluid in the direction in which the cooling fluid flows out from the lower cooling device (27) is provided. Has been. A branch pipe (29) is provided from a portion of the cooling fluid supply pipe (25) downstream of the check valve (28).
Is connected to the hollow portion (21a) of the housing (21) with a lower auxiliary cooling device (auxiliary cooling means) (30) for supplying a cooling fluid such as liquid nitrogen. A solenoid valve (31) is provided in the middle of the branch pipe (29).

【0018】上部環状超電導体部(19)は、図示は省略し
たが、下部環状超電導体部(20)と同様に2つの半環状の
水平ハウジング(32)を備えており、両水平ハウジング(3
2)が全体として環状となるように組み合わされている。
そして、この組合わせ体(33)の中心にこれを上下方向に
貫通する貫通穴(34)が形成され、この貫通穴(34)に真空
チャンバ(1) の頂壁(1a)の厚肉円筒状部(4) が径方向に
間隔をおいて通されている。各半環状水平ハウジング(3
2)は半環状中空部(32a) を備えており、この中空部(32
a) 内にも水平な半環状の第2種超電導体(35)が配置さ
れている。各半環状ハウジング(32)に、その内部の中空
部(32a) と連通するように冷却流体供給管(36)および同
排出管(37)が接続されている。冷却流体供給管(36)は、
ハウジング(32)の中空部(32a) に、たとえば液体窒素か
らなる冷却流体を供給する上部冷却装置(冷却手段)(3
8)に接続されている。冷却流体供給管(36)の上部冷却装
置(38)側の端部に、上部冷却装置(38)から冷却流体が出
て行く方向の流体の流れのみを許容する逆止弁(39)が設
けられている。冷却流体供給管(36)における逆止弁(39)
よりも下流側の部分から分岐管(40)が設けられており、
分岐管(40)の先端が、ハウジング(32)の中空部(32a)
に、たとえば液体窒素からなる冷却流体を供給する上部
補助冷却装置(補助冷却手段)(41)に接続されている。
分岐管(40)の途中には電磁弁(42)が設けられている。
Although not shown, the upper annular superconductor portion (19) is provided with two semi-annular horizontal housings (32) like the lower annular superconductor portion (20).
2) are combined so as to form a ring as a whole.
Then, a through hole (34) is formed at the center of this combined body (33) so as to vertically penetrate therethrough, and a thick cylinder of the top wall (1a) of the vacuum chamber (1) is formed in this through hole (34). The ridges (4) are radially spaced. Each semi-annular horizontal housing (3
2) is equipped with a semi-annular hollow part (32a).
A horizontal semi-annular type II superconductor (35) is also placed inside a). A cooling fluid supply pipe (36) and a discharge pipe (37) are connected to each of the semi-annular housings (32) so as to communicate with the hollow portion (32a) therein. The cooling fluid supply pipe (36) is
An upper cooling device (cooling means) (3) for supplying a cooling fluid such as liquid nitrogen to the hollow portion (32a) of the housing (32).
It is connected to 8). At the end of the cooling fluid supply pipe (36) on the upper cooling device (38) side, a check valve (39) that allows only the flow of the fluid in the direction in which the cooling fluid flows out of the upper cooling device (38) is provided. Has been. Check valve (39) in cooling fluid supply pipe (36)
A branch pipe (40) is provided from the downstream side,
The tip of the branch pipe (40) is the hollow part (32a) of the housing (32).
Is connected to an upper auxiliary cooling device (auxiliary cooling means) (41) for supplying a cooling fluid made of, for example, liquid nitrogen.
A solenoid valve (42) is provided in the middle of the branch pipe (40).

【0019】超電導体(24)(35)は、イットリウム系高温
超電導体、たとえばYBa2 Cu3x からなるバルク
の内部に常電導体粒子(Y2 Ba1 Cu1 )を均一に混
在させたものからなり、第2種超電導状態が出現する環
境下において、永久磁石(16)(14)から発せられる磁束を
内部に拘束する性質を持つものである。そして、超電導
体(24)(35)は、永久磁石(16)(14)の磁束が所定量侵入す
る離隔位置であってかつ回転体(2) の回転によって侵入
磁束の分布が変化しない位置に、永久磁石(16)(14)と対
向するように配置されている。
The superconductors (24) and (35) were obtained by uniformly mixing normal conductor particles (Y 2 Ba 1 Cu 1 ) in the bulk of a yttrium-based high temperature superconductor such as YBa 2 Cu 3 O x . It has a property of internally restraining the magnetic flux generated from the permanent magnets (16) and (14) under the environment where the second-type superconducting state appears. Then, the superconductors (24) (35) are located at the separated position where the magnetic flux of the permanent magnets (16) (14) penetrates by a predetermined amount, and the distribution of the magnetic flux entering does not change by the rotation of the rotating body (2). , Are arranged so as to face the permanent magnets (16) and (14).

【0020】そして、上部環状永久磁石部(17)と上部環
状超電導体部(19)により上部超電導軸受部(43)が形成さ
れ、下部環状永久磁石部(18)と下部環状超電導体部(20)
により下部超電導軸受部(44)が形成されている。
The upper annular permanent magnet section (17) and the upper annular superconductor section (19) form an upper superconducting bearing section (43), and the lower annular permanent magnet section (18) and the lower annular superconductor section (20). )
This forms the lower superconducting bearing portion (44).

【0021】図3に示すように、上部および下部環状超
電導体部(19)(20)には、それぞれ2つの超電導体(35)(2
4)の温度を検出する温度センサ(45)が設けられている。
温度センサ(45)は、上部および下部環状超電導体部(19)
(20)において、それぞれ各超電導体(35)(24)の2箇所の
温度を検出するように合計で4つ設けられており、平面
から見て円周方向に等角度間隔で配されている。
As shown in FIG. 3, there are two superconductors (35) (2) in the upper and lower annular superconductor parts (19) (20), respectively.
A temperature sensor (45) for detecting the temperature of 4) is provided.
The temperature sensor (45) consists of upper and lower annular superconductor parts (19).
In (20), a total of four are provided so as to detect the temperature of each of the two superconductors (35) and (24), and they are arranged at equal angular intervals in the circumferential direction when viewed from the plane. .

【0022】下部環状超電導体部(20)の両ハウジング(2
1)には、それぞれフライホイール(3) との間隔を検出す
る2つのギャップセンサ(46)が設けられている。これら
のギャップセンサ(46)は、平面から見て円周方向に等角
度間隔で配されている。
Both housings (2) of the lower annular superconductor (20)
1) is provided with two gap sensors (46) that detect the distance from the flywheel (3). These gap sensors (46) are arranged at equal angular intervals in the circumferential direction when viewed from above.

【0023】温度センサ(45)、ギャップセンサ(46)、電
磁弁(31)(42)および高周波電動機(8) はそれぞれ制御装
置(制御手段)(47)に接続されている。制御装置(47)に
は、温度センサ(45)により検出された温度が超電導体(2
4)(35)の臨界温度よりも高くなった際にオペレータに知
らせる報知装置(48)が接続されている。制御装置(47)
は、温度センサ(45)により検出された温度が超電導体(2
4)(35)の臨界温度よりも高くなった際に電磁弁(31)(42)
を開状態とし、補助冷却装置(30)(41)から冷却流体をハ
ウジング(21)(32)の中空部(21a)(32a)に供給する。ま
た、制御装置(47)は、ギャップセンサ(46)により検出さ
れたフライホイール(3) と下部環状超電導体部(20)のハ
ウジング(21)の間隔が所定間隔よりも小さくなった際に
電磁弁(31)(42)を開状態として、補助冷却装置(30)(41)
から冷却流体をハウジング(21)(32)の中空部(21a)(32a)
に供給する。さらに、制御装置(47)は、温度センサ(45)
により検出された温度が超電導体(24)(35)の臨界温度よ
りも高くなった際に報知装置(48)を作動させてオペレー
タに知らせる。
The temperature sensor (45), the gap sensor (46), the solenoid valves (31) (42) and the high frequency electric motor (8) are respectively connected to a control device (control means) (47). The temperature detected by the temperature sensor (45) is displayed on the control device (47) by the superconductor (2
4) A notification device (48) is connected to notify the operator when the temperature becomes higher than the critical temperature of (35). Controller (47)
Is the temperature detected by the temperature sensor (45).
4) Solenoid valve (31) (42) when it becomes higher than the critical temperature of (35)
Is opened and the cooling fluid is supplied from the auxiliary cooling devices (30) (41) to the hollow portions (21a) (32a) of the housings (21) (32). The control device (47) also controls the electromagnetic force when the distance between the flywheel (3) detected by the gap sensor (46) and the housing (21) of the lower annular superconductor portion (20) becomes smaller than a predetermined distance. With the valves (31) (42) open, the auxiliary cooling system (30) (41)
Cooling fluid from the hollow parts (21a) (32a) of the housing (21) (32)
Supply to. Further, the control device (47) includes a temperature sensor (45).
When the temperature detected by is higher than the critical temperature of the superconductors (24) (35), the alarm device (48) is operated to notify the operator.

【0024】回転体(2) の下方に、真空チャンバ(1) の
底壁(1b)を上下方向に昇降自在に貫通しかつ回転体(2)
を真空チャンバ(1) に対して上昇、下降させうる昇降体
(49)が配置されている。回転体(2) と昇降体(49)との間
に、真空チャンバ(1) と回転体(2) との相対位置を決定
する初期位置決め機構(50)が、次のように設けられてい
る。回転体(2) の下端面の中心部に上方に向かって狭ま
ったテーパ穴(図示略)が形成され、昇降体(49)の上端
面の中心部に下方に向かって狭まったテーパ穴(図示
略)が形成されている。また、回転体(2) と昇降体(49)
との間に、テーパ穴の大端径よりも大きな直径を有する
ボール(51)が配置されている。そして、回転体(2) およ
び昇降体(49)のテーパ穴とボール(51)とにより初期位置
決め機構(50)が構成されている。
Below the rotary body (2), the bottom wall (1b) of the vacuum chamber (1) is vertically pierced vertically and the rotary body (2)
Lifting body that can raise and lower the vacuum chamber (1)
(49) is located. An initial positioning mechanism (50) for determining the relative position between the vacuum chamber (1) and the rotating body (2) is provided between the rotating body (2) and the lifting body (49) as follows. . A tapered hole (not shown) narrowed upward is formed in the center of the lower end surface of the rotating body (2), and a tapered hole narrowed downward in the center of the upper end surface of the lifting body (49) (illustrated). Is omitted) is formed. Also, the rotating body (2) and the lifting body (49)
A ball (51) having a diameter larger than the large end diameter of the taper hole is disposed between and. The initial positioning mechanism (50) is constituted by the balls (51) and the tapered holes of the rotating body (2) and the lifting body (49).

【0025】上記電力貯蔵装置は、次のようにして運転
状態にされる。
The power storage device is put into operation in the following manner.

【0026】まず、真空チャンバ(1) 内を真空状態と
し、昇降体(49)によってボール(51)を介して回転体(2)
を上昇させ、初期位置決め機構(50)により回転体(2) の
アキシアル方向およびラジアル方向の位置決めを行う。
また、磁気軸受部(11)によっても回転体(2) のラジアル
方向の位置決めを行う。ついで、上部冷却装置(38)およ
び下部冷却装置(27)から、上部環状超電導体部(19)の各
ハウジング(32)の中空部(32a) および下部超電導体部(2
0)の各ハウジング(21)の中空部(21a) に冷却流体を供給
し、これにより超電導体(35)(24)を臨界温度よりも低い
温度に冷却し、超電導体(35)(24)を第2種超電導状態に
保持する。すると、上下の永久磁石部(17)(18)の永久磁
石(14)(16)から発せられる磁束の多くが超電導体(35)(2
4)の内部に侵入して拘束されることになる(ピンニング
現象)。ここで、超電導体(35)(24)はその内部に常電導
体粒子が均一に混在されているため、超電導体(35)(24)
内部への侵入磁束の分布が一定となり、そのため超電導
体(35)(24)に対して永久磁石(14)(16)とともに回転体
(2) が拘束される。したがって、回転体(2) は、きわめ
て安定的に浮上した状態でアキシアル方向およびラジア
ル方向に支持されることになる。このとき、超電導体(3
5)(24)に侵入した磁束は、磁束分布が回転軸心に対して
均一で不変である限り、回転を妨げる抵抗とはならな
い。超電導体(35)(24)が冷却されて第2種超電導状態に
なると、前述のようにし磁力が発生するので、昇降体(4
9)を下降位置まで下降させてこれによる支持をなくす。
昇降体(49)による支持力がなくなると、回転体(2) は自
重で若干下降して、上部および下部環状超電導軸受部(1
9)(20)の磁気力、つまり超電導体(35)(24)の磁気反発力
に釣り合う位置に停止する。
First, the inside of the vacuum chamber (1) is evacuated, and the rotating body (2) is moved by the lifting body (49) through the balls (51).
And the initial positioning mechanism (50) positions the rotating body (2) in the axial and radial directions.
The magnetic bearing (11) also positions the rotor (2) in the radial direction. Then, from the upper cooling device (38) and the lower cooling device (27), the hollow portion (32a) of each housing (32) of the upper annular superconductor portion (19) and the lower superconductor portion (2)
Cooling fluid is supplied to the hollow part (21a) of each housing (21) of (0), thereby cooling the superconductor (35) (24) to a temperature lower than the critical temperature, and the superconductor (35) (24). Is maintained in the second-type superconducting state. Then, most of the magnetic flux generated from the permanent magnets (14) (16) of the upper and lower permanent magnet parts (17) (18) is generated by the superconductor (35) (2).
4) It enters inside and is restrained (pinning phenomenon). Here, since the superconductor (35) (24) has the normal conductor particles uniformly mixed therein, the superconductor (35) (24)
The distribution of the magnetic flux penetrating inside is constant, so that the permanent magnets (14) (16) and the rotating body are attached to the superconductor (35) (24).
(2) is restrained. Therefore, the rotating body (2) is supported in the axial direction and the radial direction while floating very stably. At this time, the superconductor (3
5) The magnetic flux penetrating into (24) does not become a resistance that prevents rotation as long as the magnetic flux distribution is uniform and unchanged with respect to the rotation axis. When the superconductors (35) (24) are cooled and become the type 2 superconducting state, the magnetic force is generated as described above, so that the lifting body (4
9) Lower to the lowered position to remove the support.
When the lifting force (49) loses the supporting force, the rotating body (2) is slightly lowered by its own weight, and the upper and lower annular superconducting bearing parts (1
9) Stop at a position commensurate with the magnetic force of (20), that is, the magnetic repulsive force of the superconductors (35) (24).

【0027】そして、回転体(2) が高周波電動機(8) に
より回転させられる。回転体(2) が安定回転領域で回転
しているときに、電気エネルギが回転運動エネルギに変
換されてフライホイール(3) に貯蔵される。運転開始時
から安定回転領域に達するまでの間の回転体(2) のふれ
の補正は、磁気軸受部(11)により行われる。
Then, the rotating body (2) is rotated by the high frequency electric motor (8). When the rotating body (2) rotates in the stable rotation region, electric energy is converted into rotational kinetic energy and stored in the flywheel (3). The correction of the runout of the rotating body (2) from the start of the operation until the stable rotation area is reached is performed by the magnetic bearing portion (11).

【0028】電力貯蔵装置の運転中に、たとえば上部お
よび下部冷却装置(38)(27)から上部および下部環状超電
導体部(19)(20)のハウジング(32)(21)の中空部(32a)(21
a)内に供給される冷却流体の量が減少した場合のよう
に、超電導体(35)(24)の温度が上昇し、すべての温度セ
ンサ(45)により検出される温度のうちの最高温度が超電
導体(35)(24)の臨界温度よりも高くなった場合、制御装
置(47)は、電磁弁(42)(31)を開いて補助冷却装置(41)(3
0)からハウジング(32)(21)の中空部(32a)(21a)内に冷却
流体を供給し、超電導体(35)(24)を冷却する。このと
き、制御装置(47)は、報知装置(48)により、上部および
下部のいずれかの冷却装置(38)(27)に異常が発生したこ
とをオペレータに知らせる。そして、制御装置(47)は、
電磁弁(42)(31)を開いてから1分経過した後にすべての
温度センサ(45)により検出される温度のうちの最高温度
が超電導体(35)(24)の臨界温度よりも低くなっていれ
ば、電磁弁(42)(31)を開状態に保持し、補助冷却装置(4
1)(30)からハウジング(32)(21)の中空部(32a)(21a)への
冷却流体の供給を続けて超電導体(35)(24)を引き続き冷
却する。この状態で電力貯蔵装置の運転を続ける。一
方、制御装置(47)は、電磁弁(42)(31)を開いてから1分
経過した後も、すべての温度センサ(45)により検出され
る温度のうちの最高温度が超電導体(35)(24)の臨界温度
よりも高いままであれば、高周波電動機(8) を停止させ
る。高周波電動機(8) を停止させた後も、補助冷却装置
(41)(30)からハウジング(32)(21)の中空部(32a)(21a)へ
の冷却流体の供給を続け、引き続き超電導体(35)(24)を
冷却しておく。
During operation of the power storage device, for example, from the upper and lower cooling devices (38) (27) to the hollow parts (32a) of the housings (32) (21) of the upper and lower annular superconductor parts (19) (20). )(twenty one
The highest temperature detected by all temperature sensors (45) as the temperature of the superconductors (35) (24) rises, as if the amount of cooling fluid supplied into a) decreased. If the temperature rises above the critical temperature of the superconductor (35) (24), the controller (47) opens the solenoid valves (42) (31) and the auxiliary cooling device (41) (3).
A cooling fluid is supplied from 0) into the hollow portions (32a) (21a) of the housings (32) (21) to cool the superconductors (35) (24). At this time, the control device (47) informs the operator that an abnormality has occurred in either the upper or lower cooling device (38) (27) by the notification device (48). Then, the control device (47)
One minute after opening the solenoid valves (42) (31), the maximum temperature among the temperatures detected by all temperature sensors (45) becomes lower than the critical temperature of the superconductors (35) (24). If so, hold the solenoid valves (42) (31) open and
1) The cooling fluid is continuously supplied from the (30) to the hollow parts (32a) (21a) of the housings (32) (21) to continuously cool the superconductors (35) (24). In this state, the operation of the power storage device is continued. On the other hand, in the control device (47), even after 1 minute has elapsed since the solenoid valves (42) and (31) were opened, the highest temperature among the temperatures detected by all the temperature sensors (45) is the superconductor (35). ) If it remains higher than the critical temperature of (24), stop the high frequency motor (8). Auxiliary cooling device even after the high-frequency motor (8) has been stopped
The supply of the cooling fluid from the (41) (30) to the hollow parts (32a) (21a) of the housings (32) (21) is continued, and the superconductors (35) (24) are continuously cooled.

【0029】ついで、制御装置(47)は、高周波電動機
(8) を停止させてから1分経過した後も、すべての温度
センサ(45)により検出される温度のうちの最高温度が超
電導体(35)(24)の臨界温度よりも高いままであれば、高
周波電動機(8) により回生制動をかけて回転体(2) の回
転速度を減速する。その後、回転体(2) は、回転速度が
小さくなった状態でタッチダウン軸受(6)(7)に支持され
る。
Next, the control device (47) is a high frequency electric motor.
Even after 1 minute has passed after stopping (8), the maximum temperature detected by all temperature sensors (45) should remain higher than the critical temperature of superconductors (35) (24). For example, regenerative braking is applied by the high frequency motor (8) to reduce the rotational speed of the rotating body (2). After that, the rotating body (2) is supported by the touchdown bearings (6) and (7) in a state where the rotating speed is reduced.

【0030】また、電力貯蔵装置の運転中に、すべての
ギャップセンサ(46)により検出される下部環状超電導体
部(20)のハウジング(21)とフライホイール(3) 下面との
間隔のうちの最小間隔がしきい値よりも小さくなった場
合、上部および下部環状超電導体部(19)(20)の超電導体
(35)(24)うちの少なくともいずれかの温度が臨界温度よ
りも高くなって常電導化したと推測されるので、制御装
置(47)は、電磁弁(42)(31)を開いて補助冷却装置(41)(3
0)からハウジング(32)(21)の中空部(32a)(21a)内に冷却
流体を供給し、超電導体(35)(24)を冷却する。このと
き、制御装置(47)は、報知装置(48)により、上部および
下部のいずれかの冷却装置(38)(27)に異常が発生したこ
とをオペレータに知らせる。そして、制御装置(47)は、
電磁弁(42)(31)を開いてから1分経過した後にすべての
ギャップセンサ(46)により検出される下部環状超電導体
部(20)のハウジング(21)とフライホイール(3) 下面との
間隔のうちの最小間隔がしきい値よりも大きくなってい
れば、電磁弁(42)(31)を開状態に保持し、補助冷却装置
(41)(30)からハウジング(32)(21)の中空部(32a)(21a)へ
の冷却流体を供給を続けて超電導体(35)(24)を引き続き
冷却する。この状態で電力貯蔵装置の運転を続ける。一
方、制御装置(47)は、電磁弁(42)(31)を開いてから1分
経過した後も、すべてのギャップセンサ(46)により検出
される下部環状超電導体部(20)のハウジング(21)とフラ
イホイール(3) 下面との間隔のうちの最小間隔がしきい
値よりも小さいままであれば、高周波電動機(8) を停止
させる。高周波電動機(8) を停止させた後も、補助冷却
装置(41)(30)からハウジング(32)(21)の中空部(32a)(21
a)への冷却流体の供給を続け、引き続き超電導体(35)(2
4)を冷却しておく。
Further, among the gaps between the housing (21) of the lower annular superconductor portion (20) and the lower surface of the flywheel (3) detected by all the gap sensors (46) during the operation of the power storage device. If the minimum distance becomes smaller than the threshold, the superconductors of the upper and lower annular superconductor parts (19) (20)
It is estimated that at least one of the temperatures of (35) and (24) became higher than the critical temperature and became normal conducting.Therefore, the control device (47) opened the solenoid valve (42) (31) and assisted. Cooling system (41) (3
A cooling fluid is supplied from 0) into the hollow portions (32a) (21a) of the housings (32) (21) to cool the superconductors (35) (24). At this time, the control device (47) informs the operator that an abnormality has occurred in either the upper or lower cooling device (38) (27) by the notification device (48). Then, the control device (47)
One minute after opening the solenoid valves (42) (31), the housing (21) of the lower annular superconductor part (20) detected by all the gap sensors (46) and the bottom surface of the flywheel (3) If the minimum of the intervals is greater than the threshold value, the solenoid valves (42) (31) are held open and the auxiliary cooling device
The superconductors (35) (24) are continuously cooled by continuously supplying the cooling fluid from the (41) (30) to the hollow parts (32a) (21a) of the housings (32) (21). In this state, the operation of the power storage device is continued. On the other hand, the control device (47) controls the housing (20) of the lower annular superconductor part (20) detected by all the gap sensors (46) even after 1 minute has passed since the solenoid valves (42) (31) were opened. If the minimum distance of the distance between 21) and the bottom surface of the flywheel (3) remains smaller than the threshold value, the high frequency motor (8) is stopped. Even after stopping the high-frequency motor (8), the auxiliary cooling devices (41) (30) to the hollow parts (32a) (21) of the housing (32) (21)
Continue supplying cooling fluid to a), and continue to superconductor (35) (2
Cool down 4).

【0031】ついで、制御装置(47)は、高周波電動機
(8) を停止させてから1分経過した後も、すべてのギャ
ップセンサ(46)により検出される下部環状超電導体部(2
0)のハウジング(21)とフライホイール(3) 下面との間隔
のうちの最小間隔がしきい値よりも小さいままであれ
ば、高周波電動機(8) により回生制動をかけて回転体
(2)の回転速度を減速する。その後、回転体(2) は、回
転速度が小さくなった状態でタッチダウン軸受(6)(7)に
支持される。
Next, the control device (47) is a high frequency electric motor.
One minute after stopping (8), the lower annular superconductor (2) detected by all gap sensors (46)
If the minimum distance between the housing (21) of (0) and the lower surface of the flywheel (3) remains smaller than the threshold value, the high-frequency motor (8) applies regenerative braking to the rotor.
Decrease the rotation speed in (2). After that, the rotating body (2) is supported by the touchdown bearings (6) and (7) in a state where the rotating speed is reduced.

【0032】このようにして、回転体(2) が高速回転し
た状態でタッチダウン軸受(6)(7)に支持されることが防
止される。
In this way, the rotating body (2) is prevented from being supported by the touchdown bearings (6) and (7) while rotating at a high speed.

【0033】上記実施例において、上部および下部環状
超電導体部は、それぞれ2つの半環状ハウジングを備え
ているが、電力貯蔵装置がより小型のものであれば、1
つの環状ハウジングを備えていてもよい。これとは逆
に、電力貯蔵装置がさらに大型のものであれば、上部お
よび下部環状超電導体部は、それぞれ3以上の部分環状
ハウジングを備える場合もある。
In the above embodiment, each of the upper and lower annular superconductor parts has two semi-annular housings, but if the power storage device is smaller, one
It may be provided with one annular housing. On the contrary, if the power storage device is larger, the upper and lower annular superconductor portions may each include three or more partial annular housings.

【0034】また、上記実施例において、下部環状超電
導体部のハウジングに、フライホイールとの間の間隔を
検出するギャップセンサが設けられているが、ギャップ
センサは必ずしも必要としない。
Further, in the above embodiment, the housing of the lower annular superconductor portion is provided with the gap sensor for detecting the distance from the flywheel, but the gap sensor is not always necessary.

【0035】さらに、上記実施例は、この発明による超
電導軸受装置が電力貯蔵装置に適用された場合を示して
いるが、超電導軸受装置は、他の装置にも適用可能であ
る。
Further, although the above embodiment shows the case where the superconducting bearing device according to the present invention is applied to the electric power storage device, the superconducting bearing device can also be applied to other devices.

【0036】[0036]

【発明の効果】この発明の超電導軸受装置によれば、上
述のように、回転体の回転速度が小さくなった後に、回
転体がタッチダウン軸受により固定部に回転支持される
ことになるので、回転体が高速回転した状態でタッチダ
ウン軸受に支持されることが防止され、タッチダウン軸
受を使用できる回数が多くなる。したがって、タッチダ
ウン軸受の交換回数が減少し、その結果交換作業が簡単
になるとともに、コストが安くなる。
According to the superconducting bearing device of the present invention, as described above, the rotating body is rotatably supported by the fixed portion by the touchdown bearing after the rotating speed of the rotating body becomes low. The rotating body is prevented from being supported by the touchdown bearing while rotating at a high speed, and the touchdown bearing can be used more frequently. Therefore, the number of times of replacement of the touchdown bearing is reduced, resulting in a simple replacement work and a low cost.

【0037】また、回転体の制動手段を備えており、制
御手段が、温度センサにより検出された温度が超電導体
の臨界温度よりも高くなった際に制動手段を作動させる
ようになっていると、上述のように、回転体の回転速度
を速やかに小さくすることができる。したがって、回転
体をタッチダウン軸受により固定部に回転支持するまで
の時間を短縮することができる。
Further, it is provided with braking means for the rotating body, and the control means operates the braking means when the temperature detected by the temperature sensor becomes higher than the critical temperature of the superconductor. As described above, the rotation speed of the rotating body can be quickly reduced. Therefore, it is possible to shorten the time required to rotatably support the rotating body on the fixed portion by the touchdown bearing.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の超電導軸受装置を適用した電力貯蔵
装置の実施例を示す垂直断面図である。
FIG. 1 is a vertical sectional view showing an embodiment of a power storage device to which a superconducting bearing device of the present invention is applied.

【図2】同じく下部環状超電導体部の平面図である。FIG. 2 is a plan view of a lower annular superconductor portion of the same.

【図3】同じく電力貯蔵装置の原理を説明する図であ
る。
FIG. 3 is a diagram similarly illustrating the principle of the power storage device.

【符号の説明】[Explanation of symbols]

(2) 回転体 (6) タッチダウン軸受 (7) タッチダウン軸受 (8) 高周波電動機(回転駆動源) (14) 永久磁石 (16) 永久磁石 (17) 上部環状永久磁石部 (18) 下部環状永久磁石部 (19) 上部環状超電導体部 (20) 下部環状超電導体部 (24) 超電導体 (27) 冷却装置(冷却手段) (30) 補助冷却装置(補助冷却手段) (35) 超電導体 (38) 冷却装置(冷却手段) (41) 補助冷却装置(補助冷却手段) (45) 温度センサ (47) 制御装置(制御手段) (2) Rotating body (6) Touchdown bearing (7) Touchdown bearing (8) High frequency motor (rotational drive source) (14) Permanent magnet (16) Permanent magnet (17) Upper annular permanent magnet section (18) Lower annular ring Permanent magnet part (19) Upper annular superconductor part (20) Lower annular superconductor part (24) Superconductor (27) Cooling device (cooling means) (30) Auxiliary cooling device (auxiliary cooling means) (35) Superconductor ( 38) Cooling device (cooling means) (41) Auxiliary cooling device (auxiliary cooling means) (45) Temperature sensor (47) Control device (control means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転体と、回転体の回転駆動源と、回転
体に固定状に設けられかつ永久磁石を有する環状永久磁
石部と、環状永久磁石部と対向するように固定部に配置
されかつ超電導体を有する環状超電導体部と、環状超電
導体部に冷却流体を供給することにより超電導体を冷却
する冷却手段と、固定部に設けられたタッチダウン軸受
とを備えた超電導軸受装置において、 上記冷却手段と併設され、かつ環状超電導体部に冷却流
体を供給することにより超電導体を冷却する補助冷却手
段と、超電導体の温度を検出する温度センサと、温度セ
ンサにより検出された温度が超電導体の臨界温度よりも
高くなった際に補助冷却手段から環状超電導体部に冷却
流体を供給させる制御手段とを備えている超電導軸受装
置。
1. A rotating body, a rotary drive source for the rotating body, an annular permanent magnet portion fixedly provided on the rotating body and having a permanent magnet, and arranged on the fixed portion so as to face the annular permanent magnet portion. And a superconducting bearing device comprising an annular superconductor part having a superconductor, a cooling means for cooling the superconductor by supplying a cooling fluid to the annular superconductor part, and a touchdown bearing provided in the fixed part, Auxiliary cooling means that is provided with the cooling means and cools the superconductor by supplying a cooling fluid to the annular superconductor portion, a temperature sensor that detects the temperature of the superconductor, and the temperature detected by the temperature sensor is superconducting. A superconducting bearing device comprising: a control means for supplying a cooling fluid from the auxiliary cooling means to the annular superconductor portion when the temperature becomes higher than the critical temperature of the body.
【請求項2】 回転体の制動手段を備えており、制御手
段が、温度センサにより検出された温度が超電導体の臨
界温度よりも高くなった際に制動手段を作動させるよう
になっている請求項1記載の超電導軸受装置。
2. The rotating means braking means is provided, and the controlling means actuates the braking means when the temperature detected by the temperature sensor becomes higher than the critical temperature of the superconductor. Item 2. A superconducting bearing device according to Item 1.
JP26004994A 1994-10-25 1994-10-25 Superconducting bearing device Expired - Fee Related JP3663470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26004994A JP3663470B2 (en) 1994-10-25 1994-10-25 Superconducting bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26004994A JP3663470B2 (en) 1994-10-25 1994-10-25 Superconducting bearing device

Publications (2)

Publication Number Publication Date
JPH08121480A true JPH08121480A (en) 1996-05-14
JP3663470B2 JP3663470B2 (en) 2005-06-22

Family

ID=17342601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26004994A Expired - Fee Related JP3663470B2 (en) 1994-10-25 1994-10-25 Superconducting bearing device

Country Status (1)

Country Link
JP (1) JP3663470B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026084A1 (en) * 1998-11-02 2000-05-11 The University Of Houston System Satellite angular momentum control system using flywheels supported by superconductor magnetic bearings
US6777841B2 (en) * 2000-10-09 2004-08-17 Siemens Aktiengesellschaft Device comprising a rotor and a magnetic suspension bearing for the contactless bearing of the rotor
CN111566369A (en) * 2018-01-18 2020-08-21 舍弗勒技术股份两合公司 Method for operating a bearing having at least a first energy supply module and a second energy supply module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309014A (en) * 1989-05-22 1990-12-25 Koyo Seiko Co Ltd Rotor supporting device
JPH03318U (en) * 1989-05-24 1991-01-07
JPH04109803A (en) * 1990-08-28 1992-04-10 Nobuyuki Akiyama Carrier
JPH06117943A (en) * 1992-10-02 1994-04-28 Canon Inc Temperature measuring method, temperature measuring equipment and energy storing system
JPH06129427A (en) * 1992-07-30 1994-05-10 Koyo Seiko Co Ltd Electric power storage device
JPH06280874A (en) * 1993-03-25 1994-10-07 Seiko Seiki Co Ltd Feeder of magnetic bearing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309014A (en) * 1989-05-22 1990-12-25 Koyo Seiko Co Ltd Rotor supporting device
JPH03318U (en) * 1989-05-24 1991-01-07
JPH04109803A (en) * 1990-08-28 1992-04-10 Nobuyuki Akiyama Carrier
JPH06129427A (en) * 1992-07-30 1994-05-10 Koyo Seiko Co Ltd Electric power storage device
JPH06117943A (en) * 1992-10-02 1994-04-28 Canon Inc Temperature measuring method, temperature measuring equipment and energy storing system
JPH06280874A (en) * 1993-03-25 1994-10-07 Seiko Seiki Co Ltd Feeder of magnetic bearing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026084A1 (en) * 1998-11-02 2000-05-11 The University Of Houston System Satellite angular momentum control system using flywheels supported by superconductor magnetic bearings
US6777841B2 (en) * 2000-10-09 2004-08-17 Siemens Aktiengesellschaft Device comprising a rotor and a magnetic suspension bearing for the contactless bearing of the rotor
CN111566369A (en) * 2018-01-18 2020-08-21 舍弗勒技术股份两合公司 Method for operating a bearing having at least a first energy supply module and a second energy supply module

Also Published As

Publication number Publication date
JP3663470B2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
EP0526903B1 (en) Bearing device
EP0575619B1 (en) Superconductive bearing device
JP2999607B2 (en) Superconducting bearing device and its operation method
JPH08121480A (en) Superconducting bearing device
JPH08296648A (en) Bearing device and its starting method
JP3551537B2 (en) Flywheel equipment
JP3113920B2 (en) Superconducting bearing device
JP3577559B2 (en) Flywheel equipment
JP3928094B2 (en) Starting method of superconducting bearing device
JP3069744B2 (en) High vacuum pump
JP3735742B2 (en) Superconducting bearing rotation loss measurement device
JP2958598B2 (en) Power storage device
JPH04165119A (en) Superconductive bearing device
JPH06101715A (en) Bearing device
JP3663472B2 (en) Permanent magnet bearing device and permanent magnet rotating device
JP3477524B2 (en) Rotation loss measurement method for superconducting bearings
JP2003329038A (en) Superconducting bearing device and power storage device
JPH0694030A (en) Superconductive bearing device
JP3924662B2 (en) Superconducting magnetic bearing
JP2967446B2 (en) Bearing device
JP3622041B2 (en) Superconducting bearing device
JP3174877B2 (en) Superconducting bearing device
JPH0835951A (en) Device and method for measuring magnetic retention force of superconductor
JP3044614B2 (en) Starting method of superconducting bearing in superconducting bearing device
JP2000120682A (en) Superconductive magnetic bearing device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees