JPH08119896A - Production of diisopropyl ether - Google Patents

Production of diisopropyl ether

Info

Publication number
JPH08119896A
JPH08119896A JP6260045A JP26004594A JPH08119896A JP H08119896 A JPH08119896 A JP H08119896A JP 6260045 A JP6260045 A JP 6260045A JP 26004594 A JP26004594 A JP 26004594A JP H08119896 A JPH08119896 A JP H08119896A
Authority
JP
Japan
Prior art keywords
propylene
water
catalyst
exchange resin
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6260045A
Other languages
Japanese (ja)
Inventor
Akira Yokomizo
晃 横溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Original Assignee
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COSMO SOGO KENKYUSHO KK, Cosmo Oil Co Ltd filed Critical COSMO SOGO KENKYUSHO KK
Priority to JP6260045A priority Critical patent/JPH08119896A/en
Publication of JPH08119896A publication Critical patent/JPH08119896A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE: To easily produce diisopropyl ether useful as a base material for high-octane gasoline in high efficiency at a low cost by reacting water with propylene at a specific ratio in the presence of a specific catalyst. CONSTITUTION: The objective compound is produced by reacting (A) water with (B) propylene at a molar ratio (B/A) of 0.5-50 in the presence of (C) a catalyst composed of a water-saturated acidic ion exchange resin catalyst (WR) and a dry-type acidic ion exchange resin catalyst (DR). The component C is preferably a strongly acidic sulfonic acid-type acidic ion exchange resin, the WR has a water content of >=30%, especially >=55% and a base concentration of 2.0-4.0meq/g, especially 2.3-2.6meq/g. The DR has a watery content of <=10%, especially <=1.5% and the base concentration of 4.0-6.0meq/g, especially 4.7-5.0meq/g. The reaction is carried out at 30-200 deg.C, especially 90-140 deg.C under normal pressure to 150kg/cm<2> pressure, especially 10-100kg/cm<2> at a raw material feeding rate (LHSV) of 0.01-30hr<-1> , especially 0.1-10hr<-1> based on the component B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高オクタン価ガソリン
基材として有用なジイソプロピルエーテル(DIPE)
を水とプロピレンとから簡単かつ効率的に製造する方法
に関する。
The present invention relates to diisopropyl ether (DIPE) useful as a high octane gasoline base material.
The present invention relates to a method for easily and efficiently producing water from water and propylene.

【0002】[0002]

【従来の技術】DIPEは発熱量が高く、蒸気圧が低
く、密度が比較的小さく、また、リサーチ法オクタン価
(RON)が110程度であるが、モーター法オクタン
価(MON)が99と他のガソリン基材と比較しても遜
色なく、またセンシティビティーが小さいという特徴を
有している。これらの物性からみると、DIPEは含酸
素ガソリン基材として有用であり、また今後、含酸素ガ
ソリン基材の需要が伸びることを考慮すると、DIPE
の需要が更に増大するものと予想される。
2. Description of the Related Art DIPE has a high calorific value, a low vapor pressure, a relatively low density, and a research octane number (RON) of about 110, but a motor octane number (MON) of 99 and other gasolines. It has the characteristics that it is comparable to the base material and has low sensitivity. Considering these physical properties, DIPE is useful as an oxygen-containing gasoline base material, and considering that the demand for oxygen-containing gasoline base material will increase in the future, DIPE
It is expected that the demand will be further increased.

【0003】従来、DIPEの合成法としては、三通り
の製造方法が知られている。すなわち、ゼオライトβ等
のゼオライト触媒の存在下、気液相下で水とプロピレン
とを直接水和させる方法(特開平1−246233号公
報)、イソプロピルアルコールとプロピレンとを反応さ
せる方法(特開昭52−131508号公報)、触媒と
して酸性イオン交換樹脂を用いる(ドイツ・テキサコA
G)か又は硫酸を用い(米国特許第4471142号、
エクソン)、水とプロピレンとからイソプロピルアルコ
ールを製造する過程において、副生成物として生成され
たDIPEを得る方法である。
Conventionally, three methods of producing DIPE are known. That is, a method of directly hydrating water and propylene in a gas-liquid phase in the presence of a zeolite catalyst such as zeolite β (JP-A-1-246233) and a method of reacting isopropyl alcohol and propylene (JP-A-SHO). No. 52-131508), using an acidic ion exchange resin as a catalyst (Texaco A, Germany)
G) or with sulfuric acid (US Pat. No. 4,471,142,
Exxon), a method of obtaining DIPE produced as a by-product in the process of producing isopropyl alcohol from water and propylene.

【0004】しかしながら、ゼオライト触媒を用いた合
成法は、液空間速度(LHSV)を小さくしなければな
らないため、触媒量に対して原料量を少なくしなければ
ならず、その結果、運転コストが高くなるという難点を
有する。
However, in the synthesis method using a zeolite catalyst, since the liquid hourly space velocity (LHSV) must be reduced, the raw material amount must be reduced with respect to the catalyst amount, resulting in high operating cost. Has the drawback that

【0005】イソプロピルアルコールとプロピレンとを
反応させる合成法の場合、原料のイソプロピルアルコー
ルはプロピレンの水和によって得られたものを用いるた
め、製造の全プロセスは実質上二段反応となり、一段反
応と比較すると製造プロセスが煩雑となり、このため製
造コストが高くなるという問題が生じる。
In the case of the synthetic method in which isopropyl alcohol and propylene are reacted, since the raw material isopropyl alcohol is obtained by hydration of propylene, the whole production process is a two-step reaction, which is compared with the one-step reaction. Then, the manufacturing process becomes complicated, which causes a problem that the manufacturing cost becomes high.

【0006】イソプロピルアルコールの製造過程で、副
生成物としてDIPEを生成させる方法のうち、上記酸
性イオン交換樹脂を触媒として用いた方法ではDIPE
の収率は4%程度であり、DIPEの工業的製造方法と
しての技術価値は乏しい。一方、上記硫酸を触媒として
用いる方法ではDIPEの収率は3%程度であり、また
反応回収液からの触媒を除去するなどのための分離精製
工程が複雑であると共に、上記回収液が腐食性であるた
め、反応装置を形成する材料が高価なものになるという
問題がある。
Among the methods of producing DIPE as a by-product in the process of producing isopropyl alcohol, the method using the above acidic ion exchange resin as a catalyst is DIPE.
The yield is about 4%, and the technical value as an industrial production method of DIPE is poor. On the other hand, in the method using sulfuric acid as a catalyst, the yield of DIPE is about 3%, and the separation and purification process for removing the catalyst from the reaction recovery liquid is complicated and the recovery liquid is corrosive. Therefore, there is a problem that the material forming the reactor becomes expensive.

【0007】[0007]

【発明が解決しようとする課題】従って、本発明は、ガ
ソリン基材として有用なDIPEを簡略化された一段法
で、従来より一層効率良く製造し得る方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method capable of producing DIPE, which is useful as a gasoline base material, by a simplified one-step method, more efficiently than ever before.

【0008】[0008]

【課題を解決するための手段】このような実情におい
て、本発明者は鋭意検討した結果、DIPEの製造方法
において、水飽和型酸性イオン交換樹脂と乾燥型酸性イ
オン交換樹脂を触媒として用い、かつ水とプロピレンを
特定の割合で反応させることにより、一段法でDIPE
を簡単にかつ従来より効率良く製造し得ることを見出
し、本発明を完成した。
Under such circumstances, the present inventor has diligently studied, and as a result, in a method for producing DIPE, a water-saturated acidic ion exchange resin and a dry acidic ion exchange resin were used as catalysts, and By reacting water and propylene in a specific ratio, DIPE
The present invention has been completed based on the finding that it can be manufactured easily and more efficiently than before.

【0009】すなわち、本発明は、水とプロピレンを反
応せしめて、ジイソプロピルエーテルを製造する方法に
おいて、水に対するプロピレンのモル比を0.5〜50
とし、反応を水飽和型酸性イオン交換樹脂触媒及び乾燥
型酸性イオン交換樹脂触媒からなる触媒の存在下で行う
ことを特徴とするジイソプロピルエーテルの製法を提供
するものである。
That is, the present invention is a method for producing diisopropyl ether by reacting water and propylene with a molar ratio of propylene to water of 0.5 to 50.
And a method for producing diisopropyl ether, wherein the reaction is carried out in the presence of a catalyst comprising a water-saturated acidic ion exchange resin catalyst and a dry acidic ion exchange resin catalyst.

【0010】本発明において、原料として用いる水及び
プロピレンは反応装置の腐食の原因となる酸性物質や触
媒毒となる塩基性物質を含まないことが好ましい。
In the present invention, it is preferable that water and propylene used as raw materials do not contain an acidic substance which causes corrosion of the reaction apparatus or a basic substance which becomes a catalyst poison.

【0011】ここで、原料のプロピレンとしては、プロ
ピレンのみの他、プロピレン混合物も使用することがで
きる。プロピレン混合物とは、プロピレンを主成分と
し、これに例えば、プロパン、エタン、エチレン、イソ
ブタン、ノルマルブタン、ブテン、ペンタン等の炭化水
素化合物が混合された混合物をいう。この混合物におい
て、プロピレン濃度は30mol%以上、特に75mol%以
上とすることが好ましい。
Here, as the raw material propylene, not only propylene but also a propylene mixture can be used. The propylene mixture is a mixture containing propylene as a main component and a hydrocarbon compound such as propane, ethane, ethylene, isobutane, normal butane, butene, and pentane mixed therein. In this mixture, the propylene concentration is preferably 30 mol% or more, particularly preferably 75 mol% or more.

【0012】プロピレン及びプロピレン混合物は、エチ
レンプラント、接触改質装置、接触分解装置等において
生成したものなどを使用することができるが、その製造
方法に何ら限定されるものではない。
As the propylene and the propylene mixture, those produced in an ethylene plant, a catalytic reforming apparatus, a catalytic cracking apparatus and the like can be used, but the production method is not limited at all.

【0013】本発明で用いる触媒は、水飽和型酸性イオ
ン交換樹脂触媒と乾燥型酸性イオン交換樹脂触媒とから
なるものである。ここで、酸性イオン交換樹脂触媒とし
ては、三次元的な網目構造を有する高分子に酸性イオン
交換基を導入したものが挙げられる。例えば、スチレン
とジビニルベンゼンを共重合して、架橋したマトリック
スをつくり、この重合体に、例えば濃硫酸を反応させ
て、ベンゼン核にスルホン基を導入したスルホン酸型の
イオン交換樹脂等を使用することができる。
The catalyst used in the present invention comprises a water-saturated acidic ion exchange resin catalyst and a dry acidic ion exchange resin catalyst. Here, examples of the acidic ion exchange resin catalyst include those obtained by introducing an acidic ion exchange group into a polymer having a three-dimensional network structure. For example, styrene and divinylbenzene are copolymerized to form a crosslinked matrix, and this polymer is reacted with, for example, concentrated sulfuric acid to use a sulfonic acid type ion exchange resin in which a sulfo group is introduced into the benzene nucleus. be able to.

【0014】本発明で用いる酸性イオン交換樹脂触媒
は、強酸性スルホン酸型酸性イオン交換樹触媒が好まし
い。弱酸性のカルボン酸型酸性イオン交換樹脂触媒は、
本反応において、高い活性が得られないので、好ましく
ない。
The acidic ion exchange resin catalyst used in the present invention is preferably a strongly acidic sulfonic acid type acidic ion exchange resin catalyst. The weakly acidic carboxylic acid type acidic ion exchange resin catalyst is
In this reaction, high activity cannot be obtained, which is not preferable.

【0015】本発明においては、このような酸性イオン
交換樹脂触媒のうち、水飽和型と乾燥型の2種のものが
用いられる。ここで、水飽和型酸性イオン交換樹脂触媒
とは、樹脂の官能基に水和(又は溶媒和)及びイオンに
水和(又は溶媒和)されて膨潤状態にあるものをいい、
例えば前記のようなスルホン酸型のイオン交換樹脂の場
合、一般にジビニルベンゼンの架橋度が大きくなるほ
ど、含水量が小さくなるが、本発明においては含水率が
30%以上、特に50%以上、更に55%以上のものが
好ましい。また、乾燥型酸性イオン交換樹脂触媒とは、
樹脂の官能基に水和(又は溶媒和)及びイオンに水和
(又は溶媒和)されていない乾燥樹脂をいい、含水率が
10%以下、特に3%以下、更に1.5%以下のものが
好ましい。
In the present invention, among such acidic ion exchange resin catalysts, two types, a water saturated type and a dry type, are used. Here, the water-saturated acidic ion-exchange resin catalyst refers to a swelled state that is hydrated (or solvated) to a functional group of the resin and hydrated (or solvated) to an ion,
For example, in the case of the sulfonic acid type ion exchange resin as described above, the water content generally decreases as the degree of crosslinking of divinylbenzene increases, but in the present invention, the water content is 30% or more, particularly 50% or more, and 55 % Or more is preferable. In addition, with dry acidic ion exchange resin catalyst,
A dry resin in which the functional groups of the resin are not hydrated (or solvated) and ionic (or solvated), with a water content of 10% or less, especially 3% or less, and even 1.5% or less. Is preferred.

【0016】また、酸性イオン交換樹脂触媒の酸基濃度
は、特に制限されないが、水飽和型酸性イオン交換樹脂
の場合、2.0〜4.0meq./gの範囲であるのが好ま
しく、特に2.2〜3.0meq./g、更に2.3〜2.
6meq./gが好ましい。酸基濃度が低すぎると、プロピ
レン転化率が低くなり、また高すぎると、プロピレンの
重合反応が促進され、コーキングにより触媒の失活を引
き起こす原因となり好ましくない。また、乾燥型酸性イ
オン交換樹脂の酸基濃度は4.0〜6.0meq./gの範
囲であるのが好ましく、特に4.5〜5.0meq./g、
更に4.7〜5.0meq./gが好ましい。酸基濃度が低
すぎると、DIPEの収率が低下し、また、高すぎる
と、プロピレンの重合反応が促進され、コーキングによ
り触媒の失活を引き起こす原因となり好ましくない。
The acid group concentration of the acidic ion exchange resin catalyst is not particularly limited, but in the case of a water saturated acidic ion exchange resin, it is preferably in the range of 2.0 to 4.0 meq./g, and particularly 2.2-3.0 meq./g, further 2.3-2.
6 meq./g is preferred. If the acid group concentration is too low, the propylene conversion rate will be low, and if it is too high, the polymerization reaction of propylene will be promoted and the catalyst will be deactivated by coking, which is not preferable. The acid group concentration of the dry acidic ion-exchange resin is preferably in the range of 4.0 to 6.0 meq./g, particularly 4.5 to 5.0 meq./g,
Furthermore, 4.7-5.0 meq./g is preferable. If the acid group concentration is too low, the yield of DIPE will decrease, and if it is too high, the polymerization reaction of propylene will be promoted and the catalyst will be deactivated by coking, which is not preferable.

【0017】なお、ここで、「meq./g」は、「Milli
equivalent/gram」の略であり、単位乾燥重量当りの交
換能を表わす。
Here, "meq./g" means "Milli.
It is an abbreviation for "equivalent / gram" and represents the exchange capacity per unit dry weight.

【0018】更に、酸性イオン交換樹脂触媒の比表面
積、平均細孔径は特に制限されないが、以下の範囲とす
ることにより、より効率的にDIPEの収率を向上させ
ることができる。水飽和型酸性イオン交換樹脂の比表面
積は25〜38m2/g、特に30〜38m2/gが好まし
く、乾燥型酸性イオン交換樹脂の比表面積は30〜50
m2/g、特に35〜50m2/gが好ましい。この比表面
積範囲より小さすぎたり、大きすぎるとDIPEの収率
が低下する傾向がある。
Further, the specific surface area and the average pore diameter of the acidic ion exchange resin catalyst are not particularly limited, but the yields of DIPE can be more efficiently improved by setting them in the following ranges. The specific surface area of the water-saturated acidic ion exchange resin 25~38m 2 / g, especially 30~38m 2 / g Preferably, the specific surface area of the dry-type acidic ion exchange resin from 30 to 50
m 2 / g, especially 35~50m 2 / g are preferred. If the specific surface area is too small or too large, the DIPE yield tends to decrease.

【0019】水飽和型酸性イオン交換樹脂の平均孔径は
50〜170Å、特に100〜170Åが好ましく、、
乾燥型酸性イオン交換樹脂の平均孔径は150〜300
Å、特に150〜250Åが好ましい。この平均孔径範
囲より小さすぎたり、また大きすぎるとDIPEの収率
が低下する傾向がある。
The average pore size of the water-saturated acidic ion exchange resin is preferably 50 to 170Å, particularly preferably 100 to 170Å,
The average pore size of the dry acidic ion exchange resin is 150 to 300.
Å, particularly 150 to 250 Å is preferable. If the average pore size range is too small or too large, the DIPE yield tends to decrease.

【0020】水飽和型と乾燥型の酸性イオン交換樹脂触
媒の混合比は特に制限されないが、体積比で2:8〜
8:2、特に3:7〜7:3であるのが好ましい。水飽
和型触媒の体積比が大きすぎると、水和活性が大きく、
反応中間体のイソプロピルアルコールの選択率が高くな
り、エーテル化反応が進行せず、DIPEの収率が小さ
くなる傾向がある。また乾燥型触媒の体積比が大きすぎ
ると、水和活性が小さくなるため、全体のDIPE収率
が低下する傾向がある。
The mixing ratio of the water-saturated and dry-type acidic ion exchange resin catalysts is not particularly limited, but it is 2: 8 by volume.
It is preferably 8: 2, particularly 3: 7 to 7: 3. If the volume ratio of the water-saturated catalyst is too large, the hydration activity is large,
The selectivity of isopropyl alcohol as a reaction intermediate increases, the etherification reaction does not proceed, and the yield of DIPE tends to decrease. On the other hand, if the volume ratio of the dry catalyst is too large, the hydration activity becomes small and the overall DIPE yield tends to decrease.

【0021】これらの触媒の充填方法は特に制限され
ず、例えば上部に水飽和型酸性イオン交換樹脂触媒、下
部に乾燥型酸性イオン交換樹脂触媒を充填させた状態で
も、また水飽和型と乾燥型酸性イオン交換樹脂を均一に
混合させた状態で充填してもよい。また、水飽和型、乾
燥型の酸性イオン交換樹脂触媒は、それぞれ2種以上用
いてもよい。
The method of filling these catalysts is not particularly limited. For example, even in a state where the upper portion is filled with a water-saturated acidic ion exchange resin catalyst and the lower portion is filled with a dry-type acidic ion exchange resin catalyst, a water-saturated type and a dry type are also used. The acidic ion exchange resin may be filled in a state of being uniformly mixed. Further, two or more kinds of water-saturated and dry-type acidic ion exchange resin catalysts may be used.

【0022】本発明方法でDIPEを製造するには、上
記のような酸性イオン交換樹脂触媒の存在下、水とプロ
ピレンとを反応させるが、この際水とプロピレンのモル
比はDIPEの収率向上に関し、特に重要である。すな
わち、本発明においては、水に対するプロピレンのモル
比を0.5〜50の範囲にすることが必要であり、特に
1を超え20以下、更に2〜10とすることが好まし
い。このモル比が0.5未満であると、水和反応により
生成されたイソプロピルアルコールのエーテル化反応へ
の逐次反応が進行せず、イソプロピルアルコールの選択
率が高くなり、DIPEの選択率が低下する。またこの
モル比が50を超えると、プロピレンの重合反応による
副生成物の選択率が高くなり、DIPEの生成が抑制さ
れ、プロピレンの重合反応によりコークが生成して、触
媒の失活を引き起こす。
In order to produce DIPE by the method of the present invention, water and propylene are reacted in the presence of the above acidic ion exchange resin catalyst. At this time, the molar ratio of water and propylene improves the yield of DIPE. With regard to That is, in the present invention, it is necessary to set the molar ratio of propylene to water in the range of 0.5 to 50, particularly preferably more than 1 and 20 or less, and more preferably 2 to 10. When this molar ratio is less than 0.5, the sequential reaction to the etherification reaction of isopropyl alcohol produced by the hydration reaction does not proceed, the selectivity of isopropyl alcohol increases, and the selectivity of DIPE decreases. . On the other hand, when this molar ratio exceeds 50, the selectivity of the by-product due to the propylene polymerization reaction is increased, the production of DIPE is suppressed, and coke is generated due to the propylene polymerization reaction to cause deactivation of the catalyst.

【0023】反応温度は30〜200℃、特に70〜1
50℃、更に90〜140℃とすることが好ましい。反
応温度が低いと、未反応原料が多くなるため、リサイク
ルコストが高くなり、反応温度が高いと、プロピレンの
重合反応による副生成物の選択率が高くなり、DIPE
の生成が抑制されるだけでなく、スルホン酸基の脱離に
より触媒の失活をもたらすことになる。
The reaction temperature is 30 to 200 ° C., especially 70 to 1
The temperature is preferably 50 ° C, more preferably 90 to 140 ° C. When the reaction temperature is low, the amount of unreacted raw material is large, so the recycling cost is high. When the reaction temperature is high, the selectivity of the by-product from the propylene polymerization reaction is high, and the DIPE
In addition to suppressing the formation of benzene, desorption of the sulfonic acid group results in deactivation of the catalyst.

【0024】反応圧力は常圧〜150kg/cm2 、特に5
〜120kg/cm2 、更に10〜100kg/cm2 とするこ
とが好ましい。反応圧力が低いと、活性が低く、また反
応圧力が高すぎると高価な材質からなる反応装置を用い
なければならなくなる。
The reaction pressure is atmospheric pressure to 150 kg / cm 2 , especially 5
~120kg / cm 2, further it is preferable that the 10 to 100 kg / cm 2. When the reaction pressure is low, the activity is low, and when the reaction pressure is too high, it is necessary to use a reactor made of an expensive material.

【0025】更にまた、原料の供給速度(LHSV(hr
-1))は、プロピレンを基準として、0.01〜30、
特に0.1〜20、更に0.1〜10とすることが好ま
しい。LHSVが小さすぎると、触媒量に対する原料量
を少なくしなければならないため、運転コストが高くな
る。また、LHSVが大きすぎると、未反応原料が多く
なるため、リサイクルコストが高くなる。
Furthermore, the feed rate of the raw material (LHSV (hr
-1 )) is 0.01 to 30, based on propylene,
Particularly, it is preferably 0.1 to 20, more preferably 0.1 to 10. If the LHSV is too small, the amount of raw material with respect to the amount of catalyst must be reduced, resulting in higher operating costs. On the other hand, if the LHSV is too large, the amount of unreacted raw material increases, and the recycling cost increases.

【0026】反応終了後、生成したDIPEを回収する
方法としては種々の方法があるが、例えば以下の方法が
挙げられる。プロピレンの水和反応塔から流出した反応
回収成分から、まず未反応プロピレンを分離し、分離し
たプロピレンを該反応塔へリサイクルする。次いで、反
応回収残余をガソリン留分とブレンドし、得られた油層
を高オクタン価ガソリンとして回収し、水層成分を水和
反応塔へリサイクルすることにより、DIPEをガソリ
ン基材として回収することができる。
There are various methods for recovering the produced DIPE after the completion of the reaction. For example, the following method can be mentioned. Unreacted propylene is first separated from the reaction recovered components flowing out from the propylene hydration reaction tower, and the separated propylene is recycled to the reaction tower. Then, the reaction recovery residue is blended with a gasoline fraction, the obtained oil layer is recovered as high-octane gasoline, and the water phase component is recycled to the hydration reaction tower, whereby DIPE can be recovered as a gasoline base material. .

【0027】[0027]

【発明の効果】本発明によれば、簡略化された方法で効
率良く、しかも低コストで、ガソリン基材として有用な
DIPEを製造することができ、この製法はDIPEの
工業的製法として好適なものである。
INDUSTRIAL APPLICABILITY According to the present invention, DIPE which is useful as a gasoline base material can be efficiently produced at a low cost by a simplified method, and this production method is suitable as an industrial production method of DIPE. It is a thing.

【0028】[0028]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、これは単に例示であって本発明を制限するも
のではない。
EXAMPLES The present invention will now be described in more detail by way of examples, which are merely examples and do not limit the present invention.

【0029】なお、実施例1〜4及び比較例1〜2で用
いた酸性イオン交換樹脂触媒の物性は表1に示すとおり
である。
The physical properties of the acidic ion exchange resin catalysts used in Examples 1 to 4 and Comparative Examples 1 and 2 are as shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】実施例1 固定床流通式反応装置を用いて触媒層上部に水飽和型ス
ルホン酸型酸性イオン交換樹脂触媒A(Amberlyst-16 W
ET オルガノ社製)、下部に乾燥型スルホン酸型酸性イ
オン交換樹脂触媒B(Amberlyst-15 オルガノ社製)を
充填させ、触媒Aと触媒Bの体積比を1:1とし、反応
温度120℃、反応圧力70kg/cm2 、水に対するプロ
ピレンのモル比を2とし、LHSV(プロピレン基準)
が1hr-1の条件で反応させた。反応開始から2時間後の
反応回収成分をGC(ガスクロマトグラフィー)分析し
たところ、プロピレン転化率38.3mol%、全生成物
に対するイソプロピルアルコール(IPA)の選択率3
9.6%、DIPE選択率50.5%、その他炭化水素
化合物の選択率9.9%であった。
Example 1 A water-saturated sulfonic acid type acidic ion exchange resin catalyst A (Amberlyst-16 W) was placed on the upper part of the catalyst layer using a fixed bed flow reactor.
ET manufactured by Organo), and a dry sulfonic acid type acidic ion exchange resin catalyst B (manufactured by Amberlyst-15 Organo) is filled in the lower part, the volume ratio of the catalyst A and the catalyst B is set to 1: 1 and the reaction temperature is 120 ° C. LHSV (based on propylene) with a reaction pressure of 70 kg / cm 2 and a molar ratio of propylene to water of 2
Was reacted for 1 hr -1 . GC (gas chromatography) analysis of the reaction recovered components 2 hours after the start of the reaction revealed that the conversion of propylene was 38.3 mol% and the selectivity of isopropyl alcohol (IPA) to all products was 3
The selectivity was 9.6%, the DIPE selectivity was 50.5%, and the selectivity of other hydrocarbon compounds was 9.9%.

【0032】実施例2 実施例1と同様の触媒の存在下、反応温度120℃、反
応圧力70kg/cm2 、水に対するプロピレンのモル比を
6とし、LHSV(プロピレン基準)が1hr-1の条件で
反応させた。反応開始から2時間後の反応回収成分をG
C(ガスクロマトグラフィー)分析したところ、プロピ
レン転化率47.6mol%、全生成物に対するイソプロ
ピルアルコール(IPA)の選択率33.5%、DIP
E選択率41.4%、その他炭化水素化合物の選択率2
5.1%であった。
Example 2 In the presence of the same catalyst as in Example 1, the reaction temperature was 120 ° C., the reaction pressure was 70 kg / cm 2 , the molar ratio of propylene to water was 6, and the LHSV (propylene standard) was 1 hr −1 . It was made to react with. After 2 hours from the start of the reaction,
As a result of C (gas chromatography) analysis, the conversion of propylene was 47.6 mol%, the selectivity of isopropyl alcohol (IPA) for all the products was 33.5%, and DIP
E selectivity 41.4%, selectivity of other hydrocarbon compounds 2
It was 5.1%.

【0033】実施例3 触媒層上部に水飽和型スルホン酸型酸性イオン交換樹脂
触媒A(Amberlyst-16WET オルガノ社製)、下部に乾
燥型スルホン酸型酸性イオン交換樹脂触媒B(Amberlys
t-15 オルガノ社製)を充填させ、触媒Aと触媒Bの体
積比を2:1とし、反応温度125℃、反応圧力70kg
/cm2 、水に対するプロピレンのモル比を5とし、LH
SV(プロピレン基準)が1hr-1の条件で反応させた。
反応開始から2時間後の反応回収成分をGC(ガスクロ
マトグラフィー)分析したところ、プロピレン転化率2
4.4mol%、全生成物に対するイソプロピルアルコー
ル(IPA)の選択率36.9%、DIPE選択率5
6.0%、その他炭化水素化合物の選択率7.1%であ
った。
Example 3 A water-saturated sulfonic acid acidic ion-exchange resin catalyst A (Amberlyst-16WET Organo Co.) was placed on the upper part of the catalyst layer, and a dry sulfonic acid acidic ion-exchange resin catalyst B (Amberlys) was placed on the lower part.
t-15 made by Organo Co., Ltd., the volume ratio of the catalyst A and the catalyst B is 2: 1, the reaction temperature is 125 ° C., the reaction pressure is 70 kg.
/ Cm 2 , the molar ratio of propylene to water is 5, LH
SV (propylene standard) was reacted under the condition of 1 hr -1 .
GC (gas chromatography) analysis of the reaction recovered components 2 hours after the start of the reaction revealed that the propylene conversion rate was 2
4.4 mol%, isopropyl alcohol (IPA) selectivity to all products 36.9%, DIPE selectivity 5
The selectivity was 6.0% and the selectivity for other hydrocarbon compounds was 7.1%.

【0034】実施例4 実施例3と同様の触媒の存在下、反応温度120℃、反
応圧力70kg/cm2 、水に対するプロピレンのモル比を
6とし、LHSV(プロピレン基準)が1hr-1の条件で
反応させた。反応開始から2時間後の反応回収成分をG
C(ガスクロマトグラフィー)分析したところ、プロピ
レン転化率29.1mol%、全生成物に対するイソプロ
ピルアルコール(IPA)の選択率47.1%、DIP
E選択率51.5%、その他炭化水素化合物の選択率
1.4%であった。
Example 4 In the presence of the same catalyst as in Example 3, the reaction temperature was 120 ° C., the reaction pressure was 70 kg / cm 2 , the molar ratio of propylene to water was 6, and the LHSV (propylene standard) was 1 hr −1 . It was made to react with. After 2 hours from the start of the reaction,
As a result of C (gas chromatography) analysis, the conversion of propylene was 29.1 mol%, the selectivity of isopropyl alcohol (IPA) to all the products was 47.1%, and DIP.
The E selectivity was 51.5%, and the selectivity of other hydrocarbon compounds was 1.4%.

【0035】比較例1 固定床流通式反応装置を用いて、水飽和型スルホン酸型
酸性イオン交換樹脂触媒Aの存在下、反応温度130
℃、反応圧力70kg/cm2 、水に対するプロピレンのモ
ル比を1とし、LHSV(プロピレン基準)が2hr-1
条件で反応させた。反応開始から2時間後の回収成分を
GC(ガスクロマトグラフィー)分析したところ、プロ
ピレン転化率17.2mol%、全生成物に対するイソプ
ロピルアルコール(IPA)の選択率96.1%、DI
PE選択率3.6%、その他炭化水素化合物の選択率
0.3%であった。
Comparative Example 1 A reaction temperature of 130 was obtained in the presence of a water-saturated sulfonic acid type acidic ion exchange resin catalyst A using a fixed bed flow reactor.
The reaction was carried out under the conditions of LHSV (propylene standard) of 2 hr −1 , the reaction temperature was 70 ° C., the reaction pressure was 70 kg / cm 2 , the molar ratio of propylene to water was 1. GC (gas chromatography) analysis of the recovered components 2 hours after the start of the reaction revealed that the conversion of propylene was 17.2 mol%, the selectivity of isopropyl alcohol (IPA) to all products was 96.1%, and DI.
PE selectivity was 3.6%, and other hydrocarbon compound selectivity was 0.3%.

【0036】比較例2 固定床流通式反応装置を用いて、水飽和型スルホン酸型
酸性イオン交換樹脂触媒Aの存在下、反応温度110
℃、反応圧力70kg/cm2 、水に対するプロピレンのモ
ル比を4とし、LHSV(プロピレン基準)が2hr-1
条件で反応させた。反応開始から2時間後の回収成分を
GC(ガスクロマトグラフィー)分析したところ、プロ
ピレン転化率9.3mol%、全生成物に対するイソプロ
ピルアルコール(IPA)の選択率73.1%、DIP
E選択率25.3%、その他炭化水素化合物の選択率
1.6%であった。
Comparative Example 2 A reaction temperature of 110 was obtained in the presence of a water-saturated sulfonic acid type acidic ion exchange resin catalyst A using a fixed bed flow reactor.
The reaction was carried out under the conditions of LHSV (propylene standard) of 2 hr −1 , the reaction temperature was 70 ° C., the reaction pressure was 70 kg / cm 2 , the molar ratio of propylene to water was 4. GC (gas chromatography) analysis of the recovered components 2 hours after the start of the reaction revealed that the conversion of propylene was 9.3 mol%, the selectivity of isopropyl alcohol (IPA) to all products was 73.1%, and DIP.
The E selectivity was 25.3%, and the selectivity of other hydrocarbon compounds was 1.6%.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水とプロピレンを反応せしめて、ジイソ
プロピルエーテルを製造する方法において、水に対する
プロピレンのモル比を0.5〜50とし、反応を水飽和
型酸性イオン交換樹脂触媒及び乾燥型酸性イオン交換樹
脂触媒からなる触媒の存在下で行うことを特徴とするジ
イソプロピルエーテルの製法。
1. A method for producing diisopropyl ether by reacting water with propylene, wherein the molar ratio of propylene to water is 0.5 to 50, and the reaction is a water-saturated acidic ion exchange resin catalyst and a dry acidic ion. A process for producing diisopropyl ether, which is carried out in the presence of a catalyst comprising an exchange resin catalyst.
JP6260045A 1994-10-25 1994-10-25 Production of diisopropyl ether Pending JPH08119896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6260045A JPH08119896A (en) 1994-10-25 1994-10-25 Production of diisopropyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6260045A JPH08119896A (en) 1994-10-25 1994-10-25 Production of diisopropyl ether

Publications (1)

Publication Number Publication Date
JPH08119896A true JPH08119896A (en) 1996-05-14

Family

ID=17342542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6260045A Pending JPH08119896A (en) 1994-10-25 1994-10-25 Production of diisopropyl ether

Country Status (1)

Country Link
JP (1) JPH08119896A (en)

Similar Documents

Publication Publication Date Title
US3726942A (en) Production of gasoline components including 2-methyl-2-methoxypropane
US4423251A (en) Process employing sequential isobutylene hydration and etherification
WO2004074228A1 (en) Process for preparing dimethylether from methanol
US4330679A (en) Process for the preparation of alkyl tert.-alkyl ethers
JPS6154079B2 (en)
US4357147A (en) Diisopropyl ether reversion and oligomerization in isopropanol production
CN103261129A (en) Production of fuel additives via simultaneous dehydration and skeletal isomerisation of isobutanol on acid catalysts followed by etherification
KR101075381B1 (en) 3 Process for preparing tert-butanol
US4575567A (en) Adsorbent regeneration in etherification processes
US4405822A (en) Diisopropyl ether hydration in isopropanol production
EP0102840A1 (en) Preparation of ethers and alcohols from olefins and conversion of olefins to ethers and alcohols
JP2002515000A (en) Two-step production of ethers from tertiary alcohols
JPH08501076A (en) Method for producing olefin
US6423880B1 (en) Isopentane disproportionation
WO1997032838A1 (en) Production of a high purity butene-1 product from butadiene-rich c4 stream
US4575566A (en) Adsorbent regeneration in etherification processes
NO873642L (en) PROTON CATALYzed REACTIONS.
US5744645A (en) Two-stage process for producing diisopropyl ether using catalytic distillation
US4208540A (en) Process for separation and recovery of isobutene
JPH08119896A (en) Production of diisopropyl ether
JPS6058893B2 (en) Method for producing tertiary alcohol
JP2612194B2 (en) Direct hydration of linear olefins.
US8492603B2 (en) Selectivated isoolefin dimerization using metalized resins
JPH07309797A (en) Production of diisopropyl ether
EP0047906A1 (en) Process for the production of aliphatic ethers