JPH08120348A - Production of steel sheet for hard can small in plane anisotropy - Google Patents

Production of steel sheet for hard can small in plane anisotropy

Info

Publication number
JPH08120348A
JPH08120348A JP25704794A JP25704794A JPH08120348A JP H08120348 A JPH08120348 A JP H08120348A JP 25704794 A JP25704794 A JP 25704794A JP 25704794 A JP25704794 A JP 25704794A JP H08120348 A JPH08120348 A JP H08120348A
Authority
JP
Japan
Prior art keywords
steel sheet
cold rolling
rolling
content
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25704794A
Other languages
Japanese (ja)
Inventor
Hiroshi Ejiri
拓 江尻
Yukio Kawase
幸夫 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25704794A priority Critical patent/JPH08120348A/en
Publication of JPH08120348A publication Critical patent/JPH08120348A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: To produce a steel sheet for hard can small in plane anisotropy of (r) value while holding the target hardness and proof stress by hot-rolling a low carbon steel slab and applying two times of cold-rolling at a specific draft interposing recrystal continuous annealing after pickling. CONSTITUTION: The continuous casting steel slab containing, by wt., <0.15% C, <0.04% Si, <0.6% Mn, <0.03% P, <0.03% S, <0.15% Al, <0.01% N is hot-rolled at Ar3 transformation point-900 deg.C finish temp. to obtain the sheet material, and oxide scale on the surface is removed by the pickling. Thereafter, a first time of the cold-rolling is executed at the draft R1 shown with the equation I (wherein, (e) is the constant decided with C and Mn contents in the blank steel slab, (f) is the constant decided with C content in the blank steel slab, R2 is the draft of a second cold-rolling and Δr is the target value of the anisotropy in the surface of Lankford value), and then, the recrystal continuous annealing is executed at the recrystallized temp.-the A1 transformation point. Successively, the second time of the cold-rolling is executed at the draft R2 shown with the equation II (wherein (a) is the constant decided with C content in the refining degree of the product steel sheet and the blank steel slab and S is the target value in the hardness level of the product steel sheet).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、面内異方性の小さい硬
質缶用鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a steel sheet for a hard can having a small in-plane anisotropy.

【0002】[0002]

【従来の技術】DRD缶( Draw and Redr
awn Can)等の2ピース缶等に使用するぶりき、
ティンフリー鋼板等の素材は経済性を考慮し、板厚を可
能な限り薄くする傾向にあり、その薄肉化に伴う強度不
足を材料強度で補っている。
BACKGROUND OF THE INVENTION DRD and Redr
tin used for two-piece cans such as awn Can),
In consideration of economic efficiency, materials such as tin-free steel sheets tend to be as thin as possible, and the material strength compensates for the insufficient strength that accompanies the thinning.

【0003】この強度を向上させる方法として、第一回
目の冷間圧延終了後、再結晶焼鈍を行い、再度第二回目
の冷間圧延を50%以下の高圧下率で行って仕上げる方
法が採用されている。
As a method of improving the strength, a method of performing recrystallization annealing after completion of the first cold rolling and then performing the second cold rolling again at a high pressure reduction rate of 50% or less to finish it is adopted. Has been done.

【0004】この方法による材料は通常DR(Doub
le Reduce)材と称されており、日本工業規格
(以降JISと云う)によるJISG3303、JIS
G3315で表示されており、表1に示すように調質度
とそれに対応するロックウェルT硬さHR30T及び耐
力(fkg/mm2) が規定されている。このようなDR材は硬
質缶用鋼板として採用される。
The material produced by this method is usually DR (Double
le Reduce) material, and JIS G 3303, JIS according to Japanese Industrial Standards (hereinafter referred to as JIS)
It is indicated by G3315, and as shown in Table 1, the refining degree, the Rockwell T hardness HR30T and the proof stress (fkg / mm 2 ) corresponding thereto are specified. Such a DR material is adopted as a steel plate for hard cans.

【0005】[0005]

【表1】 [Table 1]

【0006】一般にDRD缶の如く絞り加工によって製
缶される素材として使用されるDR材は、加工後のトリ
ミング代を小さくして材料歩留を向上させるために、フ
ランジ部の耳発生の少ないいわゆるランクフォード値
(以降r値で示す)の面内異方性(△r)の小さい材料
特性が要求される。
[0006] Generally, a DR material used as a material made by drawing such as a DRD can has a small amount of trimming margin after processing to improve material yield, so that a so-called flange ear is less likely to occur. Material properties with small in-plane anisotropy (Δr) of Rankford value (hereinafter referred to as r value) are required.

【0007】このr値は引張り試験における板厚方向の
歪に対する板巾方向の歪の比で表され、r値の面内異方
性(△r)のために、絞り加工後の缶のフランジ部に円
周方向の板厚分布と高さに異方性が現れる。
This r value is represented by the ratio of the strain in the plate width direction to the strain in the plate thickness direction in the tensile test, and because of the in-plane anisotropy (Δr) of the r value, the flange of the can after drawing is processed. Anisotropy appears in the plate thickness distribution in the circumferential direction and the height.

【0008】即ち、r値の大きい方向に缶の耳が高くな
り山部を形成し、r値の小さい方向に耳が低くなり谷部
を形成する。
That is, the ears of the can are raised and the ridges are formed in the direction in which the r value is large, and the ears are lowered and the valleys are formed in the direction of the small r value.

【0009】かかるr値及びr値の面内異方性(△r)
は結晶の集合組織と密接な関係があり、素材の製造方法
により異なるが、最近ではユーザーから要求される面内
異方性(△r)が益々厳しくなるとともに、より低コス
トで生産性の面で優れたDR材の製造方法が求められて
おり、従来の製造方法では満足すべき効果が得られなく
なった。
The r-value and the in-plane anisotropy of the r-value (Δr)
Has a close relationship with the texture of crystals and varies depending on the manufacturing method of the material, but recently, the in-plane anisotropy (△ r) required by users has become more severe, and the productivity is lower at lower cost. There is a demand for an excellent DR material manufacturing method, and the conventional manufacturing method cannot provide satisfactory effects.

【0010】そのために、上記のようなDR材の製造方
法についての種々の対策が行われている。
For this reason, various measures have been taken regarding the above-mentioned method for manufacturing the DR material.

【0011】特公昭60−45690号公報(以降先行
文献1と云う)には、重量%で、C:0.10%以下、Si:0.0
6 %以下、Mn:0.5%以下、P:0.03%以下、S:0.03%以下
、Al:0.15 %以下、N:0.008 %以下、残部Feおよび不
可避的不純物よりなる連続鋳造鋼片を熱間圧延するにあ
たり加熱炉抽出温度を1100〜1200℃に、熱間圧延仕上温
度をAr3 変態点以上に、巻取り温度を580 〜730 ℃に
して、熱延鋼板とし、次に酸洗い後、圧下率80〜95%で
第一回目の冷間圧延を行ない、再結晶焼鈍を行った後、
圧下率10〜30%で第2回目の冷間圧延を施す硬質かつ絞
り加工性の優れた「面内異方性の小さい缶用極薄鋼板の
製造方法」が開示されている。
Japanese Examined Patent Publication No. 60-45690 (hereinafter referred to as the prior art reference 1) discloses that, in% by weight, C: 0.10% or less, Si: 0.0
6% or less, Mn: 0.5% or less, P: 0.03% or less, S: 0.03% or less, Al: 0.15% or less, N: 0.008% or less, hot-rolled continuously cast steel consisting of balance Fe and unavoidable impurities In doing so, the heating furnace extraction temperature is set to 1100 to 1200 ° C, the hot rolling finishing temperature is set to the Ar 3 transformation point or higher, and the winding temperature is set to 580 to 730 ° C to obtain a hot rolled steel sheet, which is then pickled and then the reduction rate is set. After performing the first cold rolling at 80-95% and performing recrystallization annealing,
A "method for producing an ultra-thin steel sheet for cans having a small in-plane anisotropy" that is hard and has excellent drawability that is subjected to the second cold rolling at a reduction rate of 10 to 30% is disclosed.

【0012】特公平3−41529号公報(以降先行文
献2と云う)には仕上温度830〜900℃、巻取温度
580〜730℃で熱間圧延をし、第一回目の冷間圧延
の圧下率R1を60〜79.9%とし、第二回目の冷間
圧延の圧下率R2を式(3)で示す範囲として、r値の
面内異方性(△r)を小さくする「超硬質極薄冷延板の
製造方法」が開示されている。
According to Japanese Examined Patent Publication No. 3-41529 (hereinafter referred to as prior art 2), hot rolling is performed at a finishing temperature of 830 to 900 ° C. and a winding temperature of 580 to 730 ° C., and the first cold rolling reduction is performed. The ratio R1 is set to 60 to 79.9%, the reduction ratio R2 of the second cold rolling is set to the range shown by the formula (3), and the in-plane anisotropy (Δr) of the r value is made small. A method for manufacturing an ultra-thin cold-rolled sheet "is disclosed.

【0013】[0013]

【数3】 (Equation 3)

【0014】特開平1−306527号公報(以降先行
文献3と云う)には仕上温度Ar3変態点以上、巻取温
度620℃以下で熱間圧延をし、第一回目の冷間圧延の
圧下率R1を75〜85%とし、第二回目の冷間圧延の
圧下率R2を5〜40%又は式(4)とする異方性の小
さい硬質薄鋼板の製造方法が開示されている。
Japanese Patent Laid-Open Publication No. 1-306527 (hereinafter referred to as prior art 3) describes hot rolling at a finishing temperature of Ar 3 transformation point or higher and a coiling temperature of 620 ° C. or lower, and reduction of the first cold rolling. There is disclosed a method of manufacturing a hard thin steel sheet having small anisotropy, in which the rate R1 is 75 to 85% and the reduction rate R2 of the second cold rolling is 5 to 40% or the formula (4).

【0015】[0015]

【数4】 [Equation 4]

【0016】ここにおいて、C: C成分(%)、M: Mn 成
分(%)、N: N 成分(%)
Here, C: C component (%), M: Mn component (%), N: N component (%)

【0017】[0017]

【発明が解決しようとする課題】しかしながら、上述し
た開示技術は、DRD缶等の2ピース缶等に使用するぶ
りき等の素材についてのユーザーの厳しい要望下で、経
済性を考慮して面内異方性(△r値)の小さい硬質缶用
鋼板を製造するのに次のような問題がある。
However, the disclosed technique described above is economical in view of the economy under the strict demands of users regarding materials such as tinplate used for two-piece cans such as DRD cans. There are the following problems in producing a steel plate for a hard can having a small anisotropy (Δr value).

【0018】先行文献1では、面内異方性(△r)の改
善が図られているが、実施例に示されているように、面
内異方性(△r)の絶対値が0.2を超えており、近年
におけるユーザーの厳しい要望を満足させることが出来
ない。
In the prior art document 1, the in-plane anisotropy (Δr) is improved, but as shown in the examples, the absolute value of the in-plane anisotropy (Δr) is 0. .2, which cannot satisfy the severe demands of users in recent years.

【0019】また、先行文献2では、鋼板の耐力不足、
熱延鋼板の板厚の薄くなることによる酸洗、冷間圧延ラ
インでの生産性の低下及び第一回目の冷間圧延の圧下率
R1の値によっては面内異方性(△r)が悪化する場合
がある。
Further, in the prior art document 2, the yield strength of the steel sheet is insufficient,
The in-plane anisotropy (Δr) may vary depending on the pickling due to the reduction in the thickness of the hot-rolled steel sheet, the decrease in productivity on the cold rolling line, and the reduction ratio R1 of the first cold rolling. It may get worse.

【0020】また、先行文献3では、先行文献2と同様
に熱延鋼板の板厚の薄くなることによる酸洗、冷間圧延
ラインでの生産性の低下及び第一回目の冷間圧延の圧下
率R1の値によっては面内異方性(△r)が悪化する場
合がある。
Further, in the prior art document 3, as in the prior art document 2, pickling due to the thinning of the hot-rolled steel sheet, reduction of productivity in the cold rolling line and reduction of the first cold rolling. The in-plane anisotropy (Δr) may deteriorate depending on the value of the rate R1.

【0021】上記のように従来の製造方法では、r値の
面内異方性(△r)の改善が充分でなく、また鋼板の耐
力不足、生産性の低下を伴っていた。
As described above, in the conventional manufacturing method, the in-plane anisotropy (Δr) of the r value was not sufficiently improved, and the yield strength of the steel sheet was insufficient and the productivity was lowered.

【0022】本発明は上記のような問題点の解決を図っ
たものであり、製造しようとする目標硬度、目標耐力を
保持して、経済性、生産性に優れた、r値の面内異方性
(△r)の小さい硬質缶用鋼板の製造方法を提供するこ
とを目的とする。
The present invention is intended to solve the above problems, and maintains the target hardness and the target proof strength to be manufactured, is excellent in economic efficiency and productivity, and has an in-plane difference in r value. It is an object of the present invention to provide a method for manufacturing a steel plate for a hard can having a low degree of orientation (Δr).

【0023】[0023]

【課題を解決するための手段及び作用】本発明では上記
目的を以下のようにして達成する。
Means and Actions for Solving the Problems In the present invention, the above object is achieved as follows.

【0024】重量%で、C:0.15%以下、Si:0.04 %以
下、Mn:0.6%以下、P:0.03%以下、S:0.03%以下 、A
l:0.15 %以下、N:0.01%以下を含有する連続鋳造鋼片
について、熱間圧延を行い、得られた熱延鋼板を酸洗し
た後、第一回目の冷間圧延を行い、次いで再結晶連続焼
鈍を行った後、第二回目の冷間圧延を行って硬質缶用鋼
板を製造する方法において、第一回目及び第二回目の冷
間圧延の圧下率を連続鋳造鋼片のC 含有量及びMn含有量
と製品鋼板の硬度レベル及びランクフォード値の面内異
方性の目標値に応じて、下記(1)式及び(2)式によ
り定める面内異方性の小さい硬質缶用鋼板の製造方法で
ある。
% By weight, C: 0.15% or less, Si: 0.04% or less, Mn: 0.6% or less, P: 0.03% or less, S: 0.03% or less, A
l: 0.15% or less, N: 0.01% or less, continuously cast steel strip is hot-rolled, the obtained hot-rolled steel sheet is pickled, and then the first cold-rolling is performed. After performing the crystal continuous annealing, in the method for producing a steel plate for hard cans by performing the second cold rolling, the reduction ratio of the first and second cold rolling is the C content of the continuously cast steel slab. For hard cans with small in-plane anisotropy determined by the following formulas (1) and (2) according to the amount and Mn content, the hardness level of the product steel sheet, and the target value of in-plane anisotropy of Rankford value. It is a method of manufacturing a steel sheet.

【0025】[0025]

【数5】 (Equation 5)

【0026】[0026]

【数6】 (Equation 6)

【0027】ここにおいて、R1:第一回目の冷間圧延
の圧下率、 R2:第二回目の冷間圧延の圧下率、 S:製品鋼板の硬度レベルの目標値、 △r:ランクフォード値の面内異方性の目標値、 a: 製品鋼板の調質度と連続鋳造鋳片のC 含有量に
より決まる定数、 b 、e :連続鋳造鋳片のC 含有量、Mn含有量により決ま
る定数、 d : 連続鋳造鋳片のC 含有量により決まる定数、
Here, R1: the reduction ratio of the first cold rolling, R2: the reduction ratio of the second cold rolling, S: the target value of the hardness level of the product steel sheet, Δr: of the Rankford value Target value of in-plane anisotropy, a: Constant determined by tempering of product steel sheet and C content of continuously cast slab, b, e: Constant determined by C content and Mn content of continuously cast slab, d: a constant determined by the C content of the continuously cast slab,

【0028】以下に本発明の構成要件とその限定理由を
述べる。 1)次の工程により、硬質缶用鋼板を製造すること。 連続鋳造鋼片の熱間圧延工程 連続鋳造鋼片は、品質面、生産面、製造コストともに従
来のインゴット鋳造鋼片よりも優れているため、現在缶
用鋼板のほぼ全量に採用されているのでこれに限定し
た。
The constitutional requirements of the present invention and the reasons for limitation thereof will be described below. 1) Manufacture a steel plate for hard cans by the following steps. Hot rolling process of continuously cast steel slabs Continuously cast steel slabs are superior to conventional ingot cast slabs in terms of quality, production, and manufacturing cost, so they are currently used in almost all steel plates for cans. Limited to this.

【0029】本発明に用いる連続鋳造鋼片の化学成分重
量%(以降%で表示する。)は以下のようである。
The chemical composition weight% (hereinafter expressed as%) of the continuously cast steel piece used in the present invention is as follows.

【0030】C:C は再結晶焼鈍において再結晶粒の成長
を抑制し、高い調質度を与えるために重要な成分である
が、C 量が0.15%を超えると過度に硬度が高くなり、深
絞り性を阻害するので0.15%以下とする。
C: C is an important component for suppressing the growth of recrystallized grains in recrystallization annealing and giving a high temper, but if the C content exceeds 0.15%, the hardness becomes excessively high, Since it hinders deep drawability, it should be 0.15% or less.

【0031】Si: Siはぶりき、ティンフリー鋼板等の耐
食性及びめっき性を劣化させることから0.04%以下とす
る。
Si: Si is set to 0.04% or less because it causes deterioration of corrosion resistance and plating property of tin-free steel plates and the like.

【0032】Mn: Mnは耐力を確保するために0.1 %以上
必要であり、S による熱延中の耳割れを防止する効果が
あるが、過剰の添加は経済的に好ましくないだけでな
く、面内異方性(△r)を悪化させる成分であるので、
0.6%以下とする。
Mn: Mn is required to be 0.1% or more in order to secure proof stress, and has an effect of preventing ear cracking during hot rolling due to S, but excessive addition is not economically preferable, Since it is a component that worsens the internal anisotropy (Δr),
It should be 0.6% or less.

【0033】P:P はぶりき、ティンフリー鋼板等の耐食
性を劣化させ、さらに素材を硬化させるので、0.03%以
下とする。
P: P is 0.03% or less because it deteriorates the corrosion resistance of tin-free steel plates and the like and further hardens the material.

【0034】S:S は前述した様に,熱間圧延中の耳割れ
やMnS 介在物による製缶時割れ発生の原因となるので、
0.03%以下とする。
As mentioned above, S: S causes edge cracks during hot rolling and cracking during can making due to MnS inclusions.
0.03% or less.

【0035】Al:Al は製鋼に際し、脱酸剤として作用す
るが、0.15%を超えるとAlN として析出し、再結晶粒成
長を抑制し、更にN による硬化作用が乏しくなるので、
0.15%以下とする。
Al: Al acts as a deoxidizing agent during steelmaking, but if it exceeds 0.15%, it precipitates as AlN, recrystallized grain growth is suppressed, and the hardening action due to N becomes poor.
0.15% or less.

【0036】N:N は高い調質度を与えるため有効な成分
であるが、過剰となれば材質を硬化し、深絞り性を阻害
するので0.01%以下とする。
N: N is an effective component because it gives a high tempering degree, but if it is excessive, it hardens the material and hinders deep drawability, so it is made 0.01% or less.

【0037】連続鋳造鋼片は熱間圧延工程により熱延鋼
板に製造され、冷間圧延工程の素材とされる。
The continuously cast steel billet is manufactured into a hot rolled steel sheet by a hot rolling process and used as a raw material in the cold rolling process.

【0038】ここでは連続鋳造鋼片を圧延仕上温度Ar
3 変態点〜900 ℃で熱間圧延する。熱間圧延仕上温度を
Ar3 変態点未満とすると、耳発生率が高くなるので、
Ar 3 変態点以上にする必要があり、一方、900℃を
超えると鋼片加熱温度等エネルギー消費量が増大するの
で、Ar3 変態点〜900℃の温度範囲で行う。
Here, the continuously cast steel slab is rolled at a finishing temperature Ar.
3Hot rolling at transformation point ~ 900 ℃. Hot rolling finish temperature
Ar3If it is below the transformation point, the ear occurrence rate will be high, so
Ar 3It is necessary to be above the transformation point, while 900 ° C
If it exceeds, energy consumption such as billet heating temperature will increase.
And Ar3It is performed in the temperature range of transformation point to 900 ° C.

【0039】 酸洗及び第一回目の冷間圧延工程 酸洗は、熱間圧延工程で生成した酸化スケールが第一回
目の冷間圧延工程でスケール疵となり製品鋼板の耐食性
を著しく低下させるため、第一回目の冷間圧延に先立
ち、酸化スケールを除去する工程である。本発明では表
面清浄性の優れた製品鋼板が要求されるので、本工程は
必須である。
Pickling and First Cold Rolling Step In pickling, the oxidized scale produced in the hot rolling step becomes a scale flaw in the first cold rolling step, which significantly reduces the corrosion resistance of the product steel sheet. This is a step of removing the oxide scale prior to the first cold rolling. The present invention requires a product steel sheet having excellent surface cleanliness, so this step is essential.

【0040】第一回目の冷間圧延は、酸洗後の熱延鋼板
の厚みを薄くし、表面を美麗に仕上げるだけでなく、本
発明の方法において定められた圧下率で圧延することに
より製品鋼板の耳発生を抑制し、耐力を補償する重要な
工程である。
In the first cold rolling, not only the thickness of the hot rolled steel sheet after pickling is reduced and the surface is finished beautifully, but also the rolling is carried out at the rolling reduction determined in the method of the present invention. This is an important process that suppresses the occurrence of ears on the steel sheet and compensates the yield strength.

【0041】 再結晶連続焼鈍工程 焼鈍は第一回目の冷間圧延後の素材を再結晶温度以上A
1 変態点以下の温度に加熱し、素材の軟質化を図り、加
工性を付与する工程である。
Recrystallization Continuous Annealing Step Annealing is performed on the material after the first cold rolling at a recrystallization temperature A or higher.
This is a step of heating to a temperature not higher than one transformation point to soften the material and impart workability.

【0042】この場合、連続焼鈍によれば、冷延鋼板の
加熱及び冷却速度を大きくすることができ、冷延鋼板の
高温度に曝されている時間が短い。そのために、結晶粒
の粗大化を防止し、固溶C 、N 量も多く保持することが
出来るから、焼鈍後の強度の低下防止を図ることが可能
となる。
In this case, the continuous annealing makes it possible to increase the heating and cooling rates of the cold-rolled steel sheet, and the exposure time to the high temperature of the cold-rolled steel sheet is short. Therefore, coarsening of crystal grains can be prevented and a large amount of solute C and N can be maintained, so that it is possible to prevent reduction in strength after annealing.

【0043】 第二回目の冷間圧延工程 第二回目の冷間圧延は焼鈍で軟化した冷延鋼板の機械的
特性の向上、最終板厚調整、板形状制御、表面粗度付与
等を目的とした工程であるだけでなく、本発明の方法に
おいて定められた圧下率で圧延することにより製品鋼板
の耳発生を抑制し、耐力を補償する重要な工程である。
Second Cold Rolling Step The second cold rolling has the purpose of improving the mechanical properties of the cold rolled steel sheet softened by annealing, adjusting the final sheet thickness, controlling the sheet shape, imparting surface roughness, etc. This is not only the above-mentioned step, but also an important step for suppressing the occurrence of selvages in the product steel sheet and compensating the yield strength by rolling at the rolling reduction determined in the method of the present invention.

【0044】2)第一回目及び第二回目の冷間圧延の圧
下率を連続鋳造鋼片のC 含有量及びMn含有量と製品鋼板
の硬度レベル及びランクフォード値の面内異方性の目標
値に応じて、前記(1)式及び(2)式により定めるこ
と。
2) Targets of the in-plane anisotropy of the C and Mn contents of the continuously cast steel pieces, the hardness level of the product steel sheet, and the Rankford value for the reduction ratios of the first and second cold rolling. Determine according to the formulas (1) and (2) according to the value.

【0045】これは、本発明の主要な要件であり、それ
らの限定は次に示すような実験結果によるものである。
This is the main requirement of the present invention, and the limitation thereof is based on the following experimental results.

【0046】本発明者等は上記1)の化学成分を満足す
る範囲内で、C及びMn含有量を変化させて、表2に示
すようなA,B,Cの3種の鋳造鋼片を連続鋳造法で製
造し、供試材とした。
The inventors of the present invention changed the C and Mn contents within the range satisfying the chemical composition of the above 1) to produce three kinds of cast steel pieces of A, B and C as shown in Table 2. It was manufactured by a continuous casting method and used as a test material.

【0047】[0047]

【表2】 [Table 2]

【0048】それらの供試材をいずれもAr3 〜900
℃の仕上温度で熱間圧延を行い、580〜730℃の温
度範囲で巻取り、板厚1.8mm及び2.3mmの熱延
鋼板を製造した。
All of these test materials were Ar 3 to 900.
Hot rolling was performed at a finishing temperature of ° C, and wound in a temperature range of 580 to 730 ° C to produce hot-rolled steel sheets having sheet thicknesses of 1.8 mm and 2.3 mm.

【0049】これらの熱延鋼板の供試材をそれぞれ脱ス
ケール後、圧下率R1(%)を85%と90%とに区分
して、第一回目の冷間圧延を行った。
After descaling each of these hot-rolled steel sheets, the rolling reduction R1 (%) was divided into 85% and 90%, and the first cold rolling was performed.

【0050】次に再結晶焼鈍を行い、その後、第二回目
の冷間圧延の圧下率R2(%)を種々変えて圧延を行
い、いずれも板厚0.12〜0.36mmの範囲内の冷
延鋼板とした。
Next, recrystallization annealing was carried out, and thereafter, rolling was carried out while changing the reduction ratio R2 (%) of the second cold rolling variously, and in each case, the plate thickness was within a range of 0.12 to 0.36 mm. Cold rolled steel sheet.

【0051】それらの冷延鋼板について、硬度(HR3
0T)と耐力(fkg/mm2) を測定した。その結果を図1、
図2に示す。図1、図2及び、後述する図3、図4にお
いて●印はC 含有量が0.05%、Mn含有量が0.35%である
鋼種A、○印はC 含有量が0.02%、Mn含有量が0.20%で
ある鋼種B、□印はC 含有量が0.003 %、Mn含有量が0.
20%である鋼種Cを示す。
The hardness (HR3
0T) and proof stress (fkg / mm 2 ) were measured. The result is shown in FIG.
As shown in FIG. 1 and 2, as well as FIGS. 3 and 4 described later, ● indicates a steel type A having a C content of 0.05% and Mn content of 0.35%, and ○ indicates a C content of 0.02% and Mn content. Steel types B and □ with 0.20% have a C content of 0.003% and a Mn content of 0.
The steel grade C is 20%.

【0052】図1、図2より、硬度(HR30T)と耐
力(fkg/mm2) とは第二回目の冷間圧延の圧下率R2
(%)の増加とともに増大することがわかる。
From FIGS. 1 and 2, the hardness (HR30T) and the yield strength (fkg / mm 2 ) are the reduction ratio R2 of the second cold rolling.
It can be seen that it increases with the increase of (%).

【0053】また、これらの図より逆に、目標調質度と
鋼板のC 含有量を決めれば、最適な第二回目の冷間圧延
の圧下率R2(%)を求めることも可能である。
Further, conversely from these figures, it is possible to determine the optimum reduction ratio R2 (%) of the second cold rolling by determining the target temper and the C content of the steel sheet.

【0054】ところで、ユーザーは硬質缶用鋼板につい
て、JISの同一の調質度であっても、その中で若干硬
いものあるいは若干軟らかいものを要望する場合があ
る。
By the way, there is a case where the user desires a steel plate for a hard can to have a slightly harder or a slightly softer one even if the JIS tempering degree is the same.

【0055】そこで本発明者らは各調質度毎に強度レベ
ル(S)を設け、軟らかい材質から硬い材質までを0〜
10の11段階に等区分し、このような要望に対応して
いる。この場合、S=0は最も軟質な材質であり、JI
Sの調質度に対応する[硬度−3]程度の値である。
Therefore, the inventors of the present invention set a strength level (S) for each tempering degree, and set 0 to 0 for soft materials to hard materials.
It is divided into 10 stages and 11 stages to meet such demand. In this case, S = 0 is the softest material, and JI
It is a value of about [hardness -3] corresponding to the tempering degree of S.

【0056】S=10は最も硬質な材質であり、JIS
の調質度に対応する[硬度+3]程度の値である。
S = 10 is the hardest material, and the JIS
It is a value of about [hardness + 3] corresponding to the tempering degree.

【0057】図1、図2から、使用する熱延鋼板のC 含
有量と目標調質度に対応する第二回目の冷間圧延の最適
圧下率を求め、更に強度レベルによる補正を加えた式と
して、(1)式を得ることが出来る。
From FIG. 1 and FIG. 2, the optimum rolling reduction of the second cold rolling corresponding to the C content of the hot-rolled steel sheet used and the target refining degree was obtained, and a formula was added with the correction based on the strength level. As a result, the equation (1) can be obtained.

【0058】[0058]

【数7】 (Equation 7)

【0059】ここにおいて、R2は第二回目冷間圧延の
圧下率(%)、a は調質度とC 含有量により決まる定
数、b はC 含有量とMn含有量によって決まる定数であ
り、この定数a、bは図1、図2に示す結果と、C 含有
量とMn含有量の異なる多数の供試材について、第2回目
の冷間圧延の圧下率を変えて強度レベルの異なる冷延鋼
板を製造した結果から表3、表4に示すような値が得ら
れた。
Here, R2 is the rolling reduction (%) of the second cold rolling, a is a constant determined by the refining degree and the C content, and b is a constant determined by the C content and the Mn content. The constants a and b are the results shown in FIGS. 1 and 2, and for many test materials with different C and Mn contents, cold rolling with different strength levels was performed by changing the reduction ratio of the second cold rolling. The values shown in Tables 3 and 4 were obtained from the results of manufacturing the steel sheet.

【0060】[0060]

【表3】 [Table 3]

【0061】[0061]

【表4】 [Table 4]

【0062】更に、上記供試材についてr値の面内異方
性(△r)を測定した。この場合の第2回目の冷間圧延
の圧下率R2(%)と上記面内異方性(△r)の関係を
図3に示す。
Further, the in-plane anisotropy (Δr) of the r value was measured for the above test materials. FIG. 3 shows the relationship between the rolling reduction R2 (%) in the second cold rolling and the in-plane anisotropy (Δr) in this case.

【0063】図3から明らかな通り、製品鋼板の面内異
方性(△r)は第二回目の冷間圧延の圧下率R2(%)
の増加とともに直線的に減少している。
As is clear from FIG. 3, the in-plane anisotropy (Δr) of the product steel sheet is the reduction ratio R2 (%) of the second cold rolling.
It decreases linearly with increasing.

【0064】従って、製品鋼板の面内異方性(△r)は
R2=0%即ち、再結晶焼鈍後の鋼板の面内異方性(△
0 )を用いて式(5)のように示すことが出来る。
Therefore, the in-plane anisotropy (Δr) of the product steel sheet is R2 = 0%, that is, the in-plane anisotropy (Δr) of the steel sheet after recrystallization annealing.
It can be expressed as in equation (5) using r 0 ).

【0065】即ち、△r:製品鋼板の面内異方性の値
、△r0 :R2=0%の焼鈍後の鋼板の△rの値、
d:鋼成分により決まる定数とするとき、
That is, Δr: the value of in-plane anisotropy of the product steel sheet, Δr 0 : the value of Δr of the steel sheet after annealing at R2 = 0%,
d: When the constant is determined by the steel composition,

【0066】[0066]

【数8】 (Equation 8)

【0067】定数dは図3の直線の傾きより表5のよう
に求められる。
The constant d is obtained as shown in Table 5 from the slope of the straight line in FIG.

【0068】[0068]

【表5】 [Table 5]

【0069】次に第一回目の冷間圧延の圧下率R1
(%)と再結晶焼鈍後の鋼板の面内異方性(△r0 )の
関係を図4に示す。
Next, the reduction ratio R1 of the first cold rolling
(%) And the in-plane anisotropy (Δr 0 ) of the steel sheet after recrystallization annealing are shown in FIG.

【0070】なお、ここでは熱間圧延巻取温度CTを5
80℃以上730℃以下の範囲で行った。その理由は、
580℃未満では自己焼鈍効果が少なく、また、730
℃を超す場合は酸洗時の脱スケールを困難ならしめるか
らである。
The hot rolling coiling temperature CT is set to 5 here.
It was performed in the range of 80 ° C. or higher and 730 ° C. or lower. The reason is,
If it is less than 580 ° C, the self-annealing effect is small, and 730
This is because if the temperature exceeds ℃, descaling during pickling becomes difficult.

【0071】ただし、鋼種Bと鋼種Cの場合、650℃
以上730℃以下の温度範囲では鋼板長手方向及び幅方
向材質のバラツキが大きく、また、一回目冷間圧延時の
生産性が著しく低下するため、これらの鋼種の巻取温度
は580℃以上650℃未満が望ましい。
However, in the case of steel types B and C, 650 ° C.
In the temperature range of 730 ° C or lower, the variations in material in the longitudinal and width directions of the steel sheet are large, and the productivity during the first cold rolling is significantly reduced. Therefore, the coiling temperature of these steel types is 580 ° C or higher and 650 ° C or higher. Less than is desirable.

【0072】また、面内異方性(△r)は前記(5)式
にも示されているとおり、第二回目の冷間圧延により低
下することから、鋼種Aの熱間圧延巻取温度は、本試験
の範囲において△r0 が0乃至負の値になる650℃未
満ではなく、650℃以上730℃以下であることが望
ましい。
Further, since the in-plane anisotropy (Δr) is lowered by the second cold rolling as shown in the above equation (5), the hot rolling coiling temperature of the steel type A is Is preferably 650 ° C. or higher and 730 ° C. or lower, not lower than 650 ° C. where Δr 0 is 0 to a negative value in the range of this test.

【0073】図4より、再結晶焼鈍後の鋼帯の面内異方
性(△r0 )は圧下率R1の増加とともに直線的に減少
することがわかる。
From FIG. 4, it can be seen that the in-plane anisotropy (Δr 0 ) of the steel strip after recrystallization annealing linearly decreases with an increase in the rolling reduction R1.

【0074】そして、その面内異方性(△r)の減少率
は鋼種により一定の値を示すことから、△r0 を再結晶
焼鈍後の面内異方性(△r)の値、e、fを鋼成分によ
り決まる定数とするとき、△r0 と第一回目の冷間圧延
の圧下率R1との関係を式(6)で示すことが出来る。
Since the reduction rate of the in-plane anisotropy (Δr) shows a constant value depending on the steel type, Δr 0 is the value of the in-plane anisotropy (Δr) after recrystallization annealing, When e and f are constants determined by the steel composition, the relationship between Δr 0 and the reduction ratio R1 of the first cold rolling can be expressed by the equation (6).

【0075】[0075]

【数9】 [Equation 9]

【0076】定数eは図4に示す結果と、C 含有量とMn
含有量の異なる多数の供試材について、圧下率を変えた
第一回目の冷間圧延と連続焼鈍を行ない、△r0 を測定
した結果から表6のような値を得た。また、fは0.0
93で一定であることが判った。
The constant e is the result shown in FIG. 4, the C content and the Mn.
A large number of test materials having different contents were subjected to the first cold rolling with different reduction ratios and continuous annealing, and Δr 0 was measured. The values shown in Table 6 were obtained. Also, f is 0.0
It was found to be constant at 93.

【0077】[0077]

【表6】 [Table 6]

【0078】また、式(5)と(6)を組合わせること
により次式(2)を得た。
Further, the following equation (2) is obtained by combining the equations (5) and (6).

【0079】[0079]

【数10】 [Equation 10]

【0080】本発明では上記の式(1 )と(2)によ
り、目標とする調質度と使用する連続鋳造鋼片の鋼成分
によって第一回目と第二回目の冷間圧延の圧下率を特定
し、硬質缶用鋼板を製造することにより、ユーザーから
提示された目標硬度を満足させ、尚且つr値の面内異方
性(△r)の小さい硬質缶用鋼板素材を、経済的で生産
性の高い製造方法で製造することが可能である。
In the present invention, according to the above equations (1) and (2), the reduction ratio of the first and second cold rolling is determined by the target refining degree and the steel composition of the continuously cast billet used. By specifying and manufacturing steel plates for hard cans, it is possible to economically manufacture steel plate materials for hard cans that satisfy the target hardness presented by the user and have a small r-value in-plane anisotropy (Δr). It is possible to manufacture with a manufacturing method with high productivity.

【0081】本発明を実施するに際しては、予め供試材
について前記のような試験を行なって、(1)式、
(2)式の係数を定めておき、その後、実際に圧延され
る材料について(1)式、(2)式を適用すればよい。
なお、前記説明においては、強度レベルSについては、
軟らかい材質から硬い材質までを0〜10の11段階に
等区分しているが、この区分と指数化は任意に行なうこ
とができ、その場合、それぞれの指数についてあらかじ
め実験を行なって(1)式の定数a、bを求めればよ
い。
In carrying out the present invention, the test as described above was conducted on the test material in advance to obtain the formula (1),
The coefficient of the equation (2) may be set, and then the equations (1) and (2) may be applied to the material to be actually rolled.
In the above description, regarding the intensity level S,
From soft materials to hard materials are equally divided into 11 steps from 0 to 10, but this division and indexing can be done arbitrarily. In that case, an experiment is conducted in advance for each index and Equation (1) is used. The constants a and b of

【0082】[0082]

【実施例】以下に本発明の実施例を具体的に説明する。EXAMPLES Examples of the present invention will be specifically described below.

【0083】まず、使用する連続鋳造鋼片のC 含有量及
びMn含有量と製品鋼板の調質度から(1)式及び(2)
式中のパラメータの値を定めた後、目標とする硬度レベ
ルと−0.2〜+0.2の範囲で選定したランクフォー
ド値の面内異方性の目標値より、(1)式及び(2)を
用いて第一回目と第二回目の冷間圧延の圧下率を計算す
る。
First, from the C content and Mn content of the continuously cast steel piece to be used and the temper of the product steel sheet, the expressions (1) and (2) are used.
After determining the values of the parameters in the equation, from the target hardness level and the target value of the in-plane anisotropy of the Rankford value selected in the range of -0.2 to +0.2, equation (1) and ( 2) is used to calculate the reduction ratio of the first and second cold rolling.

【0084】次に、この二つの圧下率と製品鋼板の厚さ
より熱延鋼板の仕上板厚を決定する。
Next, the finishing thickness of the hot-rolled steel sheet is determined from these two reduction rates and the thickness of the product steel sheet.

【0085】このようにして求めた熱間圧延と第一回目
と第二回目の冷間圧延の操業条件と、この条件で製造し
た硬質缶用鋼板にTFSメッキを施した後、各種機械試
験を行い、その材質、更に経済性、生産性について評価
した結果を表7の試料No. 1〜No.7に示す。
The operating conditions of the hot rolling and the first and second cold rolling thus obtained, and the TFS plating on the steel plate for a hard can produced under these conditions were subjected to various mechanical tests. The results of evaluation of the material, economic efficiency, and productivity are shown in Table 7, Sample Nos. 1 to 7.

【0086】尚、比較例として、従来の方法により製造
した硬質缶用鋼板についての製造条件と、試料No. 1 〜
No.7と同様にして評価した結果を表7の試料No.8〜No.1
3 に示した。
As a comparative example, the manufacturing conditions for steel plates for hard cans manufactured by the conventional method and sample Nos. 1 to
The results evaluated in the same manner as No. 7 are the samples No. 8 to No. 1 in Table 7.
Shown in 3.

【0087】ここで、No.8〜No.9は、△rの向上を狙っ
て第一回目の冷間圧延の圧下率あるいは第二回目の冷間
圧延の圧下率を低くした例である。
Here, No. 8 to No. 9 are examples in which the reduction ratio of the first cold rolling or the reduction ratio of the second cold rolling was lowered in order to improve Δr.

【0088】また、試料No.10 〜No.13 は、第一回目の
冷間圧延の圧下率を80〜95%の範囲から、第二回目
の冷間圧延の圧下率を10〜30%の範囲から選定し、
製造の過程で各条件を調整しながら目標硬度の硬質缶用
鋼板の製造した例である。
Samples No. 10 to No. 13 have a reduction ratio of the first cold rolling in the range of 80 to 95% and a reduction ratio of the second cold rolling in the range of 10 to 30%. Select from the range,
It is the example which manufactured the steel plate for hard cans of target hardness, adjusting each condition in the manufacturing process.

【0089】[0089]

【表7】 [Table 7]

【0090】表7において、○印は低コスト、ライン能
率・作業性アップ、△r改善したもの、□印はコスト、
ライン能率・作業性、△rが現状状態のもの、×印はコ
スト、ライン能率・作業性、△rが悪化したものを示し
た。総合評価の○印は上記コスト、ライン能率・作業
性、△rが3つ○印のものであり、□印はコスト、ライ
ン能率・作業性、△rの内2つ○印のもの、1つ□印の
ものであり、×印はコスト、ライン能率・作業性、△r
の内一つでも×印のあるものを示した。
In Table 7, ∘ indicates low cost, line efficiency / workability improved, and ∆r improved, □ indicates cost,
The line efficiency / workability, Δr is the current state, and the X mark shows the cost, line efficiency / workability, and Δr deteriorated. In the overall evaluation, the ○ marks are the ones with the above three costs, line efficiency / workability, and △ r, and the □ marks are the two costs, line efficiency / workability, and Δr, with the ○ marks, 1 The ones marked with □, the ones marked with × are cost, line efficiency / workability, and Δr.
Even one of them has a cross.

【0091】本発明の実施例はいづれも目標の硬度、耐
力を有し、かつ△r値の絶対値が小さな値(±0.20
以下)になっており、 本発明により得られた鋼板を素
材としたDRD製缶は耳発生の小さい良好なものが得ら
れた。
Each of the examples of the present invention has the target hardness and proof stress and has a small absolute value of the Δr value (± 0.20).
The following) was obtained, and the DRD can made of the steel plate obtained by the present invention was a good one with a small ears.

【0092】一方、試料No.8及びNo.9の比較例は熱間圧
延の仕上板厚あるいは第一回目の冷間圧延後の鋼板の板
厚が薄く、生産性が悪い。
On the other hand, in the comparative examples of samples No. 8 and No. 9, the finished sheet thickness of hot rolling or the sheet thickness of the steel sheet after the first cold rolling is thin, and the productivity is poor.

【0093】試料No.10 の比較例はC:0.003 %で第一回
目、第二回目の冷間圧延の圧下率が本発明による計算値
と異なるために、製品鋼板の硬度、△rは良好であった
が、耐力が低下し、結果として材質の評価が悪かった。
In the comparative example of sample No. 10, C: 0.003%, the reduction ratio of the first and second cold rolling was different from the calculated value according to the present invention, and thus the hardness and Δr of the product steel sheet were good. However, the yield strength decreased, and as a result, the evaluation of the material was poor.

【0094】また、試料No.11 〜No.13 の比較例はC:0.
022 %〜0.050 %で第一回目、第二回目の冷間圧延の圧
下率が本発明による計算値と異なるために、製品鋼板の
硬度、耐力は良好であったが、△rが低下し、結果とし
て材質の評価が悪かった。
Further, the comparative examples of samples No. 11 to No. 13 are C: 0.
At 022% to 0.050%, the reduction ratio of the first and second cold rolling was different from the calculated value according to the present invention, so the hardness and proof stress of the product steel sheet were good, but Δr decreased, As a result, the material was poorly evaluated.

【0095】[0095]

【発明の効果】以上に示すように、本発明によれば、目
標硬度、目標耐力を保持しながら、r値の面内異方性
(△r)の小さい硬質缶用鋼板を、経済性、生産性に優
れた方法で製造することが出来る。
As described above, according to the present invention, a steel plate for a hard can having a small r-value in-plane anisotropy (Δr) while maintaining the target hardness and the target proof stress is economically advantageous. It can be manufactured by a method with excellent productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による第二回目の冷間圧延の圧下率
(%)と硬度(HR30T)の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the rolling reduction (%) and hardness (HR30T) of the second cold rolling according to the present invention.

【図2】本発明による第二回目の冷間圧延の圧下率
(%)と耐力(kgf/mm2 ) の関係を示す図ある。
FIG. 2 is a diagram showing a relationship between a rolling reduction (%) and a proof stress (kgf / mm 2 ) in the second cold rolling according to the present invention.

【図3】本発明による第二回冷間圧延の圧下率(%)と
製品鋼板の面内異方性(△r)の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the reduction ratio (%) of the second cold rolling and the in-plane anisotropy (Δr) of the product steel sheet according to the present invention.

【図4】 本発明による第一回冷間圧延の圧下率
(%)と焼鈍後の鋼板の面内異方性(△r0 )の関係を
示す図である。
FIG. 4 is a diagram showing the relationship between the reduction ratio (%) of the first cold rolling and the in-plane anisotropy (Δr 0 ) of the annealed steel sheet according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.15%以下、Si:0.04 %以
下、Mn:0.6%以下、P:0.03%以下、S:0.03%以下、Al:
0.15 %以下、N:0.01%以下を含有する連続鋳造鋼片に
ついて、熱間圧延を行い、得られた熱延鋼板を酸洗した
後、第一回目の冷間圧延を行い、次いで再結晶連続焼鈍
を行った後、第二回目の冷間圧延を行って硬質缶用鋼板
を製造する方法において、第一回目及び第二回目の冷間
圧延の圧下率を連続鋳造鋼片のC 含有量及びMn含有量と
製品鋼板の硬度レベル及びランクフォード値の面内異方
性の目標値に応じて、下記(1)式及び(2)式により
定めることを特徴とする面内異方性の小さい硬質缶用鋼
板の製造方法。 【数1】 【数2】 ここにおいて、R1:第一回目の冷間圧延の圧下率、 R2:第二回目の冷間圧延の圧下率、 S:製品鋼板の硬度レベルの目標値、 △r:ランクフォード値の面内異方性の目標値、 a: 製品鋼板の調質度と連続鋳造鋳片のC 含有量に
より決まる定数、 b 、e :連続鋳造鋳片のC 含有量、Mn含有量により決ま
る定数、 d : 連続鋳造鋳片のC 含有量により決まる定数、
1. By weight%, C: 0.15% or less, Si: 0.04% or less, Mn: 0.6% or less, P: 0.03% or less, S: 0.03% or less, Al:
Continuous cast steel slabs containing 0.15% or less and N: 0.01% or less are hot-rolled, the resulting hot-rolled steel sheet is pickled, then the first cold rolling is performed, and then recrystallization is continuously performed. After performing the annealing, in the method of manufacturing the steel plate for hard cans by performing the second cold rolling, the reduction rate of the first and second cold rolling is the C content of the continuously cast steel piece and Small in-plane anisotropy characterized by being determined by the following equations (1) and (2) according to Mn content, hardness level of product steel sheet and target value of in-plane anisotropy of Rankford value Manufacturing method of steel plate for hard can. [Equation 1] [Equation 2] Here, R1: the reduction ratio of the first cold rolling, R2: the reduction ratio of the second cold rolling, S: the target value of the hardness level of the product steel sheet, Δr: the in-plane variation of the Rankford value Target value of orientation, a: Constant determined by tempering of product steel sheet and C content of continuous cast slab, b, e: Constant determined by C content and Mn content of continuous cast slab, d: Continuous A constant determined by the C content of the cast slab,
JP25704794A 1994-10-21 1994-10-21 Production of steel sheet for hard can small in plane anisotropy Pending JPH08120348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25704794A JPH08120348A (en) 1994-10-21 1994-10-21 Production of steel sheet for hard can small in plane anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25704794A JPH08120348A (en) 1994-10-21 1994-10-21 Production of steel sheet for hard can small in plane anisotropy

Publications (1)

Publication Number Publication Date
JPH08120348A true JPH08120348A (en) 1996-05-14

Family

ID=17301004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25704794A Pending JPH08120348A (en) 1994-10-21 1994-10-21 Production of steel sheet for hard can small in plane anisotropy

Country Status (1)

Country Link
JP (1) JPH08120348A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221584A (en) * 2008-03-19 2009-10-01 Jfe Steel Corp High-strength steel sheet for can, and method for producing the same
WO2016084353A1 (en) * 2014-11-28 2016-06-02 Jfeスチール株式会社 Steel sheet for crown cap, manufacturing method therefor, and crown cap
CN106694637A (en) * 2016-12-06 2017-05-24 武汉钢铁股份有限公司 Automatic straightening method for high-yield-strength low alloy steel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221584A (en) * 2008-03-19 2009-10-01 Jfe Steel Corp High-strength steel sheet for can, and method for producing the same
WO2016084353A1 (en) * 2014-11-28 2016-06-02 Jfeスチール株式会社 Steel sheet for crown cap, manufacturing method therefor, and crown cap
JP5988012B1 (en) * 2014-11-28 2016-09-07 Jfeスチール株式会社 Crown steel plate, method for producing the same, and crown
KR20170070184A (en) * 2014-11-28 2017-06-21 제이에프이 스틸 가부시키가이샤 Steel sheet for crown cap, manufacturing method therefor, and crown cap
CN107109559A (en) * 2014-11-28 2017-08-29 杰富意钢铁株式会社 Bottle cap steel plate and its manufacture method and bottle cap
TWI601830B (en) * 2014-11-28 2017-10-11 Jfe Steel Corp Crown cover plate and its manufacturing method and crown cover
AU2015351836B2 (en) * 2014-11-28 2018-07-19 Jfe Steel Corporation Steel sheet for crown cap, manufacturing method therefor, and crown cap
CN106694637A (en) * 2016-12-06 2017-05-24 武汉钢铁股份有限公司 Automatic straightening method for high-yield-strength low alloy steel

Similar Documents

Publication Publication Date Title
EP1099773B1 (en) Ferritic stainless steel plate
EP1006203B1 (en) Can steel strip and method of producing can steel strip
JP2002275595A (en) Ferritic stainless steel sheet having excellent ridging resistance and deep drawability and method of manufacturing for the same
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JPH08120348A (en) Production of steel sheet for hard can small in plane anisotropy
JPS59113123A (en) Production of ultra-hard extra-thin cold rolled steel sheet
KR101938588B1 (en) Manufacturing method of ferritic stainless steel having excellent ridging property
JP2001089814A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP3379826B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and method for producing the same
JPH02141536A (en) Production of steel sheet for drawn can decreased earing
JPH075990B2 (en) Method for producing thin steel sheet for cans that is hard and has excellent drawability and small anisotropy
JPH1112686A (en) Steel sheet for can having excellent homogeneity and its manufacture
JPH08283863A (en) Production of hard steel sheet for can excellent in uniformity of material
JP2971192B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JP3911075B2 (en) Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
JPH10130734A (en) Production of austenitic stainless steel sheet for roll forming
JPS5856023B2 (en) Cold-rolled steel sheet with excellent deep drawability
JP2004131754A (en) Cold rolled steel sheet excellent in workability and shape fixability and its manufacturing method
JPH10237585A (en) Extremely thin steel sheet for welded can excellent in flanging workability, welded can, and production of extremely thin steel sheet for welded can
JPH10204588A (en) Ferritic stainless steel sheet excellent in workability and roping characteristic, and its manufacture
JP3257390B2 (en) Method for producing two-piece steel sheet with small in-plane anisotropy
JPS6330969B2 (en)
JPH08143969A (en) Production of cold rolled steel sheet excellent in workability
JP3814865B2 (en) Manufacturing method of steel plate for battery outer cylinder with excellent material uniformity and corrosion resistance

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070129