JPH08114515A - Magnetostriction type torque sensor - Google Patents

Magnetostriction type torque sensor

Info

Publication number
JPH08114515A
JPH08114515A JP25094994A JP25094994A JPH08114515A JP H08114515 A JPH08114515 A JP H08114515A JP 25094994 A JP25094994 A JP 25094994A JP 25094994 A JP25094994 A JP 25094994A JP H08114515 A JPH08114515 A JP H08114515A
Authority
JP
Japan
Prior art keywords
magnetic
magnetostrictive
torque
coil
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25094994A
Other languages
Japanese (ja)
Inventor
Masami Takami
正己 高三
Katsuaki Tanaka
勝章 田中
Hiroshi Fukasaku
博史 深作
Taiji Ootate
泰治 大立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP25094994A priority Critical patent/JPH08114515A/en
Publication of JPH08114515A publication Critical patent/JPH08114515A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE: To provide a magnetostriction type torque sensor by which accurate torque can be measured by preventing dislocation of a joining part caused by a temperature change and vibration, and eliminating effect of an eddy current. CONSTITUTION: A coil is beforehand housed in magnetic members 13a and 13b having two-piece constitution, and insulating members 21 are interposed in a contact plane between the magnetic members 13a and 13b, and they are joined together by using an adhesive 22, and a cylindrical magnetic member 13 is manufactured. The magnetic member 13 manufactured in this way is incorporated into a magnetostriction type torque sensor, and an alternating current is flowed to the coil, and a magnetic flux passing through a magnetostrictive film formed on a rotary shaft is manufactured, and a change in magnetic permeability of the magnetostrictive film changing by stress applied to the rotary shaft is measured, and torque applied to the rotary shaft is accurately measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は回転体のトルクを測定す
る磁歪式トルクセンサに係り、特に磁歪式トルクセンサ
の温度変化に対するトルク測定精度の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetostrictive torque sensor for measuring the torque of a rotating body, and more particularly to improving the torque measurement accuracy of the magnetostrictive torque sensor with respect to temperature changes.

【0002】[0002]

【従来の技術】モータ等の回転体のトルクを測定する方
法として、今日、ピエゾ素子、半導体圧電素子、磁歪セ
ンサ、等の各種センサが開発され、回転体のトルク測定
にこれらの小型のトルクセンサが用いられている。しか
し、回転体に直接取り付け、回転体に生ずる歪みを電圧
変化として取り出すピエゾ素子では、素子から電圧出力
を得る為、例えば回転体にスリップリング等を取り付け
る必要があり、装置が複雑となる。この点、磁歪センサ
は回転体に生じる応力を磁界の変化として検出し、回転
体と非接触で回転体にかかるトルクを測定することがで
きる利点を有する。
2. Description of the Related Art Today, various sensors such as a piezo element, a semiconductor piezoelectric element, and a magnetostrictive sensor have been developed as a method for measuring the torque of a rotating body such as a motor. Is used. However, in the piezo element that is directly attached to the rotating body and takes out the strain generated in the rotating body as a voltage change, a voltage output is obtained from the element, so that a slip ring or the like needs to be attached to the rotating body, which complicates the device. In this respect, the magnetostrictive sensor has an advantage that it can detect the stress generated in the rotating body as a change in the magnetic field and measure the torque applied to the rotating body without contacting the rotating body.

【0003】図4は、上述の磁歪センサを用いたトルク
センサの断面図である。同図において、回転軸1は測定
する回転体の軸が連結する部材であり、回転軸1には磁
歪膜2及び3が形成されている。磁歪膜2、3の周面近
傍にはハウジング4に収納されたコイル5、6が配設さ
れている。このコイル5、6はコイルボビンに巻装され
ヨーク7に取り付けられており、このヨーク7は絶縁部
材8を介してハウジング4に取り付けられている。
FIG. 4 is a sectional view of a torque sensor using the above-mentioned magnetostrictive sensor. In the figure, a rotating shaft 1 is a member to which the shaft of a rotating body to be measured is connected, and the rotating shaft 1 is provided with magnetostrictive films 2 and 3. Coils 5 and 6 housed in a housing 4 are arranged near the peripheral surfaces of the magnetostrictive films 2 and 3. The coils 5 and 6 are wound around a coil bobbin and attached to a yoke 7. The yoke 7 is attached to the housing 4 via an insulating member 8.

【0004】上述の構成の磁歪式トルクセンサにおい
て、ヨーク7は磁歪式トルクセンサに組み込む前は、図
5に示す様に所謂2つ割り構成であり(尚、図5(a)
は正面図であり、図5(b)はその側面図である)、ヨ
ーク7a、7bの2個で構成されている。
In the magnetostrictive torque sensor having the above-mentioned structure, the yoke 7 has a so-called split structure as shown in FIG. 5 before being incorporated in the magnetostrictive torque sensor (note that FIG. 5A).
Is a front view, and FIG. 5 (b) is a side view thereof), and two yokes 7a and 7b.

【0005】このヨーク7a、7bを磁歪式トルクセン
サに組み込む際には、先ず、ヨーク7a、7bの溝7
a’、7b’に上述のコイル5を収納し、溝7a”、7
b”に上述のコイル6を収納する。そして、2つ割り状
態のヨーク7a、7b間に回転軸1を通し、ヨーク7
a、7bを接合し、例えば不図示のバンドを巻装して両
ヨーク7a、7bを保定する。その後、ヨーク7a、7
bは保持部材9によってハウジング4に固定され、その
際、絶縁部材8によりハウジング4とヨーク7a、及び
ハウジング4とヨーク7bは絶縁される。
When incorporating the yokes 7a and 7b into the magnetostrictive torque sensor, first, the grooves 7 of the yokes 7a and 7b are formed.
The coil 5 described above is housed in a ', 7b', and the grooves 7a ", 7 '
The above-mentioned coil 6 is housed in b ″. Then, the rotary shaft 1 is passed between the yokes 7a and 7b in the two-split state, and
The yokes 7a and 7b are retained by joining a and 7b and winding a band (not shown), for example. Then, the yoke 7a, 7
b is fixed to the housing 4 by the holding member 9, and the insulating member 8 insulates the housing 4 from the yoke 7a and the housing 4 from the yoke 7b.

【0006】この様にして作成された磁歪式トルクセン
サの回転軸1に、一定方向のトルクがかかると、磁歪膜
2及び3の磁気抵抗が変化し、コイル5、6により形成
される磁界も変化し、例えば磁気異方性が互いに対称と
なるように配設された磁歪膜2、3では、その変化も倍
増して検出され、コイル5、6の出力電圧の変化からト
ルクを検出する。
When a torque in a fixed direction is applied to the rotary shaft 1 of the magnetostrictive torque sensor thus manufactured, the magnetic resistance of the magnetostrictive films 2 and 3 changes, and the magnetic field formed by the coils 5 and 6 also changes. In the magnetostrictive films 2 and 3 which are changed and are arranged so that the magnetic anisotropies are symmetrical to each other, the change is also doubled and detected, and the torque is detected from the change in the output voltage of the coils 5 and 6.

【0007】[0007]

【発明が解決しようとする課題】上述の構成の磁歪式ト
ルクセンサでは、コイル5及び6により形成される磁界
の発生に伴って、回転軸1の周方向にうず電流が発生
し、このうず電流はヨーク7(7a、7b)内を流れ
る。しかし、上述の磁歪式トルクセンサでは、前述の様
にヨーク7は2つ割りのヨーク7a、7bを接合して組
み立てられているのでヨーク7a、7b間に接合部を有
する。この接合部は、ヨーク7a、7bがバンドで抑え
られている為、通常密接している。しかし、ヨーク7
a、7bはパーマロイ等で構成され、所定の熱膨張率を
有し、温度変化によりその密接度が変わる。この様に温
度変化により、接合部の密接度が変わると接触抵抗(電
気抵抗値)も変化し、このヨーク7a、7b内を流れる
うず電流が影響を受ける。
In the magnetostrictive torque sensor having the above structure, an eddy current is generated in the circumferential direction of the rotary shaft 1 with the generation of the magnetic field formed by the coils 5 and 6, and this eddy current is generated. Flows in the yoke 7 (7a, 7b). However, in the above-described magnetostrictive torque sensor, the yoke 7 is assembled by joining the two split yokes 7a and 7b as described above, and thus has a joint portion between the yokes 7a and 7b. Since the yokes 7a and 7b are restrained by the band, this joint portion is normally in close contact. But York 7
Each of a and 7b is made of permalloy or the like, has a predetermined coefficient of thermal expansion, and its closeness changes depending on the temperature change. As described above, when the degree of contact of the joint changes due to the temperature change, the contact resistance (electrical resistance value) also changes, and the eddy currents flowing in the yokes 7a and 7b are affected.

【0008】例えば、温度変化によりヨーク7a、7b
接合部の密接度が低下すると、接合部の接触抵抗は増加
し、ヨーク7a、7bに流れるうず電流は減る。一方、
温度変化により、ヨーク7a、7b接合部の密接度が増
すと、接合部の接触抵抗は低下し、ヨーク7a、7bに
流れるうず電流は増加する。したがって、温度変化によ
り、ヨーク7a、7b内を流れるうず電流は変化し、こ
のうず電流の変化によりコイル5及び6に発生する磁界
は影響を受け、正確なトルクの測定ができない。例え
ば、常温において零点設定しても、後の温度変化により
ドリフトし、基準値がずれてしまう。
For example, the yokes 7a and 7b are changed due to temperature change.
When the closeness of the joint decreases, the contact resistance of the joint increases and the eddy current flowing through the yokes 7a and 7b decreases. on the other hand,
When the closeness of the joints of the yokes 7a and 7b increases due to the temperature change, the contact resistance of the joints decreases and the eddy current flowing through the yokes 7a and 7b increases. Therefore, the eddy current flowing in the yokes 7a and 7b changes due to the temperature change, and the magnetic field generated in the coils 5 and 6 is affected by the change in the eddy current, and accurate torque measurement cannot be performed. For example, even if the zero point is set at room temperature, it drifts due to the subsequent temperature change and the reference value shifts.

【0009】また、従来のヨーク7は、上述の様に2つ
割りのヨーク7a、7bで構成されている為、バンドで
保持しても上述の温度変化や、振動等によりその接合部
が位置ずれを生じる。すなわち、従来の磁歪式トルクセ
ンサでは、接合部が接着剤等で固定されていない為、位
置ずれが生じた場合接合部の接触抵抗が増し、うず電流
が変化する原因となる。したがって、従来の磁歪式トル
クセンサではこの点からも、予め設定した基準値はず
れ、正確なトルク測定ができない。
Further, since the conventional yoke 7 is composed of the two split yokes 7a and 7b as described above, even if it is held by the band, the joint portion is located due to the above-mentioned temperature change or vibration. A gap occurs. That is, in the conventional magnetostrictive torque sensor, since the joint portion is not fixed with an adhesive or the like, when the position shift occurs, the contact resistance of the joint portion increases, which causes the eddy current to change. Therefore, the conventional magnetostrictive torque sensor also deviates from the preset reference value from this point, and accurate torque measurement cannot be performed.

【0010】本発明は上記問題に鑑み、温度変化や振動
による接合部のずれを防止し、うず電流の影響をなく
し、正確なトルク測定を可能とする磁歪式トルクセンサ
を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a magnetostrictive torque sensor capable of preventing displacement of a joint portion due to temperature change or vibration, eliminating the influence of eddy current, and enabling accurate torque measurement. To do.

【0011】[0011]

【課題を解決するための手段】本発明の1つの構成は、
2個の相似形磁性部材を接合し該接合部に絶縁部材を介
装した円筒状磁性部材と、該円筒状磁性部材の内周に環
状に形成された凹部に配設されたコイルと、前記円筒状
磁性部材の内周部と所定の隙間を有して回転自在に配設
された回転軸と、該回転軸の周面に形成され該回転軸に
負荷されるトルクを透磁率の変化として検出し、前記コ
イルの作成する磁束を変化させる磁歪センサと、で構成
する磁歪式トルクセンサである。
One structure of the present invention is as follows.
A cylindrical magnetic member in which two similar magnetic members are joined and an insulating member is interposed in the joined portion; a coil disposed in a recess formed in an inner periphery of the cylindrical magnetic member in an annular shape; A rotary shaft rotatably arranged with a predetermined gap from the inner peripheral portion of the cylindrical magnetic member, and a torque formed on the peripheral surface of the rotary shaft and applied to the rotary shaft, as a change in magnetic permeability. A magnetostrictive sensor for detecting and changing a magnetic flux created by the coil.

【0012】また、前記構成の中で、前記回転軸には、
例えば磁気異方性の異なる2つの磁歪膜が配設され、2
つの磁歪膜の磁気異方性は例えば対称である。また、前
記構成の中で、前記円筒状磁性部材は、2個の相似形磁
性部材が接着剤で接合されて構成されている。
Further, in the above construction, the rotary shaft is
For example, two magnetostrictive films having different magnetic anisotropies are arranged,
The magnetic anisotropy of the two magnetostrictive films is symmetrical, for example. Further, in the above configuration, the cylindrical magnetic member is configured by joining two similar magnetic members with an adhesive.

【0013】さらに、本発明の他の構成は、トルクが負
荷される回転軸と、該回転軸に形成され該回転軸に負荷
されるトルクの変化を検出する磁歪センサと、該磁歪セ
ンサの近傍に形成され該磁歪センサに磁束を供給するコ
イルと、2個の相似形磁性部材に絶縁部材を介装して円
筒状に形成し、前記磁歪センサと共に前記コイルが作成
する磁束に基づく磁気回路を形成する円筒状磁性部材と
で構成する磁歪式トルクセンサである。
Further, according to another structure of the present invention, a rotating shaft to which a torque is applied, a magnetostrictive sensor formed on the rotating shaft for detecting a change in the torque applied to the rotating shaft, and the vicinity of the magnetostrictive sensor. And a coil for supplying magnetic flux to the magnetostrictive sensor, and a magnetic circuit based on the magnetic flux created by the coil together with the magnetostrictive sensor, which is formed into a cylindrical shape by interposing an insulating member between two similar magnetic members. It is a magnetostrictive torque sensor configured with a formed cylindrical magnetic member.

【0014】また、前記構成の中で、前記回転軸には、
例えば磁気異方性の異なる2つの磁歪膜が配設され、2
つの磁歪膜の磁気異方性は例えば対称である。また、前
記構成の中で、前記円筒状磁性部材は、2個の相似形磁
性部材が接着剤で接合されて構成されている。
In the above construction, the rotary shaft is
For example, two magnetostrictive films having different magnetic anisotropies are arranged,
The magnetic anisotropy of the two magnetostrictive films is symmetrical, for example. Further, in the above configuration, the cylindrical magnetic member is configured by joining two similar magnetic members with an adhesive.

【0015】[0015]

【作用】磁歪式トルクセンサとして、2つ割りの磁性部
材を接合して使用する場合、温度に基づく接触抵抗の変
化からうず電流の影響を受けトルクの測定が正確に行え
なかったが、本発明は2つ割りの磁性部材を接合する
際、その接合部にフィルム等の絶縁部材を介装し、うず
電流の流れを遮断するので、回転軸に取り付けられた磁
歪膜の透磁率の変化をうず電流に影響されることなく正
確に測定することができ、しかも2個の磁性部材は上述
の絶縁部材を介装すると共に、接着剤等で接着固定する
ので、温度変化や振動等により位置ずれを生じることも
ない。
In the case of using the magnetostrictive torque sensor by joining the two magnetic members, the torque cannot be measured accurately due to the influence of the eddy current due to the change of the contact resistance based on the temperature. When joining two halves of a magnetic member, an insulating member such as a film is interposed at the joint to block the flow of eddy currents, so that the change in the magnetic permeability of the magnetostrictive film attached to the rotating shaft can be prevented. Accurate measurement is possible without being affected by electric current. Moreover, since the two magnetic members have the above-mentioned insulating member interposed therebetween and are fixedly adhered with an adhesive or the like, the positional deviation due to temperature change or vibration is caused. It never happens.

【0016】また、トルクが加わる回転軸には、例えば
磁気異方性の異なる2つの磁歪膜を配設することによ
り、互いに対称の応力、例えば圧縮と伸張という応力を
検出でき、より正確なトルク測定を行うことが可能とな
る。
Further, by disposing, for example, two magnetostrictive films having different magnetic anisotropies on the rotating shaft to which torque is applied, stresses symmetrical to each other, for example, stresses of compression and expansion can be detected, and more accurate torque can be obtained. It becomes possible to perform the measurement.

【0017】[0017]

【実施例】以下、本発明の一実施例について、図面を参
照しながら説明する。図1は一実施例の磁歪式トルクセ
ンサの断面図である。同図において、本実施例の磁歪式
トルクセンサ10は、トルクがかかる回転軸11と、ハ
ウジング12に収納された円筒状の磁性部材(ヨーク)
13、コイル14、基板15、絶縁部材16、等で構成
されている。回転軸11には、その一端に、モータ等の
回転軸11の軸が機構的に結合され、又は回転体11が
モータ等の回転体の回転軸そのもので構成されている。
また、回転軸11には磁歪膜11a、11bが配設され
ている。この磁歪膜11a、11bはトルクがかかると
(応力が加えられると)、透磁率が変化する素子であ
り、磁歪膜11aと11bには膜そのものに溝11
a’、11b’が形成されている。この溝11a’、1
1b’は互いに直交する方向に形成され、互いに対称の
応力、例えば圧縮と伸張という応力を検出でき、且つ後
述する測定回路により磁歪膜11a、11bの検出出力
を差動増幅しトルクの確実な測定を行う構成である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a magnetostrictive torque sensor according to an embodiment. Referring to FIG. 1, a magnetostrictive torque sensor 10 according to this embodiment includes a rotating shaft 11 to which torque is applied and a cylindrical magnetic member (yoke) housed in a housing 12.
13, the coil 14, the substrate 15, the insulating member 16, and the like. The rotary shaft 11 is mechanically coupled to one end thereof with the shaft of the rotary shaft 11 such as a motor, or the rotary body 11 is constituted by the rotary shaft itself of the rotary body such as a motor.
Magnetostrictive films 11a and 11b are arranged on the rotating shaft 11. The magnetostrictive films 11a and 11b are elements whose magnetic permeability changes when torque is applied (when stress is applied), and the magnetostrictive films 11a and 11b have grooves 11 in the films themselves.
a'and 11b 'are formed. This groove 11a ', 1
1b 'are formed in directions orthogonal to each other, and stresses symmetrical to each other, for example, stresses of compression and extension, can be detected, and the detection output of the magnetostrictive films 11a and 11b is differentially amplified by a measurement circuit described later to reliably measure torque. It is a configuration for performing.

【0018】尚、回転軸11はハウジング12に固定さ
れた軸受け20により回転自在に構成されている。ま
た、回転軸11の直径は、例えばL’で構成されてい
る。一方、磁性部材13はコイル14から発生する磁束
の磁路を形成すると共に、この磁束がハウジング12
(及びハウジング12外)へ漏出することを防止する部
材である。図2は、この磁性部材13の構成を示す図で
あり、同図(a)は磁性部材13の正面図を示し、同図
(b)はその側面図を示す。同図に示す様に、磁性部材
13は2つ割りの磁性部材13a、13bで構成され、
磁性部材13a、13bは互いに相似形である。また、
磁性部材13の内径Lは、上述の回転軸11の外径L’
(図1)より数mm(例えば、2〜4mm)広く形成さ
れ、この磁性部材13を磁歪式トルクセンサ10に取り
付けた状態で、回転軸11と磁性部材13の間隔が、例
えば1〜2mmとなる様に構成されている。
The rotary shaft 11 is rotatably constituted by a bearing 20 fixed to the housing 12. The diameter of the rotating shaft 11 is, for example, L '. On the other hand, the magnetic member 13 forms a magnetic path of the magnetic flux generated from the coil 14, and the magnetic flux is generated by the housing 12.
(And outside the housing 12) is a member that prevents leakage. 2A and 2B are views showing the configuration of the magnetic member 13, where FIG. 2A shows a front view of the magnetic member 13 and FIG. 2B shows a side view thereof. As shown in the figure, the magnetic member 13 is composed of two split magnetic members 13a and 13b,
The magnetic members 13a and 13b are similar to each other. Also,
The inner diameter L of the magnetic member 13 is the outer diameter L ′ of the rotating shaft 11 described above.
It is formed several mm (for example, 2 to 4 mm) wider than (FIG. 1), and when the magnetic member 13 is attached to the magnetostrictive torque sensor 10, the gap between the rotary shaft 11 and the magnetic member 13 is, for example, 1 to 2 mm. It is configured to be.

【0019】また、磁性部材13a、13bの接合部F
には、絶縁部材21が介装されている。この絶縁部材2
1は円筒状の磁性部材13に発生するうず電流を遮断す
る部材であり、フィルム等の薄い材料で構成されてい
る。尚、同図では説明上、ある程度の厚さを有して示し
ている。また、絶縁部材21は絶縁性を有していれば良
く、誘電性を有する材料で構成しても良い。
The joint F of the magnetic members 13a and 13b
An insulating member 21 is interposed between the two. This insulating member 2
Reference numeral 1 denotes a member that blocks an eddy current generated in the cylindrical magnetic member 13, and is made of a thin material such as a film. It should be noted that, in the same figure, for the sake of explanation, it is shown as having a certain thickness. Further, the insulating member 21 need only have an insulating property, and may be made of a material having a dielectric property.

【0020】また、磁性部材13aと13bの接合部F
には絶縁部材21が介装されると共に、接着剤22によ
り磁性部材13aと13bは接続、固定されている。こ
の接着剤22も絶縁性の材料で構成されている。したが
って、実質的には磁性部材13a,13b間には絶縁部
材21と、接着剤22が介装されることになり、この厚
さを考慮して磁性部材13a,13bの周径(内径L)
は絶縁部材21を接着剤22と共に介装した時の層厚
分、狭い周径で構成されている。
Further, the joint F between the magnetic members 13a and 13b
An insulating member 21 is interposed between the magnetic members 13a and 13b, and the magnetic members 13a and 13b are connected and fixed by an adhesive 22. This adhesive 22 is also made of an insulating material. Therefore, the insulating member 21 and the adhesive 22 are substantially interposed between the magnetic members 13a and 13b, and in consideration of this thickness, the circumferential diameter (inner diameter L) of the magnetic members 13a and 13b.
Has a narrow peripheral diameter corresponding to the layer thickness when the insulating member 21 is interposed with the adhesive 22.

【0021】一方、上述の磁性部材13の凹部にはコイ
ル14が配設され(図1参照)、コイル14はコイルボ
ビン17に巻装されている。このコイルボビン17には
1次コイルと2次コイルが巻装され、1次コイルは励磁
用の磁束形成を行い、2次コイルは1次コイルで形成し
た磁束が磁歪膜11a、11bにより影響を受け、変化
した磁束の検出用コイルを構成する。尚、コイルボビン
17に巻装されるコイル14の出力は、不図示のリード
線により基板15に接続される。尚、図2(a)に示す
17’は磁性部材13の凹部に配設されるコイルボビン
17(コイル14)の位置を示す。また、凹部は磁性部
材13の内周面に沿って、所定の幅で形成され、コイル
ボビン17はこの凹部に沿って配設されている。
On the other hand, a coil 14 is provided in the recess of the above-mentioned magnetic member 13 (see FIG. 1), and the coil 14 is wound around a coil bobbin 17. A primary coil and a secondary coil are wound around the coil bobbin 17, the primary coil forms a magnetic flux for excitation, and the secondary coil has a magnetic flux formed by the primary coil affected by the magnetostrictive films 11a and 11b. , A coil for detecting the changed magnetic flux. The output of the coil 14 wound around the coil bobbin 17 is connected to the substrate 15 by a lead wire (not shown). In addition, 17 'shown in FIG. 2A shows the position of the coil bobbin 17 (coil 14) disposed in the recess of the magnetic member 13. The recess is formed with a predetermined width along the inner peripheral surface of the magnetic member 13, and the coil bobbin 17 is disposed along the recess.

【0022】また、リード線が接続される基板15に
は、2次コイルで検出した信号から回転軸11にかかる
トルクを測定する処理回路が設けられている。図3はこ
の処理回路、及び1次コイル、2次コイルの接続構成を
示す図である。尚、同図において基板15内の回路は点
線で囲った範囲であり、2個のコイルボビン17に配設
された1次コイル(図3に14bで示す)は直列に接続
され、交流電源23から交流電流が供給され、励磁用磁
束を作成する。また、2次コイル(図3に14cで示
す)は2個のコイルボビンについてそれぞれ独立して処
理回路24に接続され、磁歪膜11a、11bに影響さ
れた磁界の変化を処理回路24へ出力する。
The substrate 15 to which the lead wire is connected is provided with a processing circuit for measuring the torque applied to the rotary shaft 11 from the signal detected by the secondary coil. FIG. 3 is a diagram showing the connection configuration of this processing circuit, the primary coil, and the secondary coil. In the figure, the circuit inside the substrate 15 is a range surrounded by a dotted line, and the primary coils (indicated by 14b in FIG. 3) arranged in the two coil bobbins 17 are connected in series and are connected from the AC power source 23. An alternating current is supplied to create a magnetic flux for excitation. The secondary coil (indicated by 14c in FIG. 3) is independently connected to the processing circuit 24 for each of the two coil bobbins, and outputs the change in the magnetic field affected by the magnetostrictive films 11a and 11b to the processing circuit 24.

【0023】以上の構成の磁歪式トルクセンサ10にお
いて、回転軸11にかかるトルクを測定する時の処理を
説明する。先ず、トルクの測定を希望する回転体の軸を
磁歪式トルクセンサ10の回転軸11に連結する。尚、
トルクを測定しようとする回転体の軸そのものが、回転
軸11であっても良い。この状態で前述の交流電源23
から1次コイル14bに交流電流を供給し、1次コイル
14bを励磁して上述の磁歪膜11a、11bを通過す
る磁界(励磁用磁界)を作成する。この状態で回転軸1
1にトルクがかかっていなければ(所謂無負荷であれ
ば)、磁歪膜11a、11bでの透磁率に変化はなく、
又は応力が生じたとしても磁歪膜11a、11bに生じ
る応力は対称的で等しいので変化した透磁率は処理回路
24にて出力電圧の段階で互いに打ち消し合う。したが
って、2次コイル14cで検出する磁界に基づく2次コ
イル14cの出力電圧は実質的に変化せず、この時、処
理回路24は回転軸11にトルクがかかっていないと判
断する。
In the magnetostrictive torque sensor 10 having the above structure, a process for measuring the torque applied to the rotary shaft 11 will be described. First, the shaft of the rotating body whose torque is desired to be measured is connected to the rotating shaft 11 of the magnetostrictive torque sensor 10. still,
The rotary shaft 11 itself may be the shaft of the rotating body for measuring the torque. In this state, the above-mentioned AC power source 23
To supply an alternating current to the primary coil 14b to excite the primary coil 14b to create a magnetic field (excitation magnetic field) that passes through the magnetostrictive films 11a and 11b. Rotating shaft 1 in this state
If no torque is applied to 1 (so-called no load), there is no change in the magnetic permeability of the magnetostrictive films 11a and 11b,
Alternatively, even if a stress is generated, the stresses generated in the magnetostrictive films 11a and 11b are symmetrical and equal, and thus the changed magnetic permeability cancels each other out at the stage of the output voltage in the processing circuit 24. Therefore, the output voltage of the secondary coil 14c based on the magnetic field detected by the secondary coil 14c does not substantially change, and at this time, the processing circuit 24 determines that the torque is not applied to the rotating shaft 11.

【0024】一方、回転軸11に一定方向のトルクがか
かると、磁気異方性により一方の磁歪膜(例えば磁歪膜
11a)の透磁率は増大し、他方の磁歪膜(例えば磁歪
膜11b)の透磁率は低下する。この為、磁歪膜11
a、11bを通過する磁界に変化が生じ、例えば2次コ
イル14cの両電圧を比較し差動出力する処理回路24
の出力は大きくなり、確実なトルクの測定を行うことが
できる。
On the other hand, when torque is applied to the rotating shaft 11 in a fixed direction, the magnetic permeability of one magnetostrictive film (for example, the magnetostrictive film 11a) increases due to magnetic anisotropy, and that of the other magnetostrictive film (for example, the magnetostrictive film 11b). The magnetic permeability decreases. Therefore, the magnetostrictive film 11
The magnetic field passing through a and 11b is changed, and for example, the processing circuit 24 that compares both voltages of the secondary coil 14c and outputs differentially.
Output is increased, and reliable torque measurement can be performed.

【0025】また、上述のトルク測定の際、1次コイル
14bにより形成される磁束によって、磁性部材13に
はうず電流が発生するはずである。この時発生するはず
のうず電流は、上述の磁界を切る方向に形成される為、
円筒状の磁性部材13の周方向に形成される。しかし、
本実施例の磁歪式トルクセンサ10は、2つ割り構成の
磁性部材13aと13bを接合して作成するものである
が、その接合部に絶縁部材21が介装されているので、
磁性部材13内を流れるうず電流を遮断することができ
る。すなわち、磁性部材13は絶縁部材21で電気的に
遮断されている為、うず電流は流れず、従って従来の様
に温度変化により接合部の密接度が変化し、うず電流量
が変わるという問題は発生しない。したがって、回転体
11にかかるトルクを測定する際、うず電流に影響され
ることなく回転体11にかかるトルクを正確に測定する
ことができる。
In the above torque measurement, an eddy current should be generated in the magnetic member 13 due to the magnetic flux formed by the primary coil 14b. The eddy current that should be generated at this time is formed in the direction of cutting the above-mentioned magnetic field,
It is formed in the circumferential direction of the cylindrical magnetic member 13. But,
The magnetostrictive torque sensor 10 of the present embodiment is made by joining the magnetic members 13a and 13b having a two-piece structure, but since the insulating member 21 is interposed at the joint,
The eddy current flowing in the magnetic member 13 can be cut off. That is, since the magnetic member 13 is electrically cut off by the insulating member 21, the eddy current does not flow. Therefore, the problem that the closeness of the joint changes due to the temperature change and the eddy current amount changes unlike the conventional case. Does not occur. Therefore, when measuring the torque applied to the rotor 11, the torque applied to the rotor 11 can be accurately measured without being affected by the eddy current.

【0026】但し、うず電流が全く零になるものではな
く、例えば絶縁部材21で遮蔽された回路、すなわち、
それぞれの磁性部材13a、13b内をうず電流が流れ
ることは考えられる。しかし、この時流れるうず電流
は、それぞれの磁性部材13a、13b内を還流する電
流であり、従来の様に接合部を流れる電流ではない為、
温度変化によりうず電流量が影響を受けることはない。
However, the eddy current does not become completely zero, for example, a circuit shielded by the insulating member 21, that is,
It is conceivable that an eddy current flows in each of the magnetic members 13a and 13b. However, the eddy current that flows at this time is a current that flows back in the respective magnetic members 13a and 13b, and is not a current that flows through the junction unlike in the conventional case.
The eddy current amount is not affected by the temperature change.

【0027】また、本実施例では磁性部材13aと13
bを接着剤で接合することにより、温度変化はもとよ
り、振動等に対しても磁性部材13a、13bの接合部
がずれることがない。
In this embodiment, the magnetic members 13a and 13a
By joining b with an adhesive, the joining portion of the magnetic members 13a and 13b does not shift not only when the temperature changes but also when vibration or the like occurs.

【0028】尚、本実施例では磁性部材13a、13b
間に絶縁部材21を介装したこと、及びその接合を接着
剤を用いて行うことから、従来に比べて、基準値に対す
る温度ドリフトの低減効果は大きく、例えば従来200
%/FS(フルスケール)であったものが、10%/F
S(フルスケール)まで低下した。
In this embodiment, the magnetic members 13a and 13b are used.
Since the insulating member 21 is interposed between them and the bonding is performed by using an adhesive, the effect of reducing the temperature drift with respect to the reference value is large as compared with the conventional case.
% / FS (full scale) was 10% / F
It decreased to S (full scale).

【0029】また、上述の実施例では磁歪膜は11a、
11bとして2枚で構成したが、必ずしも2枚で構成す
る必要はない。検出感度は落ちるが、1枚で構成しても
良い。
In the above embodiment, the magnetostrictive film is 11a,
Although 11b is composed of two sheets, it is not always required to be composed of two sheets. Although the detection sensitivity is reduced, one sheet may be used.

【0030】さらに、磁性部材13a、13bはパーマ
ロイに限らず、磁性材料であり且つうず電流が流れる導
電性材料で構成されるものであれば磁性部材として使用
することができる。
Further, the magnetic members 13a and 13b are not limited to permalloy, but may be magnetic members as long as they are magnetic materials and are made of a conductive material through which an eddy current flows.

【0031】[0031]

【発明の効果】以上詳細に説明したように、本発明によ
れば2つ割り構成の磁性部材間に絶縁部材を介装するの
で、うず電流が殆ど流れず、温度ドリフトをなくし、回
転軸にかかるトルクを正確に測定することができる。
As described above in detail, according to the present invention, since the insulating member is interposed between the magnetic members having the two-divided structure, the eddy current hardly flows, the temperature drift is eliminated, and the rotating shaft is not moved. Such torque can be measured accurately.

【0032】また、磁性部材間にフィルム等の絶縁部材
を介装し、接着するという極めて簡単な構成であるので
容易に実施でき、且つトルクの正確な測定という大きな
効果を得ることができるものである。
Further, since an insulating member such as a film is interposed between the magnetic members and the members are adhered to each other, the structure can be easily implemented and a great effect of accurate measurement of torque can be obtained. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例の磁歪式トルクセンサの構成図であ
る。
FIG. 1 is a configuration diagram of a magnetostrictive torque sensor according to an embodiment.

【図2】(a)は、一実施例の磁歪式トルクセンサに使
用される磁性部材の正面図である。(b)は、一実施例
の磁歪式トルクセンサに使用される磁性部材の側面図で
ある。
FIG. 2A is a front view of a magnetic member used in the magnetostrictive torque sensor according to the embodiment. (B) is a side view of the magnetic member used for the magnetostrictive torque sensor of one Example.

【図3】処理回路、及び1次コイル、2次コイルの接続
構成を説明する図である。
FIG. 3 is a diagram illustrating a connection configuration of a processing circuit, a primary coil, and a secondary coil.

【図4】従来例の磁歪式トルクセンサの構成図である。FIG. 4 is a configuration diagram of a conventional magnetostrictive torque sensor.

【図5】2つ割りの磁性部材の構成を示す図である。FIG. 5 is a diagram showing a configuration of a magnetic member divided into two parts.

【符号の説明】[Explanation of symbols]

10 磁歪式トルクセンサ 11 回転軸 11a、11b 磁歪膜 12 ハウジング 13 磁性部材 14 コイル 14b 1次コイル 14c 2次コイル 15 基板 17 コイルボビン 20 軸受け 21 絶縁部材 22 接着剤 23 交流電源 24 処理回路 F 接合部 10 Magnetostrictive Torque Sensor 11 Rotating Shafts 11a, 11b Magnetostrictive Film 12 Housing 13 Magnetic Member 14 Coil 14b Primary Coil 14c Secondary Coil 15 Substrate 17 Coil Bobbin 20 Bearing 21 Insulation Member 22 Adhesive 23 AC Power Supply 24 Processing Circuit F Joint

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大立 泰治 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Taiji Odachi 2-chome Toyota-cho, Kariya city, Aichi Prefecture Toyota Industries Corp.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 2個の相似形磁性部材を接合し、該接合
部に絶縁部材を介装した円筒状磁性部材と、 該円筒状磁性部材の内周に環状に形成された凹部に配設
されたコイルと、 前記円筒状磁性部材の内周部と所定の隙間を有して回転
自在に配設された回転軸と、 該回転軸の周面に形成され、該回転軸に負荷されるトル
クを透磁率の変化として検出し、前記コイルの作成する
磁束を変化させる磁歪センサと、を有することを特徴と
する磁歪式トルクセンサ。
1. A cylindrical magnetic member having two similar magnetic members joined to each other, and an insulating member interposed between the joined magnetic members, and a cylindrical magnetic member having an annular recess formed on the inner circumference thereof. Coil, a rotating shaft rotatably disposed with a predetermined gap from the inner peripheral portion of the cylindrical magnetic member, and formed on the peripheral surface of the rotating shaft and loaded on the rotating shaft. A magnetostrictive sensor that detects torque as a change in magnetic permeability and changes the magnetic flux created by the coil.
【請求項2】 トルクが負荷される回転軸と、 該回転軸に設けられ、該回転軸に負荷されるトルクの変
化を検出する磁歪センサと、 該磁歪センサの近傍に形成され、該磁歪センサに磁束を
供給するコイルと、 2個の相似形磁性部材の接合部に絶縁部材を介装して円
筒状に形成され、前記磁歪センサと共に前記コイルが作
成する磁束に基づく磁気回路を形成する磁性部材と、 を有することを特徴とする磁歪式トルクセンサ。
2. A rotating shaft to which a torque is applied, a magnetostrictive sensor which is provided on the rotating shaft and detects a change in the torque applied to the rotating shaft, and a magnetostrictive sensor formed in the vicinity of the magnetostrictive sensor. A coil that supplies a magnetic flux to a magnetic field, and a magnetism that forms a magnetic circuit based on the magnetic flux created by the coil together with the magnetostrictive sensor, by forming an insulating member at the joint between two similar magnetic members. A magnetostrictive torque sensor comprising: a member;
【請求項3】 前記回転軸には、磁気異方性の異なる2
つの磁歪センサが配設されていることを特徴とする請求
項1、又は2記載の磁歪式トルクセンサ。
3. The rotation axis has two different magnetic anisotropies.
The magnetostrictive torque sensor according to claim 1, wherein two magnetostrictive sensors are provided.
【請求項4】 前記円筒状磁性部材は、2個の相似形磁
性部材が接着剤で接合されて成ることを特徴とする請求
項1、又は2記載の磁歪式トルクセンサ。
4. The magnetostrictive torque sensor according to claim 1, wherein the cylindrical magnetic member is formed by joining two similar magnetic members with an adhesive.
JP25094994A 1994-10-17 1994-10-17 Magnetostriction type torque sensor Withdrawn JPH08114515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25094994A JPH08114515A (en) 1994-10-17 1994-10-17 Magnetostriction type torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25094994A JPH08114515A (en) 1994-10-17 1994-10-17 Magnetostriction type torque sensor

Publications (1)

Publication Number Publication Date
JPH08114515A true JPH08114515A (en) 1996-05-07

Family

ID=17215410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25094994A Withdrawn JPH08114515A (en) 1994-10-17 1994-10-17 Magnetostriction type torque sensor

Country Status (1)

Country Link
JP (1) JPH08114515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119773A1 (en) * 2009-04-17 2010-10-21 本田技研工業株式会社 Magnetostrictive torque sensor and electrical power steering device
JP2010249734A (en) * 2009-04-17 2010-11-04 Honda Motor Co Ltd Magnetostrictive torque sensor and electric power steering apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119773A1 (en) * 2009-04-17 2010-10-21 本田技研工業株式会社 Magnetostrictive torque sensor and electrical power steering device
JP2010249734A (en) * 2009-04-17 2010-11-04 Honda Motor Co Ltd Magnetostrictive torque sensor and electric power steering apparatus
US8701503B2 (en) 2009-04-17 2014-04-22 Honda Motor Co., Ltd. Magnetostrictive torque sensor and electrical power steering device
JP5638516B2 (en) * 2009-04-17 2014-12-10 本田技研工業株式会社 Magnetostrictive torque sensor and electric power steering apparatus

Similar Documents

Publication Publication Date Title
KR900000660B1 (en) Noncontact torque sensor
JP4292967B2 (en) Magnetostrictive torque sensor
JP2007086018A (en) Magnetostrictive torque sensor
JP3549539B2 (en) Magneto-elastic non-contact torque transducer
US4646576A (en) Torque detector
JPH01110230A (en) Magnetoelastic torque converter
JPS61153535A (en) Torque meter
JPH08114515A (en) Magnetostriction type torque sensor
US20060137475A1 (en) Eddy current sensor assembly for shaft torque measurement
JP2007278865A (en) Magnetostrictive torque detecting apparatus
JPS5946526A (en) Electromagnetic stress sensor
JPH08114516A (en) Magnetostriction type torque sensor
JP2005321272A (en) Magnetostrictive torque sensor
JPS63297545A (en) Axis to be measured for torque sensor
JPH01187425A (en) Torque sensor for steering shaft
JPH01318901A (en) Magnetic induction type sensor
JPH10148641A (en) Angular velocity sensor
JPH11337424A (en) Torque sensor
JPS63182535A (en) Torque sensor
JPS6141936A (en) Torque sensor
JPH03269330A (en) Torque sensor
JPH0614939U (en) Magnetostrictive torque sensor
JPH0543040U (en) Magnetostrictive torque sensor
JPS6050429A (en) Torque sensor
JPH09257603A (en) Magnetostriction type torque sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115