JPH08117597A - Catalyst for removing nitrogen oxide using clay mineral and exhaust gas treatment method - Google Patents

Catalyst for removing nitrogen oxide using clay mineral and exhaust gas treatment method

Info

Publication number
JPH08117597A
JPH08117597A JP6257966A JP25796694A JPH08117597A JP H08117597 A JPH08117597 A JP H08117597A JP 6257966 A JP6257966 A JP 6257966A JP 25796694 A JP25796694 A JP 25796694A JP H08117597 A JPH08117597 A JP H08117597A
Authority
JP
Japan
Prior art keywords
catalyst
clay mineral
vanadium
exhaust gas
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6257966A
Other languages
Japanese (ja)
Other versions
JP3783875B2 (en
Inventor
Naomi Yoshida
直美 吉田
Yasuyoshi Kato
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP25796694A priority Critical patent/JP3783875B2/en
Publication of JPH08117597A publication Critical patent/JPH08117597A/en
Application granted granted Critical
Publication of JP3783875B2 publication Critical patent/JP3783875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a catalyst with improved denitration activity and an exhaust gas denitration method with the use of the catalyst. CONSTITUTION: V or Cu is supported in the pares of a clay mineral with TiO2 pillars between layers (smectite type clay mineral such as montmorillonite, beidellite, and bentonite) in a specific composition ratio with TiO2 (molar ratio M/Ti=0.03-0.18, M=V or Cu) to give a high NOx removal ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒素酸化物除去用の触媒
と該触媒を用いる排ガス処理方法に関し、特に高活性な
触媒を得るため、活性成分が良好に分散した多孔質の触
媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for removing nitrogen oxides and a method for treating exhaust gas using the catalyst, and more particularly to a porous catalyst in which active components are well dispersed in order to obtain a highly active catalyst.

【0002】[0002]

【従来の技術】スメクタイト系の粘土鉱物を用いて、そ
の膨潤性のある粘土層間に着目し、イオン交換反応を利
用して層間に多核金属イオンをインターカレートし、乾
燥・焼成により層間に無機酸化物の柱を築いて、耐熱性
のある多孔体を調製する技術は触媒や吸着材の分野では
ごく一般的に知られている。例えば、層間にTiO2
ラーを形成したモンモリロナイト鉱物は、層間距離が数
Å〜十数Åで、比較的高温で焼成しても、高比表面積で
微細孔の多い構造が維持されていることが報告されてい
る(例えば、山中ら、Materials ChemistryAND Physic
s, 17(1987)87-101等)。
2. Description of the Related Art Using a smectite clay mineral, paying attention to its swelling clay layer, intercalating polynuclear metal ions between layers by utilizing an ion exchange reaction, and drying and firing an inorganic layer between the layers. The technology for constructing oxide columns to prepare a heat-resistant porous material is generally known in the field of catalysts and adsorbents. For example, a montmorillonite mineral having TiO 2 pillars formed between layers has an interlayer distance of several Å to several tens of Å, and even if it is fired at a relatively high temperature, a structure having a high specific surface area and many fine pores is maintained. Reported (eg Yamanaka et al., Materials Chemistry AND Physic
s, 17 (1987) 87-101).

【0003】[0003]

【発明が解決しようとする課題】TiO2をインターカ
レートした粘土鉱物は、微細孔の多い高比表面積の構造
体であるものの、アンモニア接触還元による窒素酸化物
除去用の触媒として適用した場合、NOxをN2に還元
する作用は小さく、そのままでは実用的な触媒に成り得
ない。本発明の目的は従来技術の有するかかる問題点を
なくし、層間にTiO2をインターカレートした粘土鉱
物を担体とする脱硝活性を高めた触媒を得ることであ
る。また、本発明の目的は前記粘土鉱物を担体とする脱
硝活性を高めた触媒を用いて脱硝効率を高めた排ガス処
理をすることである。
The clay mineral intercalated with TiO 2 is a structure having many fine pores and a high specific surface area, but when applied as a catalyst for removing nitrogen oxides by ammonia catalytic reduction, The effect of reducing NOx to N 2 is small, and it cannot be used as a practical catalyst as it is. An object of the present invention is to eliminate such problems of the prior art and to obtain a catalyst having an enhanced denitration activity, which uses a clay mineral in which TiO 2 is intercalated between layers as a carrier. Further, an object of the present invention is to perform exhaust gas treatment with enhanced denitration efficiency by using a catalyst having the denitrification activity enhanced using the clay mineral as a carrier.

【0004】[0004]

【課題を解決するための手段】本発明の上記目的は次の
構成によって達成される。すなわち、窒素酸化物を含む
排ガスを、アンモニアの存在下で還元処理する触媒にお
いて、層状の粘土鉱物の層間に酸化チタンを含み、該粘
土鉱物と該酸化チタンで形成される細孔内面にバナジウ
ムもしくは銅が担持されている粘土鉱物を用いた窒素酸
化物除去用触媒である。本発明の粘土鉱物を用いた窒素
酸化物除去用触媒は触媒中のバナジウムもしくは銅と酸
化チタンのモル比が M/Ti=0.03〜0.18 (Mはバナジウムもしくは銅)の範囲であることが望ま
しい。
The above objects of the present invention can be achieved by the following constitutions. That is, in a catalyst for reducing exhaust gas containing nitrogen oxides in the presence of ammonia, titanium oxide is contained between layers of a layered clay mineral, and vanadium or vanadium is formed on the inner surface of pores formed by the clay mineral and the titanium oxide. It is a catalyst for removing nitrogen oxides using a clay mineral on which copper is supported. The catalyst for removing nitrogen oxides using the clay mineral of the present invention has a molar ratio of vanadium or copper to titanium oxide in the catalyst of M / Ti = 0.03 to 0.18 (M is vanadium or copper). Is desirable.

【0005】また、本発明は前記粘土鉱物を用いた窒素
酸化物除去用触媒を用いて窒素酸化物を含む排ガスを処
理する排ガス処理方法である。本発明者らは、層間にT
iO2ピラーを形成した粘土鉱物について、窒素酸化物
の除去率の向上を目的として、活性成分の種類や組成の
検討を行ったところ、バナジウムもしくは銅をTiO2
と特定の組成比で細孔内面に担持することにより、高い
NOx除去率を示すことを見い出した。具体的には、モ
ンモリロナイト、バイデライト、ベントナイトなどのス
メクタイト系粘土鉱物の層間に、Ti(OC494
Ti(OC374などを出発原料とした多核Tiイオ
ンをインターカレートして、該層間にTiO2ピラーを
築き、TiO2ピラーと粘土層の間に形成される細孔内
面にバナジウムもしくは銅を担持し、かつTiO2との
モル比をM/Ti=0.03〜0.18(MはVまたは
Cu)の範囲とすることにより、上記目的を達成するこ
とができる。
Further, the present invention is an exhaust gas treatment method for treating exhaust gas containing nitrogen oxides using the catalyst for removing nitrogen oxides using the clay mineral. The present inventors have found that the T
Clay minerals were formed iO 2 pillars, for the purpose of improving the removal rate of nitrogen oxides, was examined in the type and composition of the active ingredient, TiO 2 vanadium or copper
It was found that a high NOx removal rate was exhibited by supporting the inner surface of the pores with a specific composition ratio. Specifically, polynuclear Ti ions starting from Ti (OC 4 H 9 ) 4 or Ti (OC 3 H 7 ) 4 are intercalated between layers of smectite clay minerals such as montmorillonite, beidellite, and bentonite. Then, TiO 2 pillars are built between the layers, vanadium or copper is supported on the inner surfaces of the pores formed between the TiO 2 pillars and the clay layer, and the molar ratio with TiO 2 is M / Ti = 0.03. By setting the range to 0.18 (M is V or Cu), the above object can be achieved.

【0006】[0006]

【作用】TiO2はバナジウムもしくは銅を担持するこ
とにより、高いNOxの除去性能を示す。さらに、本発
明では粘土層とTiO2ピラーの間に形成された細孔の
内面にバナジウムもしくは銅が担持されているため、反
応ガスの拡散が容易となり、極めてNOxの除去率の高
い触媒と成り得る。しかも、TiO2は耐熱性・耐酸性
に優れた粘土の層間に挟まれているためシンタリングし
にくく、バナジウムや銅を高分散した状態で維持するこ
とが可能である。本発明では、特にTiO2とバナジウ
ムもしくは銅の比が重要であり、バナジウムや銅のTi
2に対する比が高くなりすぎるとTiO2がシンタリン
グしたり、細孔が閉塞され、その結果NOxの除去率が
低下する。また、バナジウムや銅の比が少ないと十分な
活性が発現せず、実用にならない。このようにスメクタ
イト系粘土鉱物の層間にTiO2をインタカーレート
し、その層間内の細孔内面にバナジウムもしくは銅をT
iO2と一定の比率で担持することにより、NOxの除
去率の高い触媒を得ることが可能になる。
TiO 2 has a high NOx removal performance by supporting vanadium or copper. Further, in the present invention, since vanadium or copper is supported on the inner surface of the pores formed between the clay layer and the TiO 2 pillar, the diffusion of the reaction gas is facilitated, and the catalyst becomes a catalyst having an extremely high NOx removal rate. obtain. Moreover, since TiO 2 is sandwiched between clay layers having excellent heat resistance and acid resistance, it is difficult to sinter and it is possible to maintain vanadium and copper in a highly dispersed state. In the present invention, the ratio of TiO 2 to vanadium or copper is particularly important.
If the ratio to O 2 becomes too high, TiO 2 will be sintered or pores will be blocked, resulting in a decrease in the NOx removal rate. Further, if the ratio of vanadium or copper is small, sufficient activity is not expressed and it is not practical. In this way, TiO 2 is intercalated between the layers of the smectite-based clay mineral, and vanadium or copper is deposited on the inner surfaces of the pores in the layers.
By loading the catalyst with iO 2 at a constant ratio, it becomes possible to obtain a catalyst with a high NOx removal rate.

【0007】[0007]

【実施例】本発明の一実施例を説明する。 実施例1 テトラブチルチタネート(Ti(OC494)1kg
を濃度1.5(mol/kg)の塩酸10kgに加えて
40分間混合撹拌した後、Na2O2.32wt%を含
むモンモリロナイト1wt%水溶液10kgと混ぜ、6
0℃で1.5時間加温しながら撹拌した。得られた混合
液を1800rpmで3分間遠心分離を行い、上澄みを
廃棄した。底に残った沈澱物にイオン交換水を加えて撹
拌した後、上記と同様にして1800rpmで3分間遠
心分離を行い、その後上澄みを捨てた。イオン交換水を
加えて同様に遠心分離する操作を計5回行った。得られ
た沈澱物を室温において乾燥後、550℃で2時間焼成
して、本実施例の触媒担体を得た。該担体中にはNaが
0.04wt%、TiO2が55.4wt%含まれてい
た。次に得られた前記触媒担体をV/Ti(モル比)=
0.056となるように硫酸バナジル(VOSO4)水
溶液に加え、混合しながら150℃で蒸発乾固を行った
後、550℃で2時間焼成して本実施例の触媒を調製し
た。 実施例2 実施例1で得られた触媒担体をV/Ti(モル比)=
0.095となるように硫酸バナジル(VOSO4)水
溶液に加え、混合しながら150℃で蒸発乾固を行った
後、550℃で2時間焼成して本実施例の触媒を調製し
た。 実施例3 実施例1で得られた触媒担体をV/Ti(モル比)=
0.147となるように硫酸バナジル(VOSO4)水
溶液に加え、混合しながら150℃で蒸発乾固を行った
後、550℃で2時間焼成して本実施例の触媒を調製し
た。
An embodiment of the present invention will be described. Example 1 Tetrabutyl titanate (Ti (OC 4 H 9 ) 4 ) 1 kg
Was added to 10 kg of hydrochloric acid having a concentration of 1.5 (mol / kg), mixed and stirred for 40 minutes, and then mixed with 10 kg of a 1 wt% aqueous solution of montmorillonite containing 2.32 wt% of Na 2 O, 6
The mixture was stirred at 0 ° C. for 1.5 hours while heating. The obtained mixed liquid was centrifuged at 1800 rpm for 3 minutes, and the supernatant was discarded. Ion-exchanged water was added to the precipitate remaining on the bottom and the mixture was stirred, followed by centrifugation at 1800 rpm for 3 minutes in the same manner as above, and then the supernatant was discarded. The operation of adding ion-exchanged water and performing centrifugal separation was repeated 5 times in total. The obtained precipitate was dried at room temperature and then calcined at 550 ° C. for 2 hours to obtain a catalyst carrier of this example. The carrier contained 0.04 wt% Na and 55.4 wt% TiO 2 . Next, V / Ti (molar ratio) =
A catalyst of this example was prepared by adding vanadyl sulfate (VOSO 4 ) aqueous solution to give 0.056, evaporating to dryness at 150 ° C. while mixing, and then calcining at 550 ° C. for 2 hours. Example 2 The catalyst carrier obtained in Example 1 was V / Ti (molar ratio) =
The catalyst of this example was prepared by adding vanadyl sulfate (VOSO 4 ) aqueous solution to 0.095 and evaporating to dryness at 150 ° C. while mixing, followed by calcination at 550 ° C. for 2 hours. Example 3 The catalyst carrier obtained in Example 1 was V / Ti (molar ratio) =
The catalyst of this example was prepared by adding vanadyl sulfate (VOSO 4 ) aqueous solution to 0.147, evaporating to dryness at 150 ° C. while mixing, and then calcining at 550 ° C. for 2 hours.

【0008】比較例1 予め550℃で2時間焼成したTiO2からなる担体に
V/Ti(モル比)=0.031、0.053、0.0
81、0.111のバナジウムを、実施例1と同様にし
て担持して本比較例1の触媒を調製した。 比較例2 実施例1で使用したモンモリロナイトを、実施例1と同
様の条件で塩酸処理した後、550℃で2時間焼成した
担体に(V/(V+担体))×100=3.2wt%の
条件でバナジウムを担持して、TiO2を全く含まない
触媒を調製した。 比較例3 実施例1において、バナジウムを担持しない触媒を比較
例3とした。 比較例4 バナジウムの担持量をV/Ti(モル比)=0.020
としたこと以外は実施例1と同様にして、比較例4を調
製した。 比較例5 バナジウムの担持量をV/Ti(モル比)=0.201
としたこと以外は実施例1と同様にして、比較例5を調
製した。
Comparative Example 1 V / Ti (molar ratio) = 0.031, 0.053, 0.0 on a carrier made of TiO 2 which was preliminarily baked at 550 ° C. for 2 hours.
The catalyst of Comparative Example 1 was prepared by carrying 81 and 0.111 of vanadium in the same manner as in Example 1. Comparative Example 2 A carrier obtained by treating the montmorillonite used in Example 1 with hydrochloric acid under the same conditions as in Example 1 and then calcining at 550 ° C. for 2 hours (V / (V + carrier)) × 100 = 3.2 wt% A catalyst was prepared by supporting vanadium under the conditions and containing no TiO 2 . Comparative Example 3 A catalyst which does not support vanadium in Example 1 was used as Comparative Example 3. Comparative Example 4 The supported amount of vanadium was V / Ti (molar ratio) = 0.020.
Comparative Example 4 was prepared in the same manner as in Example 1 except that Comparative Example 5 The supported amount of vanadium was V / Ti (molar ratio) = 0.201.
Comparative Example 5 was prepared in the same manner as in Example 1 except that

【0009】図1に得られた触媒の比表面積およびNO
x除去率(以下、活性と称す)を示す。活性は、NH3
/NO=1.2、反応温度350℃の条件で測定を行
い、下式に従って求めた。なお、数値は550℃で2時
間焼成したTiO2にV/Ti=0.053となるよう
にバナジウムを担持した比較例1の触媒の値を基準と
し、それぞれの触媒活性を、基準に対する比で表したも
のである。 活性=(反応器の入口NO量−反応器の出口NO量)/
反応器の入口NO量 得られた触媒について、V/Ti比と比表面積および活
性の関係を図1にまとめた。この図1より、単に層間に
TiO2ピラーをインターカレートした粘土鉱物のみで
は、比表面積は高いが活性は極めて低いことが分かる。
バナジウムの添加量が増えるにつれて活性が向上し、V
/Ti=0.03〜0.18の範囲で、基準となる比較
例1の触媒よりも活性が優れている。V/Ti=0.0
3以下のとき(比較例4)は、バナジウムの担持量が少
なすぎるため、十分な活性が発現しなかったものと思わ
れる。また、V/Ti=0.18を超えると(比較例
5)比表面積が急激に低下し、活性の低下も著しくなる
が、これはTiO2のシンタリングに伴いバナジウムが
粗大粒子化したか、もしくは細孔の閉塞が起こったため
と考えられる。
The specific surface area and NO of the catalyst obtained in FIG.
x removal rate (hereinafter referred to as activity) is shown. The activity is NH 3
The measurement was carried out under the conditions of /NO=1.2 and the reaction temperature of 350 ° C., and the value was calculated according to the following formula. The numerical values are based on the value of the catalyst of Comparative Example 1 in which vanadium is supported so that V / Ti = 0.053 in TiO 2 calcined at 550 ° C. for 2 hours, and each catalytic activity is expressed as a ratio to the standard. It is a representation. Activity = (reactor inlet NO amount-reactor outlet NO amount) /
Amount of NO at Inlet of Reactor The relationship between the V / Ti ratio, the specific surface area and the activity of the obtained catalyst is summarized in FIG. From FIG. 1, it can be seen that the clay mineral in which the TiO 2 pillars are simply intercalated between the layers has a high specific surface area but an extremely low activity.
The activity increases as the amount of vanadium added increases, and V
In the range of /Ti=0.03 to 0.18, the activity is superior to that of the reference catalyst of Comparative Example 1. V / Ti = 0.0
When it is 3 or less (Comparative Example 4), it is considered that sufficient activity was not expressed because the amount of supported vanadium was too small. If it exceeds V / Ti = 0.18 (Comparative Example 5) The specific surface area decreases rapidly, or it is also significantly reduced activity, which vanadium with the sintering of TiO 2 is coarse grained, Alternatively, it is considered that the pores were clogged.

【0010】このように、TiO2をインターカレート
した粘土鉱物にバナジウムを担持することにより、活性
の高い触媒を得ることは可能であるが、バナジウムの担
持状態が活性に極めて強く影響を及ぼすため、少なくと
もバナジウムの担持量は、上記の範囲にするのが望まし
い。上記の触媒ではTiO2をインターカレートした
後、一度焼成して構造の安定化を図っているが、別段乾
燥体にバナジウムを担持しても性能に問題はなく、本発
明に制限を加えるものではない。
As described above, it is possible to obtain a highly active catalyst by supporting vanadium on a clay mineral in which TiO 2 is intercalated, but the supported state of vanadium has a very strong influence on the activity. It is desirable that at least the supported amount of vanadium be within the above range. In the above catalyst, TiO 2 is intercalated and then calcined once to stabilize the structure. However, even if vanadium is supported on the dried body in another stage, there is no problem in the performance, which limits the present invention. is not.

【0011】実施例4 実施例1のTiO2をインターカレートした担体を硝酸
銅(Cu(NO32/3H2O)水溶液に加えてCu/
Ti(モル比)=0.095(Cu+担体)×100=
4wt%)としたこと以外は、実施例1と同様にして実
施例2の触媒を得た。実施例2の触媒は銅の還元色を示
す黄緑色であった。 比較例6 比較例2で塩酸処理したモンモリロナイトを担体とし、
硝酸銅(Cu(NO32/3H2O)水溶液に加えてC
u/(Cu+担体)×100=4wt%としたこと以外
は、比較例2と同様にして比較例6の触媒を得た。得ら
れた触媒は、酸化銅の生成を示す黒色であった。活性成
分に銅を用いた触媒の性能を表1に示す。この結果よ
り、層間にTiO2ピラーを含む粘土鉱物に、銅を担持
してもバナジウムと同様に活性の高い触媒が得られるこ
とが分かる。
Example 4 The carrier in which TiO 2 was intercalated in Example 1 was added to an aqueous solution of copper nitrate (Cu (NO 3 ) 2 / 3H 2 O) to prepare Cu /
Ti (molar ratio) = 0.095 (Cu + support) × 100 =
4 wt%) except that the catalyst of Example 2 was obtained in the same manner as in Example 1. The catalyst of Example 2 was a yellowish green color showing the reduced color of copper. Comparative Example 6 Using the montmorillonite treated with hydrochloric acid in Comparative Example 2 as a carrier,
C in addition to copper nitrate (Cu (NO 3 ) 2 / 3H 2 O) aqueous solution
A catalyst of Comparative Example 6 was obtained in the same manner as Comparative Example 2 except that u / (Cu + support) × 100 = 4 wt%. The resulting catalyst was black indicating the formation of copper oxide. Table 1 shows the performance of the catalyst using copper as the active ingredient. From these results, it can be seen that even when copper is supported on a clay mineral containing TiO 2 pillars between layers, a catalyst having high activity can be obtained as with vanadium.

【0012】[0012]

【表1】 以上の結果より、層間にTiO2をインターカレートし
たスメクタイト系粘土鉱物を用い、バナジウムもしくは
銅をTiO2のモル比がM/Ti=0.03〜0.18
(MはVまたはCu)の範囲で担持することにより、比
較的簡単にNOx除去活性の高い触媒が得られることが
分かる。なお、バナジウムと銅を同時に担持しても、T
iO2との比率がM/Ti=0.03〜0.18(Mは
VまたはCu)の範囲内であれば、上記実施例と同様の
活性を得ることが可能である。
[Table 1] From the above results, a smectite clay mineral in which TiO 2 is intercalated between layers is used, and vanadium or copper has a molar ratio of TiO 2 of M / Ti = 0.03 to 0.18.
It can be seen that by supporting in the range of (M is V or Cu), a catalyst with high NOx removal activity can be obtained relatively easily. Even if vanadium and copper are loaded at the same time, T
If the ratio with iO 2 is within the range of M / Ti = 0.03 to 0.18 (M is V or Cu), it is possible to obtain the same activity as that in the above-mentioned embodiment.

【0013】[0013]

【発明の効果】本発明によれば、比較的簡単にNOx除
去活性の高い触媒が得られ、窒素酸化物含有排ガスの脱
硝ができる。
EFFECTS OF THE INVENTION According to the present invention, a catalyst having a high NOx removing activity can be obtained relatively easily, and the denitration of exhaust gas containing nitrogen oxides can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例と比較例のV/Ti比と触媒
性能の関係をまとめた図である。
FIG. 1 is a diagram summarizing the relationship between the V / Ti ratio and the catalyst performance of Examples of the present invention and Comparative Examples.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物を含む排ガスを、アンモニア
の存在下で還元処理する触媒において、層状の粘土鉱物
の層間に酸化チタンを含み、該粘土鉱物と該酸化チタン
で形成される細孔内面にバナジウムもしくは銅が担持さ
れていることを特徴とする粘土鉱物を用いた窒素酸化物
除去用触媒。
1. A catalyst for reducing exhaust gas containing nitrogen oxides in the presence of ammonia, comprising titanium oxide between layers of a layered clay mineral, and inner surfaces of pores formed by the clay mineral and the titanium oxide. A catalyst for removing nitrogen oxides using a clay mineral, characterized in that vanadium or copper is supported on.
【請求項2】 触媒中のバナジウムもしくは銅と酸化チ
タンのモル比が M/Ti=0.03〜0.18 (Mはバナジウムもしくは銅)の範囲であることを特徴
とする請求項1記載の粘土鉱物を用いた窒素酸化物除去
用触媒。
2. The catalyst according to claim 1, wherein the molar ratio of vanadium or copper to titanium oxide in the catalyst is in the range of M / Ti = 0.03 to 0.18 (M is vanadium or copper). Nitrogen oxide removal catalyst using clay minerals.
【請求項3】 請求項1または2記載の粘土鉱物を用い
た窒素酸化物除去用触媒を用いて窒素酸化物を含む排ガ
スを処理することを特徴とする排ガス処理方法。
3. A method for treating exhaust gas, which comprises treating an exhaust gas containing nitrogen oxides with the catalyst for removing nitrogen oxides using the clay mineral according to claim 1 or 2.
JP25796694A 1994-10-24 1994-10-24 Catalyst for removing nitrogen oxides using clay minerals and exhaust gas treatment method Expired - Fee Related JP3783875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25796694A JP3783875B2 (en) 1994-10-24 1994-10-24 Catalyst for removing nitrogen oxides using clay minerals and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25796694A JP3783875B2 (en) 1994-10-24 1994-10-24 Catalyst for removing nitrogen oxides using clay minerals and exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JPH08117597A true JPH08117597A (en) 1996-05-14
JP3783875B2 JP3783875B2 (en) 2006-06-07

Family

ID=17313694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25796694A Expired - Fee Related JP3783875B2 (en) 1994-10-24 1994-10-24 Catalyst for removing nitrogen oxides using clay minerals and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP3783875B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10015696A1 (en) * 2000-03-27 2001-10-25 Hyun Dai Heavy Ind Co Ltd Catalyst for reducing nitric oxide to nitrogen and water in waste gases containing sulfur dioxide comprises titanium-pillared layered clay impregnated with vanadium pentoxide
KR100415434B1 (en) * 1998-09-25 2004-03-24 현대중공업 주식회사 Bania catalyst supported on bentonite filled with titania to remove nitrogen oxides
WO2004030817A2 (en) * 2002-09-30 2004-04-15 Iko Minerals Gmbh Method for the production of catalytically active layer silicates
JP2017508605A (en) * 2014-01-23 2017-03-30 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Catalytic converter
CN114534713A (en) * 2021-04-19 2022-05-27 中冶长天国际工程有限责任公司 Method for preparing activated carbon by adding vanadium-containing ore
CN114733510A (en) * 2022-04-11 2022-07-12 苏州西热节能环保技术有限公司 High-strength marine SCR catalyst and preparation method and application thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415434B1 (en) * 1998-09-25 2004-03-24 현대중공업 주식회사 Bania catalyst supported on bentonite filled with titania to remove nitrogen oxides
DE10015696B4 (en) * 2000-03-27 2005-12-22 Hyundai Heavy Industries Co. Ltd. Catalytic mass for the removal of nitrogen oxides based on titanium column supported clay
DE10015696A1 (en) * 2000-03-27 2001-10-25 Hyun Dai Heavy Ind Co Ltd Catalyst for reducing nitric oxide to nitrogen and water in waste gases containing sulfur dioxide comprises titanium-pillared layered clay impregnated with vanadium pentoxide
US7476639B2 (en) 2002-09-30 2009-01-13 Iko Minerals Gmbh Method for the production of catalytically active layer silicates
WO2004030817A3 (en) * 2002-09-30 2004-07-01 Iko Minerals Gmbh Method for the production of catalytically active layer silicates
CN100364667C (en) * 2002-09-30 2008-01-30 Iko矿物有限公司 Method for the production of catalytically active layer silicates
WO2004030817A2 (en) * 2002-09-30 2004-04-15 Iko Minerals Gmbh Method for the production of catalytically active layer silicates
JP2017508605A (en) * 2014-01-23 2017-03-30 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Catalytic converter
US10300461B2 (en) 2014-01-23 2019-05-28 Johnson Matthey Public Limited Company Catalytic converter
US11291975B2 (en) 2014-01-23 2022-04-05 Johnson Matthey Public Limited Company Catalytic converter
CN114534713A (en) * 2021-04-19 2022-05-27 中冶长天国际工程有限责任公司 Method for preparing activated carbon by adding vanadium-containing ore
CN114534713B (en) * 2021-04-19 2024-02-13 中冶长天国际工程有限责任公司 Method for preparing activated carbon by adding vanadium-containing ore
CN114733510A (en) * 2022-04-11 2022-07-12 苏州西热节能环保技术有限公司 High-strength marine SCR catalyst and preparation method and application thereof
CN114733510B (en) * 2022-04-11 2024-04-05 苏州西热节能环保技术有限公司 High-strength marine SCR catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JP3783875B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
JP2682628B2 (en) Nitrogen oxide removal method and removal catalyst
KR101121184B1 (en) Exhaust gas catalyst
KR100328892B1 (en) Catalyst for removing organic halogen compounds, preparation method therefor and method for removing organic halogen compounds
JPH01168341A (en) Catalyst for selectively reducing nitrogen oxide using ammonia
KR101629483B1 (en) Vanadium-based denitration catalyst and preparing method of the same
US5102853A (en) Three-way catalyst for automotive emission control
JPH05105428A (en) Cerium oxide having oxygen absorbing and releasing ability and its production
JPH06100319A (en) Multiple oxide with perovskite structure and its production
CN109603808B (en) Preparation method and application of zirconium pillared montmorillonite-loaded Ce-Nb composite catalyst
JP2005144299A (en) Nitrogen oxide removal catalyst and nitrogen oxide removal method
KR20190068173A (en) SCR Catalyst Added Carbon Supported Active Catalytic Materials and Preparation Method Thereof
JP3783875B2 (en) Catalyst for removing nitrogen oxides using clay minerals and exhaust gas treatment method
JP3312870B2 (en) Catalyst for removing organic halogen compound, method for preparing the same, and method for removing organic halogen compound
JP3337634B2 (en) Denitration catalyst, its preparation method, and denitration method
JP2583912B2 (en) Nitrogen oxide removal catalyst
JP3436425B2 (en) Exhaust gas purification catalyst carrier and exhaust gas purification catalyst
JP3496964B2 (en) Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same
JP2000237588A (en) Production of catalyst carrier for purifying waste gas
JP3984122B2 (en) NOx removal catalyst, NOx removal method and method
JP3749078B2 (en) NOx removal catalyst and NOx removal method
JPH01317545A (en) Preparation of denitrification catalyst
JP2012196653A (en) Catalyst carrier, catalyst for purifying exhaust gas using the same, and method of purifying exhaust gas using the catalyst
JPH08229412A (en) Catalyst and method for removing nitrogen oxide
JPH08150324A (en) Method for catalytically reducing nitrogen oxide
JPH07114964B2 (en) Nitrogen oxide reduction catalyst and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060309

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees